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1 Introduction

The Kaluza-Klein idea [1] has become an important ingredient in many modern
unification schemes, e.g. superstrings and supergravity (see [2] for reviews and
extended lists of references). In general the Kaluza - Klein paradigm is based on the
following assumptions: 1) spacetime has more than four dimensions with the extra
dimensions being a compact space of small size L; and 2) field theory is formulated
on a multidimensional (MD) space. Physical symmetries and effects observed in
experiments are “projections” of MD symmetries and effects to four dimensions.
Often MD spacetime is taken as the direct product M(4) X K(d), where M(4) is a
four dimensional spacetime and K(d) is a compact d-dimensional manifold, usually
a homogeneous space S/R (S is a compact Lie group and R is its subgroup) or, in
the framework of string models, a Calabi-Yau manifold. In modern approaches one
usually demands that the spacetime is a vacuum solution of the theory, and not
just an ad hoc structure. In other words, the compactification of the space of extra
dimensions is spontaneous.

Most investigations of MD models have dealt with their classical properties,
many of which are now quite well understood. The main idea here is to re-interpret
a MD model as an effective four dimensional model by choosing an appropriate
subspace of field configurations in the original model. This subspace is usually
distinguished by some symmetry properties and includes fields which are considered
to be important at the classical level. The main tool here is the mode expansion,
and we are going to illustrate it for a simple model.

Let us consider a one component scalar field on the (4+ d)-dimensionai manifold
B = M4 x Td. Td is a d-dimensional torus of size L. In spite of its simplicity this
model captures some interesting features of both classical and quantum properties
of MD theories. The action is given by

S
= JE 28x

+ (8)2
-A4(,y)/4!], (1)

where u = 0, 1,2, 3, are coordinates on M4 and ym, m = 1, 2, ...,dare coordinates
on Td, 0 ym <2irL. To help re-interpret this model in four-dimensional terms we
make a Fourier expansion of the field 4(x, y),

q5(x,y) =
N

where YN(y) are eigenfunctions of the Laplace operator on the internal space

YN = -MYN, f =
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For Td N = (N1,N2, ..., Nd) is a multi-index with integer entries, Nm = 0, +1, +2,
and the eigenfunctions and eigenvalues are given by

YN
= (2L)d/2

exp(iyN/L),

where yN = E1ymNm, and M = (N2/L2). Substituting the Fourier expansion
into the action and integrating over y one obtains

= f{)[ -Mq(x)qN(x)]

- x) - x) cb(x)q5N(x)
-
S, (2)

NO

where the four-dimensional coupling constant A is related to the MD one \ by
A1 = A/(2irL)’. The sums in (2) are over all nonzero multi-indices N with non
negative entries Nm, q = q-N, and S includes all terms containing third and
fourth powers of bN with N 0. We see that (2 includes one massless real scalar
field qo(x) and an infinite set (“tower”) of massive complex fields qN(x) with masses
given by M = N2/L2. These massive fields are usually referred to as Kaluza-Klein
modes or pyrgons (from Greek irvpos for ladder).

The radius L is usually assumed small in comparison with currently accessible
scales q’, say q q, 100GeV. In many models the spontaneous compactifica
tion solutions give L Lplanck 1033cm. Some arguments that L 106GeV
are presented in [3]. Thus, if the energy scales of our probes are less than the thresh
old energy for the creation of pyrgons it is reasonable to expect that one needs only
to consider the massless field q(x), i.e. only the first and the third terms in (2) are
relevant. We say in this case that the model dimensionally reduces. The condition
for extracting MD configurations corresponding to zero modes is very simple in our
case and can be written as 8q,y)/8ym = 0. For MD theories on a spacetime with
more complicated geometry E = M(4) x S/R schemes of consistent dimensional
reduction are more involved (see [4] and references therein for an extended review
of the method).

Although classical dimensional reduction is well understood the same cannot
be said of the quantum theory. Calculation of quantum corrections in the reduced
theory without taking massive modes into account can be justified only in a formal
sense. However, if the extra dimensions are taken seriously then quantum correc
tions from pyrgons must be accounted for, as first emphasized by Duff and Toms [5].
Quantum corrections in Kaluza-Klejn theories were considered in [6], [7], [8] (see
also [9], [10]). Relations between ultraviolet (TJV) properties of a MD theory and
the theory obtained from it by dimensional reduction were discussed by Fradkin
and Tseytlin [11].
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The important point about the contribution of pyrgons is the following; even if
the momenta of the interacting particles are such that q2L2 << 1, so real pyrgons
cannot be created, virtual pyrgons still contribute to loops. The contribution of a
given diagram in (1) can be schematically presented as follows

I’(q, L) = I’o(q) +c5I’(q, L), 6I’(q, L) = I’N(q, L), (3)
NO

where I’ is the contribution of the diagram with only light particles, and FN rep
resents diagrams with at least one pyrgon loop. The sum in (3) may (and in fact
often does) produce additional divergences. Even if all four dimensional divergen
cies are subtracted using four dimensional renormalizations, ENo FN(q, L) may still
diverge, the UV divergences are (4 + d)-dimensional rather than four dimensional.

We will study in this paper the behaviour of I’(q, L) with L, primarily the limit
qL —* 0, and the question of whether the contribution of heavy modes vanishes.
This question is crucial for MD models as it addresses the detectability, at least
in principle, of the MD structure of the Universe even at zero momenta. Since all
previous experiments seem to be in agreement with a four dimensional spacetime
picture, significant values of SF(q, L) would immediately mean that MD models
contradicted experimental data, at least in their standard formulation. So, the safe
option for such models and the Kaluza-Klein approach in general is when SI’(q, L)
tends to zero for qL going to zero. This means that pyrgons should decouple in this
limit analogously to the decoupling of heavy quark contributions in QCD where
such decoupling is guaranteed by the decoupling theorem [12], [13] (see also [14]).
In our case this theorem cannot naively be applied as we will see.

To explain this let us first recall briefly the main statement of the theorem
about the decoupling of heavy masses in four dimensions. Suppose that we have
a theory with two fields &(x) and c2(x) of masses m and M respectively, where
m << M. Let the Lagrangian of the theory be L(g51,m, q, M, g, ga). The decou
pling theorem states that effects at energy scales much less than M are described
by an effective low-energy theory with the Lagrangian L*(q*, m*, g*) where q5* g*

and m* are related to the fields and parameters of the original theories by finite
renormalizations:

* — 1/2 *_ *
— z qi, g —g (gi,g2,m,M)

m* = m*(gi,g2,m,M). (4)

In particular Green’s functions in the full theory are related to Green’s functions in
the low-energy theory by

F(qi, ..., q; g1,g, m, M, ) = z2F*(qi,
q•

g*, m*, )[1 + 0(1/Ma)], (5)

as M — cc with q1,
..., qn fixed. The corrections go to zero as a power of M times

logarithms, typically M2. Moreover, in the full theory renormalization schemes
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with manifest decoupling can be found for which the low-energy theory is obtained
simply by deleting all heavy fields without changing the couplings and masses of
the light fields, i.e. the relations (4) are trivial for such schemes. However, it is not
at all obvious that the decoupling theorem holds true in a MD model, and indeed
strong doubts about its validity in this case were expressed in literature (see [15],
for example). The main criteria for the validity of the decoupling theorem in its
standard version are: 1) the theory must be renormalizable; 2) there must be a finite
number of fields with heavy masses. Neither of these conditions are fulfilled in our
case, i.e. the model (2) in (4+ d) dimensions is non-renormalizable and contains an
infinite tower of massive fields.

One purpose of the present paper is to show that the decoupling theorem is
nevertheless true for MD theories, at least to one-loop order. We also study di
mensional crossover, in particular we show that our model transforms from a non
renormalizable one to a renormalizable one as L — 0. To exhibit these properties
we consider (1) on E = M4 x T2. We calculate the four-point vertex function i’
and the RG16-functions to one-loop, demonstrating the decoupling of heavy masses
and dimensional crossover. Generalization of our result to any number of extra di
mensions is straightforward. We also believe that our results about the decoupling
of Kaluza-Klein modes and dimensional crossover are rather generic and hold true
in other MD models.

It should be mentioned here that similar questions were addressed in papers on
theories with non-zero temperature. It was observed that quantum field theories
could become simpler (dimensionally reduced) in the high temperature regime [16].
Such theories in the imaginary-time formalism are described by models on R3 x S’
with the temperature T = (2irL)’ so that high temperatures correspond to the
limit L —k 0. High-temperature dimensional reduction from four to three dimensions
for QED, QCD (including quarks) and the q theory was discussed in [17] [18] [19].
Similar problems in the framework of statistical models were also considered in [19].

The plan of the paper is as follows. In Sect. 2 we describe the model and
a class of renormalization schemes which provide manifest decoupling of Kaluza
Klein modes. The four-point Green function to one loop order with dimensional
regularization is calculated in Sect. 3. In this section the main result on decoupling
of the heavy Kaluza-Klein modes for renormalized Green functions is demonstrated.
The important issue of interchangebility of the limits L —÷ 0 and e —+ 0, where
is the regularization parameter, is discussed in particular in the context of cutoff
regularization. In Sect. 4 RG 3-functions are calculated and dimensional crossover
of quantum properties is analysed. Some of the results presented here as well as
their relation to statistical mechanics were published in [20].
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Figure 1 Figure 2

2 Description of the model and the renormaliza

tion scheme

Our simple model as mentioned is a one component scalar field on E = M4 x S’ x S’
with the radii of the circles equal to L and with the action given by (1), which after
a mode expansion is of the form (2) with one massless field o and an infinite
tower of massive fields q. We will consider one-loop diagrams with four external
lines corresponding to massless particles. Only the interaction terms written down
explicitly in (2) will be relevant for our computations.

As F4(q), where q is the total momentum of incoming particles, to one loop order

is quadratically divergent, 2. also diverges. Thus, the divergencies cannot be re

moved by renormalization of .\1B alone. We must also add a A2qS (x,y)(4+d)cb2(x, y),
where (4+d) is the D’Alambertian on E and )‘2B has mass dimension two. Of course,
for calculation of other Green functions or higher order ioop corrections other types
of counterterms are necessary, we are not going to discuss them here. Thus, the
Lagrangian that we will use for our calculation is

— 1 ãco(x) 2 84(a)84N(x) 2 *L
— ( ) + [

,
— MNN(x)c’N(x)]

- AlB4()
-
AlB2()

NX
-A2O2()E2() (6)

NO

We evaluate 4) at the symmetric point where the external four momenta satisfy
the equality q2q3 = q2(S, — 1/4). The tree and one ioop contributions are shown in
Fig.’s 1 and 2 respectively. The thin line corresponds to the massless field, whereas

the thick one with the label N on it corresponds to propagation of the field gzr.

Bars on lines of the second diagram in Fig. 1 correspond to derivatives with respect
to external momenta. To one loop

F(4)(q, L) = A1B + \2Bq + gK(q, L), (7)

K(q, L) = Ko(q) + 6K(q, L) = Ko(q) + KN(q, L), (8)
NO

where Ko(q) corresponds to the first diagram and 8K corresponds to the contribu

tion of the sum term in Fig. 2. Here we assume that A2B AB, so that the one loop
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diagrams proportional to )1B)2B or 2B can be neglected. The consistency of this
assumption is discussed in Sect. 4. Note that if we do not make this assumption
control of the proliferation of divergencies becomes very hard.

To regularize the one-loop diagrams in Fig. 2 we use dimensional regularization.
Keeping 6 > 0 automatically makes the sums in (8) regularized in the sense of (-
function regularization. KN can be written as

3 f d21c 1
KN

= 2 1 (2)4-2E (k2 +N2/L2)((q — k)2 + N2/L2)

Evaluating this integral one gets the standard one-loop result

KN(q,L)
= b2(:)

‘ (q2(1 -1) +
= (9)

where b2(e) = and is finite as c —* 0. Note that for 6 $ 0, and N 0 KN —f 0
asL—0.

The renormalization scheme for which decoupling of pyrgons in the low-energy
limit is manifest is formulated in terms of a subtraction operator RL which is ex
plicitly L dependent. RL is an operator acting in both N space and q space and
can be written as a matrix in both these spaces. Its matrix elements are

RMN(q, ii; L) = SMN(1 — M(q, ; L)) (10)

The action of M(N) on KN 5

; L)KN(q, L)
=

(11)

where 1 + 5 is the number of subtractions necessary to render K(q, L) finite; e.g.
for a logarithmic divergence

M(q, p; L)KN(q, L) = KN(, L)

RMN(q, /1; L)KN(q, L) = KM(q, L) — KM(0u, L) (12)

Note that M(’)(q, ,i; L) —* 0 (N 0, e 0) as L —* 0, hence in this limit RLO has
the same structure as it would have in strictly four dimensions, e.g.

R00K0(q, L = 0) = Ko(q, L = 0) — Ko(u, L = 0)

for a four dimensional logarithmic divergence. For the case at hand

RLK(q, L) = K(q, L) — K(, L) — (q2
— 2) 8K(q, L)

q22 (13)
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If one uses an L independent subtraction scheme such as minimal subtraction which
is appropriate for the L = oo system one finds

RK(q,L) = K(q,L) — K(,L)
— (q2

—2)8K(q,L= OO)
(14)

It is vital to understand that (R0 — RL)K(q, L) — oc due to the fact that one has
underestimated the effect of pyrgon modes by overestimating their masses. In fact
one has implicitly assumed they are infinitely massive. On the other hand as L — 0
(R — RL)K(q, L) —* oc due to the fact that one has overestimated their effect
by underestimating their masses. In this case one has implicitly assumed they are
massless. In reality they are neither infinitely massive or massless, they change their
mass as L changes and a good renormalization scheme recognises this fact. For the
subtraction operator RL decoupling is manifest.

To formulate a particularly convenient renormalization prescription define an
operator D as follows

8
D(tree diagram) = —-(tree diagram),

DK0(q) = 0, (15)

8
DSK(q,L) =

uq

This defines a slightly different RL operator where is replaced by D. We define
dimensionless renormalized coupling constants ? and .\2 by the conditions

= (M —q2D)F(q, L)q22;

= DF4(q,L)q2,12, (16)

3 One-loop calculation and decoupling of Kaluza
Klein modes

Using the formulas (7) and (9) we compute the relations between renormalized and
bare coupling constants for the renormalization scheme defined by eqs. (16):

= 1B + lB[KO() +A1SK(, L)]

= A1B + AlB[IO() + Al+€IN(II, L)j, (17)
NO

= A2B +

= 2B+AlBAEIN([L,L), (18)
NO
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where 1 and IN(qL) are determined by (9) and we have introduced an operator A =

i8/l3,u — 2zi. Note the following useful identities [A1,A11j = 0 ApT2e
=

Inverting the expansions (17) and (18) to obtain the bare coupling constants in
terms of the renormalized ones and substituting these expressions into (7) we get

F(4)(q, L)2 = A1 + 2 — A[(RLK)(q, L)] (19)

= A1 + A2 - A{[( - 1110

+ [(Jw(qL) — IN(pL)
— ( —l)4IN(uL)]}

N0

It is easy to check that (20) is finite. Taking the limit = 0 gives

I’(4)(q, L) = A1+-A2+ A{ log(s) —

F(2k+2)
-1- k(- - 1)]}, (20)

where b2 = 3/16ir2 and (v)
= ENo -il- is the generalized zeta-function [21]. The

expansion (20) is valid for uL < 1 and (q2/1u2) 0(1). The L independent term of
order A is the standard result for A1q4 theory in four dimensions in the momentum
subtraction scheme, whereas the contribution of pyrgons is given by the sum.

It is clear that for uL —÷ 0, qL —÷ 0 and q2 the contribution of pyrgons
vanishes. Thus, j(4) of the full theory to one loop is

= F(q,)(1 + O((L)4))+ A2, (21)

where F(q, p) is the four dimensional vertex function. (21) is one of the main
results of the paper and shows that pyrgons decouple in the one-loop approximation,
cf. (5). The last term in (21) proportional to A2 is not relevant in the limit — 0
as we will see later.

To understand the decoupling of Kaluza-Klein modes in more detail we will
analyse the relations between the bare and renormalized coupling constants using
the more “physical” cutoff regularization where the integrals over the loop four-
momenta are bounded at k = A and the sums over modes in loops are bounded
by a number N0. Removing the regulator means taking the limits A —* oo and
N0 —* oc. We find to one ioop

2 b2 [1 A2 +2x(1
—

x) A2
A1 = A1B—AlB{J dx[log

2x(1_x)
N0

A2 +2x(1
—

x) + N2/L2 A2
+ J dx[log

2x(1—x)+N2/L2 A2+2x(1_x)+N2/L

9



N0

+ I dx
2 }, (22)

NO’O (2x(1 — x) +N2/L2)(1 +
x(1—x)

+ N2)2

b N0

= A2B
— A1B— I dx 2 }3)

2 NOJ0 (i2x(1 — x) +N2/L2)(1 +
x-x)

+
N22

where b2 is the same as before. Let us now study the limits of these expressions.

The first regime we consider is 1u << A < oo and 1uL << 1. It can be checked
that for finite A all sums in the relations above are convergent, so we could put

the regulator N0 = oo. Physically we can view this situation in the following way.
Though formally we sum over all heavy modes in the one loop diagram in Fig. 2,
since the loop four momenta is limited by the value k = A, the modes with masses
larger than A do not give essential contributions, hence we do not see additional
UV divergencies due to summation. So in the limit specified above but with AL
finite (22) reduces to

A1 = A1B A1[(log +1)
+ (AL)4((2)

+ O((AL)6)j.

Now, if we take the limit AL — 0, formally, we end up with the expression

Ai = A1B — A(log + 1)

which is exactly the one loop renormalization relation in four dimensional theory
for TJV cutoff regularization. The relation for )2 in this case takes the form

A2 = A2B2 +A1B(ILL)H6((3) + O((AL)6)],

which in the limit under consideration reduces to A2 A2BII which shows that the

coupling constant A2 is not renormalized as expected in four dimensions. So, in the

regime when the regulator A is finite the theory behaves like a four dimensional
theory with a finite number of Kaluza-Klein modes and to which the standard
decoupling theorem can be applied. This explains why we observe the decoupling of

pyrgons and dimensional crossover from non-renormalizability to renormalizability
when the size of the space of extra dimensions L vanishes.

Let us now consider the second regime when A/1i — cx, AL — cx, so that

AL>> N0, and 1tL is finite. Then the renormalization relation (22) takes the form

2 b2 A2
A1 =

/1

+ 0(0) +ln(2L2)(N0(O) -

__
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where (N0(O) and denote the regularized sums 1 and E(— log N2)
respectively. These sums diverge when the regularization is removed and thus the
renormalization of A absorbs both four dimensional (related to A —+ oo) and six
dimensional (related to the divergent sums) UV divergencies. For the same limit
the renormalization relation for A2 is the following

A2 = A2B - AlB(L) {CN(1)
+ ()2((2)

+ O((L)4)J, (24)

Here N0(1) = 1/N2 is the divergent sum when the regulator N0 —+ oo. (24)
is A independent and contains only the divergences corresponding to the two extra
dimensions. As we see, the limit A —* oc taken first corresponds to going to short
distancies in the theory where spacetime is essentially six dimensional so that the
divergent term does not depend on the size L and thus is not sensitive to details
of compactification. In this regime all heavy modes are excited as virtual particles
and the final result for the renormalization relations depends on the regulator N0
explicitly. Taking the limit of small L in this case does not mean the shrinking of
two extra dimensions to zero as it was assumed in the derivation that AL>> 1 and
we are therefore always in six dimensions. So, the contribution of pyrgons to the
renormalization relations is non-vanishing and we do not see dimensional crossover
in this regime. The point we have been trying to make here is that the limits L — 0
and “regulator”(E, A1, N) —* 0 do not commute. The moral of this is that it
is very dangerous to make statements about dimensional reduction by looking only
at regularized but unrenormalized quantities. We stress that since the expressions
(20)-(20) do not depend on the regularization, the statement about the decoupling
of pyrgons from p(4) in the limit uL —+ 0, qL —÷ 0 with 4 0(1) holds true. In fact
if one goes to RG improved perturbation theory using an L dependent RG as in the
next section one finds that the decoupling is also completely renormalization point
independent. It is important to emphasize that dimensional reduction if it occurs is
a physical thing; in particular it is renormalization scheme independent. However,
what is certainly true is that some renormalization schemes make it manifest while
others do not as emphasized in the introduction. For instance, it is extremely
difficult to see dimensional reduction using minimal subtraction. Since the equations
(17, 18) do not contain pyrgon contributions in the limit ,uL = 0 the renormalization
scheme (16) is the analog of the scheme with manifest decoupling described in the
introduction.

4 Renormalization group equations

In this section we calculate the RG equations for the coupling constants and examine
their solutions. The16-functions for the coupling constants A1(1i) and A2() defined
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by the renormaiization prescriptions (16) at the subtraction point are the following

31(A)
=

= —2cA + A[—2eIo — J(iL)], (25)

j32(A2) = (2— 2c)A2 + gJ(1L), (26)

where we found it convenient to define J(pL) = N>O A€Al+61N. For e = 0 the
expression —2EI0 in the r.h.s. of (25) is finite and equals (—b2) = 3/16ir2 which
is the usual one-loop coefficient of the ,B-function in the four dimensional \iq54/4!

theory. J(uL) for e = 0 here is

00 Il12
J(L) = b2

I’(21 + 2)
— 1)c(l)(L)21 (27)

and behaves like (pL)4 for 1uL — 0. The solutions of these RG equations are

= (28)
1 —;\1(1uo)b21n-- — A1(1uo)f, 4J(1i’L)’

/12 21 /1 2i ,

= (—) A2(1io) — /1
j

—A1(,u )J(1u L). (29)
ILO

Ai(/L) has a pole at some point = ,u4 which is L dependent. For L = 0 j =

exp(1/b2A1(1i0)). Thus our calculations are meaningful for i <</1*. The blow-up
of the coupling constants at = ,u is a remnant of the Landau ghost in the theory
and reflects the inconsistency of the quartic self-interacting scalar model (see [22]).
As J(/1L) vanishes for 1uL —* 0 (28) goes to the standard expession for the running
coupling constant in the four-dimensional model in the one-loop approximation and
the solution of (29) becomes independent of Ai(,u). This reflects the fact that a
counterterm for A2 is not necessary in four dimensions. A2 = 0 is a fixed point in
this limit. This demonstrates the dimensional crossover from non-renormalizability
on M4 x T2 to renormalizability on M4 in terms of the RG equations and their
solutions.

In the large ,uL limit (M4 x T2 goes to M6) and J(pL) !(iL)2. This function
diverges because the volume of the internal space T2 was absorbed into the coupling
constants when we did the dimensional reduction and this volume diverges when

—* oo. Thus the couplings (A1,A2 which are natural for the four-dimensional
limit (1iL —* 0) are inappropriate for the six-dimensional one (juL —* oo). One can
define six-dimensional couplings = (/1L)2A1,A2 = (,uL)2A2 and check that the
RG equations and solutions for A1)) do not contain any divergent terms
for /1L > 0. To have coupling constants which smoothly interpolate between the
four-dimensional and six-dimensional limits we define

=b2(E)A2
(30)
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with S(ILL) = 1 + J(ILL)/b2(e). These have ,B - functions

/3(h) = —26(ILL)hl + b2h, (31)

82(h2) = (2 — 2(ILL))h2 — b2h (32)

where the function €(,uL) = — 8S(ILL)/8,u)/(2S(ILL)) interpolates between E

and e — 1. In the limit 1iL —* 0 the coupling constants (hi, h2) equal (A1,A2) and
the equations (31), (32) coincide with (25), (26). For the six-dimensional limit the
definitions (30) coincide with slight modifications of (A1,A2), and the RG equations
have the form

/3(h1) = (2—2e)h1+b2h,

/3(h2) = (4 — 2E)h2 — b2h.

These are the natural six dimensional RG equations for this system. Thus the
equations (31), (32) interpolate, in what we believe to be a natural way, between
the four and six dimensional theories. The non-triviality of the RG equations for
the coupling 112 in six dimensions reflects the non-renormalizability of the theory
with the infinite tower of Kaluza-Klein modes.

The solutions of these equations can obviously be obtained from the solutions
(28), (29) by changing the variables according to (30)

S(1i1)

hi(IL) 2
1 — 62h1(jio)

1 I 62 ju d’ jin — —
—— I’S(oL) ji S(0L) 11o u

IL 2 S(ILL) 2 p dIL’ 2 J(IL’L)
= S(ILoL)20) — 1’2IL S(ILU)

)S2(IL1L)

The interpolation of these formulas between the corresponding solutions for four
and six dimensional theories can be easily checked.

A few remarks are in order here. Since in the four-dimensional limit the coupling
h2 does not get renormalized it seems natural to choose the initial value h2(ILo) = 0
in which case the theory reduces exactly to the four-dimensional one. In our one-
loop calculations we assumed that A2 A. If 112(110) = 0 or is fine tuned to be small
then there is an interval i’o IL 12 <<IL* where 112(IL) remains small relative to h
and our assumption is valid. We would like to mention that the initial assumption
of imposing the relationship A2 A is similar to the fine tuning of Coleman and
Weinberg in the case of scalar electrodynamics [23].

5 Conclusion

We have demonstrated to one-loop order that a non-renormalizable theory can re
duce to a renormalizable one as the extra dimensions shrink to zero size. We believe
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that the formlism herein can be extended to arbitrary order, in particular using the

RL subtraction operator introduced in Section 2 and its associated RG. The phys

ical criterion for dimensional reduction to occur is that all physical mass scales

(masses, momenta etc) be much less than L’. Though we have only addressed

the question in the case of the four point function in this work, similar analysis

can be carried out for a general N-point function. We can summarize these results

as the decoupling of compact dimensions via the decoupling of an infinite tower of

Kaluza-Klein modes. Zero or light modes give the leading contribution to physical

amplitudes and the RG equations in the limit ,uL —* 0, i.e. when heavy modes
cannot be seen experimentally. We presented a renormalization scheme in which
the decoupling of heavy modes is manifest. As far as the relations between bare
and renormalized coupling constants are concerned we concluded that the form of

the relations depends on the order in which the limits L — 0 and —* 0. We stress
again however, that physical quantities cannot depend on this apparent ambiguity.

We derived RG equations for couplings h1 and h2 which interpolated smoothly
between four and six dimensions in the limits 1uL = 0 and 1uL — oo respectively.

It is in this sense that we have dimensional crossover from six to four dimensions,

from non-renormalizability to renormalizability.
As it was mentioned in the Introduction the problems here are similar to those

on dimensional reduction in four dimensional finite temperature theories where

L = T’. It was shown in many papers that in the limit T —* oo the nonstatic

modes (corresponding to nonzero modes in our terminology) decouple in the one

loop approximation and the theories reduce to effective three-dimensional ones.

However, it was argued in [18] that decoupling fails at higher orders in perturbation

theory due to the fact that loop corrections in the large temperature limit can induce

large masses T. It should be patently obvious that if m > T (in the language

of this paper the “light” particle is heavier than the lightest pyrgon) dimensional

reduction cannot occur. A quantitative measure of dimensional reduction is e(1uL)

which defines an effective dimension deff(,uL) = 6— E(pL). The question of whether

decoupling occurs to all orders is a question of great importance for Kaluza-Klein

theories and will be discussed in a future paper. If dimensional reduction is to be a

property of a Kaluza-Klein model then certainly it will place severe constraints on

the parameters of the model. Such constrained models might be supersymmetric

models as they have no hierarchy problem [24].
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