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Abstract. Using the formalism developed in [I] we discuss finite temperature quantum

field theory in the high temperature regime T >> my where M7 represents a generic

finite temperature mass in the theory. In particular we consider A¢* theory in four

S dimesions showong perturbatively that it has a non-trivial fixed point at finite temperature,

the relevant anomalous dimensions near the second-order phase transition being three-

4 dimensional ones. We emphasize the importance of having renormalization schemes and

i (h ) a renormalization group (RG) equation that can explicitly take into account the fact that
the degrees of freedom of a theory may be qualitatively different at different scales,

Finite temperature field theory (FTFT) has been a subject of interest for some time,
especially in light of the importance of FT phase transitions in the early universe.
One of the main problems in FTFT has been analysing the ‘high’ temperature limit
(HTL) where T >> all other length scales in the problem. Note that T =

scales being <« T does not necessarily imply that one is at high temperature. e.g.
m(T = 0) << T need not imply that mp << T. In the HTL conventional

in the perturbation theory (PT) breaks down For T independent renormalization schemes,
Ka) = such as minimal subtraction, unless 7 ~ k, where « is the renormalization scale,
d-1) PT is ill defined. If one attempts to improve things using a RG based on such
lues of schemes the resultant PT remains il| defined in the HTL. The reason for this is
ewhere quite simple. Just as bare parameters provide a bad perturbative description of the
ronding theory when A /x — o0, s0 T = 0 parameters provide a bad perturbative description
ometry when T/x >> 1. In the HTL the theory has different degrees of freedom, three
ranges dimensional (3D) ones in fact, than at 7 = 0. This is not new, what is new is the
wer of RG interpretation of the breakdown of conventional FTET and the provision of a
of the qualitative and quantitative framework for the analysis of the HTL (see [1-3] for more
loating details). A T independent RG dresses the parameters of the theory with T = 0,
ts. The i.e. 4D, fluctuations, In the HTL, as mentioned, these are not the relevant degrees
ture of of freedom. If one thinks of the RG intuitively as a course graining procedure what
‘n in a one requires is a RG that for T ~ 0 course grains 4D degrees of freedom and in the
HTL 3D degrees of freedom. Such a RG can be derived on the basis of T dependent
normalization conditions such as, using the imaginary time formalism, for Ag*
LY (0,mp, A, Tyx) = m2 ) 0, mp, A\, T, k) = AT. (1)
The consequent RG is explicitly T dependent, hence so are the 3 function and
anomalous dimensions. Some explicit results to 2 loops are
_— T ; 4 1 3 4
nite size ﬁ(h):—e(——)h+h——<fl~—fz>h + O (r%) 2)
mp 3 9
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h 2 1
ey =22 (n-3n)Rro () @)
v4 (h) = % f2h*+ O (h3) 4
where

T2

-2
+M™? (ml—l + mi—l + ml—zl)) (me3)
n

)

n1,N2

and m; = (14 mn?T2md), my = [1+ (@m2T2/mb)(ny + no)1'%,
M = (m+m,+my,). The coupling h = a,(T/mr)A, where a, is the coefficient of
the O(A?) term in B(X). These equations interpolate in a smooth fashion completely
across the crossover as a function of T/my yielding as T/my — O characteristic
4D values and as T/mp — oo 3D values. B(h) = 0 from (2) describes a ‘floating’
fixed point that captures the essence of the crossover without having to solve it as
a differential equation. The effective expansion parameter is e(T/m) which varies
between O and 1. In the HTL ¢ — 1 and in order to obtain good quantitative accuracy
one should work to multiloop order and Borel resum. With the conventional PT of
FTFT: for A ~ 10%, T/m ~ 10° the effective expansion parameter ~ 104, whereas in
our framework it is a number slightly less than 1.

In the large N limit of scalar electrodynamics one obtains a fixed point and
anomalous dimensions analogous to (2-4). For QCD as long as all relevant scales
are > Agcp then as T'/x varies between 0 and co we expect to see a crossover from
a 4D logarithmic approach to the Gaussian fixed point to a 3D power law approach.
More will be said about gauge theories in forthcoming articles.
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