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ABSTRACT.

Exponential upper bounds of the form IP{queue b} .b are obtained for

the distribution of the queue length in a model of a multiplexer in which the input is a

heterogeneous superposition of discrete Markovian on-off sources. These bounds are

valid at all queue lengths, rather than just asymptotic in the limit b —* c. The decay

constant y is found by numerical solution of a single transcendental equation which

determines the effective bandwidths of the sources in the limit b —f cc. The prefactor

y is given explicitly in terms of y. The bound provides a means to determine rigorous

corrections to effective bandwidths for multiplexers with finite buffers.
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1. INTRODUCTION.

The problem of finding the queue length distribution in a queue with non-

independent arrivals has attracted much attention recently due to applications in

the design of muitiplexers for the emergent asynchronous transfer mode (ATM) of

data transmission in integrated services digital networks (ISDN). From the techno

logical point of view it is required to guarantee sufficiently good quality of service:

loss probabilities must be appropriately small and waiting times sufficiently short.

The problem is resistant to simple exact treatment due to the nature of the arrival

process. It is a superposition of sources which are typically bursty, in the sense that

their activity is highly correlated into bursts rather than occurring independently

at different times; and periodic (when viewed at the short time scales of the multi

plexer output) either due to their origin (e.g. periodic sampling of voice traffic) or

their occupation of periodic slots allocated for transmission. The goal of analysis is

to provide mechanisms for design and performance prediction, and algorithms for

allocation of resources during the operation of such devices. It is desirable that the

results of such analysis be both robust (e.g. with respect to the uncertainties of

modelling the sources) and conservative (i.e. that they should not overestimate the

capacity of resources).

In this paper exponential upper bounds for the tail probabilities

JP{queue bj <—b are obtained for a queue whose input is a heterogeneous super

position of discrete time Markovian on-off sources. In the model the queueing dis

cipline is first-come first-served (FCFS) with an infinite buffer. With this queueing

discipline the tail probabilities bound from above those of the corresponding model

with a finite buffer of size 5. This estimate is conservative in the sense that, be

cause it is an upper bound, any calculation of resource allocation based upon it will

overestimate rather than underestimate the resources required to provide a given

quality of service. We stress that these bounds are valid for all S > 0, not just in

the limiting regime S — cc, so that such calculations can be made for buffers of all

lengths.

We specify the model precisely. The multiplexer has L Markovian sources.

These sources are mutually independent and are divided into groups which we will

label by i = 1,2,. . . , I. Within each group, the sources are statistically identical.

Group i comprises L sources, and Lj L. In group i each source is as follows:

a Markov chain on the state space {0, l}, these states corresponding to the source

configurations silent and active, respectively. The probability of transition from the

silent state to the active state is a whereas the probability of the inverse transition

is d. So the Markov transition matrix for one such line can be written as

Tj=(1a1 dj

a l—d
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The quantity a/(a + d) is called the activity of the source: this is the stationary

probability that the source is active. In other words, T has stationary distribution

(di, a)/(a ± d.c). Furthermore, the Markov chain is reversible: Tj.tm

for all n, m {O, 1}. The mean lengths of silence and activity are 1/a

and 1/d respectively. The quantity 1 — (a + d) can be used as a measure of the

burstiness of the source, in terms of the correlations between the state wt of the

source at successive times t and t ± 1:

—
= (1 — — d)ad/(a + d)2

When a ± dj = 1 this covariance is 0 reflecting the fact that the w are independ

ent. We are interested in the case that there are positive correlations between the

activities at successive times, which we call the

bursty regime: a + d < 1 for all i , (1.1)

since in practice one tries to model source traffic whose bursts of activity and inter

vening silences are long compared with those of independent arrivals with the same

activity. Typical values of a and d might be of the order iO or smaller.

The queue operates as follows. Let z denote the number of lines in group i

which are in the active state at each integral time t, and set zt = z. At each

such time all active lines empty one cell into the buffer of the queue. The queue has

a constant service rate s cells per period. Denoting by qt the size of the queue at

time t then we have the iteration

= max{0, qt + z
—

In what follows we obtain a bound on the queue length at time 0. Since the individual

sources are reversible this quantity has the same distribution as q := limt., qt

where qt = max{0, z1 — s, z1 ± z2 — 2s,... , z1 + z2 ± ... + Zt — ts].

In order that the queue does not permanently overload we require that the total

activity over all inputs is less than the service rate of the queue, in other words that

the

stability condition: Liai/(a ± d) <s (1.2)

is satisfied. The condition that loss probabilities from a finite buffer do not exceed

a given proportion is more stringent. As we discuss below, much recent work has

focused finding effective bandwidths o- for sources of various types i. oj is the

amount of service capacity which must be allocated to each source of type i in a

heterogeneous superposition if the loss probability for cells from any source in the
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superposition is not to exceed a certain amount. (See {7,8,9] for discussions of

effective bandwidths in general). In the asymptotic regime when the buffer size b —*

cc, this interpretation follows if one can show that the following linear constraint,

the

bandwidth condition: Ljo-j <s . (1.3)

implies that b’ log ]P{q bj log y for the appropriate decay constant y.

The contribution of the present paper, stated in Theorem 1 below, is to establish

exponential upper bounds IP[q b} cpy on the loss probability for aLl buffer sizes

b, rather than asymptotic approdmations for large b. This opens the way to finding

rigorous constraints on the L at all finite queue lengths in order to guarantee

sufficiently small loss probabilities, rather than in just the asymptotic case b —+ cc.

We hope to investigate this application in a subsequent paper.

Theorem 1. In the bursty regime of (1.1) when the stability condition (1.2) is

satisfied, then for all b > 0, the tail IP[q b] of the queue length distribution is

bounded above:

IP{q b] (b,y)y (1.4)

where is an explicit function of y and b which is polynomial in b, and y is the

unique solution of the following implicit equation, the bandwidth equation:

Lô(y) = s (1.5)

where each .3-j(y) is an explicit function of y.

The detailed forms of cp and oj are given during the proof of this result in

section 3. öj(y) is the effective bandwidth in the limiting regime b —f cc appropriate

in order that loss probabilities have asymptotic decay rate y.

Let us set this work in context. The queue length distribution for homogeneous

arrivals in a continuous-time Markov fluid-flow model has been treated some time

ago in [1]. The corresponding heterogeneous problem has been examined in [11]

but evaluation of bandwidths appears unfeasible at finite buffer lengths b. As far

as we are aware, further results are confined to the following types. Firstly, one

may consider a limiting regime in which b —* cc [6], in which case the analysis

of [11] simplifies considerably. This approach is further developed in [16,4]. An

exact treatment of heterogeneous N state Markov modulated arrival processes is

given by matrix-geometric methods (see e.g. [12]) in [5]. Whereas one recovers the

asymptotic decay constant y fairly easily, further detail of the distribution appear

hard to access since the complexity of the algorithm is O(L3’) for L sources. In
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the method of the present paper, the exponential decay rate of the tail probabilities

are determined by numerical solution of a single transcendental equation, the rest

of the bound being determined explicitly in terms of this rate. The second class of

existing results use large deviation methods to find the decay constant y [10,13,15].

In practice this gives asymptotics for large queue lengths rather than bounds for all

queue lengths.

The paper is organized as follows. In section 2 we recall result on bounds

for queue lengths in homogeneous multiplexers obtain using martingale methods in

[2,3]. These are used to bound the exponential moments IE[u], where u> 1 and q

is the queue length random variable (Theorem 2). The point of this is the following.

In section 3 we return to the heterogeneous case and notionally divide up the total

service rate s amongst the I groups of sources, allocating s to each group so that

= s. Then since the sources are independent:

IP{q b] IP{ qi b] u II 1E[uij

where qi denotes the queue length in a queue with the homogeneous arrivals from

sources in group i, with service rate s. The bound of Theorem 1 is obtained by

solving the variational problem in the quantities u and (si) (Propositions 2 and 3).

2. HOMOGENEOUS BOUNDS AND MOMENTS.

We first deal with the homogeneous case i.e. with only one group of statistically

identical inputs. Thus we may temporarily dispense with the group index i. Define

the excess work X := z1 ± z2 ± ... + z — ts arriving up to time t, so that in this

case of one group q = supt>i X. Let o = s/L.

It is useful to define the functions

• x(az+1—a)
y():=

(ld)+d

and

1
F(z) := — and G(z)

(a±1_a)L

Our bounds for heterogeneous multiplexers will be based upon the following

results on the distributions of activities and queue lengths in homogeneous multi

plexers which are proved using martingale methods (see e.g. [14]) in [2,3].
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Proposition 1. In the bursty regime a + d < 1:

(1) One-time distribution: Each Zt is binomially distributed IP[z = k] =

(a + d)_L and hence IE{zZtSj F[zj.

(2) Conditional distribution: JE[x+’ ztj
= ()Zt

(3) Stability condition: If cr > a/(a + ci) then there exists z > 1 with G(z) = 1

andy=’(z) withi<y<r.

(4) Upper Bounds: For (z, y) as in (3) and b> 0,

JP[q b I z] y_b_8 and hence IP[q b] yF(r)

(5) Bound Prefactor: For (x,y) as in (3), F() <1 for 1 <‘ <.

Remarks: (1) follows from the fact that the probability for a single source to be

active is a/(a + d). (2) is proved in Proposition 2 of [2]. In (3), s > La/(a + ci) is

the stability condition (1.2) applied to the homogeneous case. The properties of z

and y and of F in (5) are determined in Proposition 3 and Theorem 2 of [2]. In

(4) the second bound is proved in Theorem 1 of [2]. Bounds conditional on z1 are

determined in Theorem 3 of [3].

The upper bounds of Proposition 1(4) can be used in turn to bound the ex

ponential moment of q itself: this will be needed to treat the heterogeneous case.

Note the restriction that b be positive: this prevents us from simply using a change

of variable to estimate JP[u pJ for p 1 < u. Recall the definition of the excess

work X = E,_i(zt’ — s) and set Q = supti X so that q = ma.x{0, Q].

Theorem 2. With the assumptions of Proposition 1(3), let 1 <u < y. Then

u—i
IE{u ] F(u) ± F(uz/y) . (2.1)

Proof:

E[u] = P[Q = b]ub = F{z] [Q = b Zl]Ub

z10 b=zj—s

since Q — s, and so since IP[Q = bj = JP{Q b] — IP[Q b + 1],

{z] (P{ 0 zi]uz + (1 — u_i) P[ b Z1]U3)

z10 b=j.

where := q — (zi — s) which is equal to sup[0, z2 — s, z2 + z2 — 23,. . .]. From this

two things follow. Firstly, 0 and so IP[ 0 I zi] = 1. Secondly, by stationarity

()akdI_k

6



of the z process, has the same distribution as q = maxLO, Qj. Hence for b> 0

P[ bj z] = F[bJz2JP[z2 zi]
z2 = 0

y 2Sp{z2 zJ by Prop. 1(4)

y&(/y)ZI5 by Prop. 1(2) and 1(3).

Thus

E[uj {zij + (1 — u’)

z10 b1

and so the result follows from Prop. 1(1) after summing over b.

We note that no further inequalities are used in obtaining this bound than are

used in obtaining the bounds in Proposition 1(4). So this is probably the best bound

which can be achieved on iE{uJ by these methods. A greater but simpler bound is

obtained by noting that (with the same conditions on u, x and y)

E{u]

= b-co

= b]

IP{Q O1+(1_ul)ubIP{Q bl

1+ F(z)(1 - u’) (u/y)b

= 1 + — 1F(z) (2.2)
y—u
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3. HETEROGENEOUS UPPER BOUNDS.

The basic idea for dealing with the heterogeneous model is that we can notion-.

ally divide up the service rate s amongst the groups. Each group i is independently

serviced at rate s with s = s. For each such choice of the s we obtain an upper

bound on the queue length by combining Theorem 2 with Chebychev’s inequality.

We must then optimize this bound over all possible choices of the (si). Let A(s)

denote the set of (s)EI with s = s and s > La/(a + di). Define the excess

work in group i:

= Z(4 —

= 1

so that in accordance with the previous definition, the excess work due to arrivals

from all groups at time t is X =
X. Let Qi

= SUPti X. and as before

Q suptl Xt.

We will need “i-versions” of functions used in the previous section: F, G and y

are defined analogously to the homogeneous case using a, d, and oj :=

in place of a, d, s,L and a.

Proposition 2. For all i, let the burstiness condition a + d < 1 be satisfied, and

also a stability condition oj > a/(a ± d) for each i individually, so that we can

choose (Xi,yi) such that y = i(i) and G(z) = 1. Then for b> 0

P{q bj inf fi (F(u)
± U 1

(3.1)
u: 1<u.(y1i (s)EA(s) 7Jj — U J

Proof: Since b> 0, IP[q b] = 1P{Q bj. Let (si) A(s), and u 1. Then

lP[QbjIP{Q1b}

1E{Ej (Chebychev’s inequality)

= u fJE[u} (independent sources)

Bounding each term in the product by Theorem 2, subject therefore to the stated

conditions on aj, x and Vi, and taking the infimum over u> 1 and A(s) one

obtains the right hand side of (3.1).
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To find the optimal value of the variational expression (3.1) seems an intricate

problem. However, if one is interested in the case that b is large, one expects that

the optimal bound wi]I involve making the u close to inf yj. In fact we can find

an expression for the mamum possible value of u, and the values of s and y

to which it corresponds. By Prop. 1(3), each choice of s fixes z and y through

the conditions y = (xi) and G(x) = 1. Now the function j is invertible: since

= x(ai±1—a) then solving the appropriate quadratic equation

and taking the positive root in order to get a positive quantity, one finds

Xj

(2a)1 (ai — 1 ± (1 — d)y ± (4ady + (a — 1 + (1 — d)y)2)’/2).

Eliminating r from the condition G(z) = 1 then finally we express s in terms of

= .i(yi) := Llog(a1(y)± 1 — a)/logy

This motivates the following technical result whose proof we defer to an appendix.

Lemma 1.

(1) is strictly increasing from [1, cc) onto {1, cc).

(2) x t—* pi(x) := log(a + 1 — a)/log th(z) is strictly increasing on (1, cc) and

extends by continuity to take the value a/(a ± d) at z = 1.

Hence y —* .(y) is strictly increasing on [1, cc) and takes the value La/(a + d)

at y = 1.

This enables us to find the supremum of possible values of u in the following

sense, and hence the upper bound for JP{q b].

Proposition 3. Assume the burstiness condition (1.1) and stability condition (1.2)

are satisfied. Then

y := sup sup {y’ : y’ <yj V i}
(s)EA(s)

is the unique solution of the equation

(3.2)

Proof: Since by Lemma 1 the
.

are increasing and i(yi) =

sup sup {y’ : y’ <Yi V i} = sup sup {y’ : i(y’) <s V i}

(s)EA(s) (s)EA(s)

sup sup {y’ : .i(y’) <s} . (3.3)

(s)EA(s)
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Again by Lemma 1, .j is strictly increasing on [1, cc) and (1) =

d) <s. Hence the supremum on the right hand side of (3.3), which we denote y*,

is the unique solution of the equation E = s. By the inequality of (3.3),

y and so in particular y*
> 1. According to Lemma 1, .j is increasing, so

i(y*) > .(1) La/(a + d1). Consequently so that (si) E .4(.s) and so

y* y, which combined with the reverse inequality means that y
= y.

a

Proof of Theorem 1. Applying Proposition 3 with y y for all i and hence

= ‘(y), then equation (3.2) yields equation (1.5):

> Lâj(y) =

where

â(y) :=(y)/L =log(aE’(y)+1_a)/logy
. (3.4)

The bound of (3.1) becomes

[q bj ufl (F(u)
+

‘F(u/Y)) (3.5)

We pick out the dominant behaviour in (3.5) for large b as being that as u approaches

y, so that the dominant contribution to (3.5) is proportional to u(y—u)’. By dif

ferentiation this expression is minimized by u = yb/(b±I), which upon substitution

in (3.5) yields the bound (1.1)

IP[q b] o(y,b)y_b

with

(y, b) = (1+ I/b)5 II (F(bI) ± (F(bI)( -

I - b)/I) . (3.6)

The stated prefactor polynomial in b can be obtained by using the bound (2.2) in

the same manner. This amounts to replacing Fi() by 1 and Fi( y) by F(xi)

in (3.6). Noting that (1 + I/b)5 e1 then one can take

y(y, b) =11 e((1 - F(z)) + (1+ b/I)(1 - y’)F(z)) . (3.7)

Note that we have not found the infimum (3.1), rather we have found a bound

on JP{q bj, which holds for all b, but which is expected to be the optimal one

obtainable from (3.1) as b —+ cc. Concerning the size of the prefactor, we note from

Proposition 1(5) that all the occurrences of the F give a quantity less than 1.
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Appendix: Proof of Lemma 1.

(1) We omit the index i for convenience. By direct calculation + > ‘(r)

(2a(1 — d) + 2adz + d(1 — a)/((1 — d)z ± d)2 > 0. Thus is strictly increasing.

(2) Setting ha() := log(1 + a( — 1)) then

p(z) := h)/(hi(x) + h(x) -

Let x’ > x > 1. Then

/ f dt’ h(t’) dt h(t)

p
f’ h(t’) ± h(t’)

- hd(t’) - f h(t) + h(t)
- hd(t)

the denominator of which is positive, the numerator being

dt’ dt h(t’)(h(t) h(t)) - h(t)(h(t’) - h(t’))

= f dt’ f cit h(t’)(h(t) - h(t)) - h(t)(h(t’) -

= f dt’ f dt( - V(t) (1+ act’ - 1))(1 + a(t 1))
(A.i)

where v(t) := t((1 — d)t — d)/(at — 1 — a). But just as in part (1) we find that v is

an increasing function, and since t’ > t throughout the integral (A.1) we see that

p(’) > p(x) as required. Furthermore lim.1p(z) a/(a + ci).

Taking the composition (with indices restored) j(y) = Lp(’(y)) we obtain

the stated result.
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