
Title The renormalization group in curved space

Creators O'Connor, Denjoe and Stephens, C. R.

Date 1992

Citation O'Connor, Denjoe and Stephens, C. R. (1992) The renormalization group in curved

space. (Preprint)

URL https://dair.dias.ie/id/eprint/738/

DOI DIAS-STP-92-37



G/2

Class. Quantum Gray. 10 (1993) S241—S242. Printed in the UK

nsity

nsity
‘erse
:t to

The renormalization group in curved spacetical
e of
e by Denjoe O’Connorf and C R Stephensttion

t DIAS, 10 Burlington Road, Dublin 4, Irelandecay t Institute for Theoretical Physics, ljniversiteit Utrechi, 3508 TA Utrecht, Netherlands

the Abstract. The general features of the renormali.zation group (RG) in curved space are)f its discussed. An explicit construction of such a group for Euclidean Ac&’ theory with 0(n)internal symmetry group on x Sd, where d s 4 and SC has radius a, is given. This

tis

RG is generated by an infinitesimal generator which implements a coarse graining of the
tiOn

nue degrees of freedom of the system. Thus it is more analogous to the block spin and
uid,

lattice decimation RGs of statistical mechanics. Contrary to standard formulations of the
:ude RG in curved space which emphasize the ultraviolet physics it is explicitly a dependent.
und
ions There has been a large apparent discrepency between the RG viewed as a ‘coarse

of graining’, e.g. decimation or block spinning, and the RO used in field theory. This is
aiits due to the fact that the standard field theoretic RG concentrates on the ultraviolet
ver, properties of field theory. This is a reasonable approach for massless field theory
inot in flat space where no physical length scale is preferred. In this case the distinctionbetween the lattice and field theoretic RGs disappears for scales much larger than the
thin lattice spacing. However, when an additional length scale enters, such as on R3 x S1
i of [1], where L is the size of the si, then the natural RG is L dependent. As the scaleof interest is much larger or smaller than L the RO is either that characteristic of R3or R4 respectively. In a curved space setting the curvature is a natural length scalehence one would expect the RG equations to depend on it. We demonstrate that thisis indeed the case by examining conformally coupled 0(n) A theory on R4_d x(in the case of non-conformal coupling only ma below changes). For < > = 0, weemploy the normalization conditionseld;

sica,

A =
hys.

m=K

Icy)

y of
1 = ZZ2 f r” (x, x1, x2)dXidX2lm

=

where ma is the renormalized mass parameter. The renormalized physical mass inthis geometry is

M2—
fG(x1,x2)./dxj

a
—
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where is the geodetic interval. Ma is an RG invariant. Wavefunction

renormalization is then naturally defined by requiring

fG(x1,x2)o2(x1,x2)\/jdx11
—1

(fG(x1,x2)/dx1)2
m=

— Finite
A, Z, and are independent of x due to the symmetries of the space. The above

correspond to the usual definitions in a flat space setting and in the absence of ioop

corrections agree with the free field parameters in the Lagrangian, up to numerical

factors.
With these definitions the RG equation for p(N) is

and implements a course graining of the true degrees of freedom. lb 2-loops

(h) = -e(a)h + h2- (4(5222)fl(ka)_4+2f2(ka))h3± 0(h4)

= +
h

— ++8 (fi(a)_ f2(ka)) h2 + 0(h3) Finite tc
especial]
One of

=2(fl+2)f ()h2+0(h3) (HTh)
(n + 8) scales b

where h = a1(ka)A, a1 being the coefficient of the quadratic term in the

3 function for A, and 7, are effective anomalous dimensions. €(ka)
such as

d — i(8/ ic)ln[1d1(1+A1)_(’/2)] with d1 = [(1 + d — 2)!/l!](21 + d 1) PT is ii]
and A1 = [l(1 + d — 1) + d(d — 1)]/ic2a2 the degeneracies and eigenvalues of schemes

( + R)/ic2 on Sd, respectively. f1 and f2 are long and will be presented elsewhere quite sir
[4]. For d 2, N > 1 and d < 2, N = 1 there is a lower limit on ic corresponding theory
to the fact that there is a maximum compton wavelength for particles in this geometry when T
[2-3]. j3(h), y, and -y interpolate between those of R4 and R4’1 as maa ranges dimensic
from co to 0. This can be interpreted as the decoupling of the infinite tower of RG inte
modes arising from the compact sd r(N) obeys finite size scaling in terms of the qualitati
variable Maa. For d = 1 and all n, and d = 2, n 1 j3(h) = 0 defines a floating details).
fixed point which interpolates between the 4 and 4— d dimensional fixed points. The i.e. 4D,
above results have applications to cosmological phase transitions and the structure of of freedc
interacting quantum field theories in curved space (more details will be given in a one requ
later publication [4]). HTL 3D

normaliz
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