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corresponding to the piece (Pt + P1) of F, (3.73), by imposing the partial gauge fixing

condition

4q(x) 0 , qi E (Qo + Q), (3.80)

where the qi form a basis of the space (Q0 + Q) and the qq’s are defined like in (2.3).

This implies that the reduced phase space defined by the constraints in (3.79) is the same

as the one determined by the original constraints (3.66). In conclusion, our purely first

class constraints, (3.79), have the same physical content as Bershadsky’s original mixed

set of constraints, (3.66).

Finally, we give the relationship between Bershadsky’s W,-algebras and the sl(2)

systems. Having seen that the reduced KM phase spaces carrying the W,-algebras can be

realized by starting from the first class constraints in (3.79), it follows from (3.74) that the

W,-algebras coincide with particular ‘Vg-algebras if and only if the space V0 is empty, i.e.,

for W with n = odd. In order to establish the )‘Vg interpretation of W, in the general

case, we point out that the reduced phase space can be reached from (3.79) by means of

the following two step process based on the sl(2) structure. Namely, one can proceed by

first fixing the gauge freedom corresponding to the piece (P + >1) of F, and then fixing

the rest of the gauge freedom. Clearly, the constraint surface resulting in the first step is

the same as the one obtained by putting to zero those components of the highest weight

gauge current representing 3’Vg which correspond to V0. The final reduced phase space

is obtained in the second step by fixing the gauge freedom generated by the constraints

belonging to li?0, which we have seen to be the space of the upper triangular singlets of S.

Thus we can conclude that W, can be regarded as a further reduction of the corresponding

)Vg, where the secondary reduction’ is of the type mentioned at the end of Section 3.4.

One can exhibit primary fields for the W,-aJgebras and describe their structure in detail

in terms of the underlying )/V-aJgebras by further analysing the secondary reduction, but

this is outside the scope of the present paper, see [37].
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4. Generalized Toda theories

Let us remind ourselves that, as has been detailed in the Introduction, the standard

conformal Toda field theories can be naturally regarded as reduced WZNW theories, and

as a consequence these theories possess the chiral algebras )‘Vg x as their canonical

symmetries, where S is the principal sl(2) subalgebra of the maximally non-compact real

Lie algebra . It is natural to seek for WZNW reductions leading to effective field theories

which would realize )‘Vg x as their chiral algebras for any sl(2) subalge bra S of any

simple real Lie algebra. The main purpose of this chapter is to obtain, by combining the

results of sections 2.3 and 3.4, generalized Toda theories meeting the above requirement

in the non-trivial case of the half-integral sl(2) subalgebras of the simple Lie algebras.

Before turning to describing these new theories, next we briefly recall the main features

of those generalized Toda theories, associated to the integral gradings of the simple Lie

algebras, which have been studied before [3,4,14-18]. The simplicity of the latter theories

will motivate some subsequent developments.

4.1. Generalized Toda theories associated with integral gradings

The WZNW reduction leading to the generalized Toda theories in question is set up

by considering an integral grading operator H of , and taking the special case

1’ = g,!: and P (4.1)

and any non-zero

Meg1 and MEW’, (4.2)

in the general construction given in Section 2.3. We note that by an integral grading

operator H E we mean a diagonalizable element whose spectrum in the adjoint of g

consists of integers and contains +1, and that Q denotes the grade n subspace defined

by H. In the present case 13 in (2.25b) is the subalgebra of , and, because of the

grading structure, the properties expressed by equation (2.34) hold. Thus the effective

field equation reads as (2.37) and the corresponding action is given by the simple formula

1j1.(b) Sz(b)
— J d2x (bAIb’,M) , (4.3)
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where the field b varies in the little group Gt’ of H in C.

Generalized, or non-Abelian, Toda theories of this type have been first investigated by

Leznov and Saveliev [1,3], who defined these theories by postulating their Lax potential,

4 = 8÷b. b’ + M, —bMb1 , (4.4)

which they obtained by considering the problem that if one requires a g-valued pure-gauge

Lax potential to take some special form, then the consistency of the system of equations

coming from the zero curvature condition becomes a non-trivial problem. In comparison,

we have seen in Section 2.3 that in the WZNW framework the Lax potential originates

from the chiral zero curvature equation (1.9), and the consistency and the integrability of

the effective theory arising from the reduction is automatic.

It was shown in [3,4,16] in the special case when H, M and M are taken to be

the standard generators of an integral sl(2) subalgebra of , that the non-Abelian Toda

equation allows for conserved chiral currents underlying its exact integrability. These

currents then generate chiral 34)-algebras of the type ‘VVg, for integrally embedded sl(2)’s.

By means of the argument given in Section 3.4, we can establish the structure of the

chiral algebras of a wider class of non-Abelian Toda systems [18]. Namely, we see that if

M and M in (4.2) satisfy the non-degeneracy conditions

Ker(adM) fl = {O} and Ker(acl&) fl c’_1 {O} , (4.5)

then the left x right chiral algebra of the corresponding generalized Toda theory is isomor

phic to W x W, where S_ (S÷) is an sl(2) subalgebra of 7 containing the nilpotent

generator M (M), respectively. The H-compatible sl(2) algebras S± occurring here are

not always integrally embedded ones. Thus for certain half-integral sl(2) algebras W can

be realized in a generalized Toda theory of the type (4.3). As we would like to have gen

eralized Toda theories which possess 3’Vg as their symmetry algebra for an arbitrary sl(2)

subalgebra, we have to ask whether the theories given above are already enough for this

purpose or not. This leads to the technical question as to whether for every half-integral

sl(2) subalgebra S = {M_, M0,M} of q there exists an integral grading operator H such

that S is an H-compatible sl(2), in the sense introduced in Section 3.4. The answer to this

question is negative, as proven in Appendix C, where the relationship between integral

gradings and 81(2) subalgebras is studied in detail. Thus we have to find new integrable

conformal field theories for our purpose.
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4.2. Generalized Toda theories for half-integral sl(2) embeddings

In the following we exhibit a generalized Toda theory possessing the left x right

chiral algebra W x W for an arbitrarily chosen half-integral sl(2) subalgebra S =

{M, M0, M+} of the arbitrary but non-compact simple real Lie algebra . Clearly,

if one imposes first class constraints of the type described in Section 3.4 on the currents

of the WZNW theory then the resulting effective field theory will have the required chiral

algebra. We shall choose the left and right gauge algebras in such a way to be dual to each

other with respect to the Cartan-Killing form.

Turning to the details, first we choose a direct sum decomposition of of the type

in (3.51), and then define the induced decompo3ition Q = P. + to be given by

the subspaces

and P_ EQjflc_ =[M.,Q]. (4.6)

It is easy to see that the 2-form wM+ vanishes on the above subspaces of as a conse

quence of the vanishing of wM_ on the corresponding subspaces of Q. Thus we can take

the left and right gauge algebras to be

and f’=W—+v_), (4.7)

with the constant matrices M and X2i entering the constraints given by M- and M+, re

spectively. The duality hypothesis of Section 2.3 is obviously satisfied by this construction.

In principle, the action and the Lax potential of the effective theory can be obtained

by specializing the general formulas of Section 2.3 to the present particular case. In our

case
(4.8)

and the physical modes, which are given by the entries of b in the generalized Gauss

decomposition g = abc with a E e’ and c e1’, are now conveniently parametrized as

- b(x) = exp[q(a,)j .go(x) .exp[q_(x)] , (4.9)

where q(x) e and go(x) C0, the little group of M0 in C. Next we introduce

some notation which will be useful for describing the effective theory.

The operator Adg0 maps Qt to itself and, by writing the general element u of

as a two-component column vector u = (ui u2)t with ui e and u2 e Q_, we can
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designate this operator as a 2 x 2 matrix:

Adg0
(Xii(go) X12(go)

(4.10)
IQ.4 \X21(go) X22(go)

where, for example, X11(go) and X12(g0)are linear operators mapping P. and Q.. to

P.... , respectively. Analogously, we introduce the notation

Ad9-1
(Y11(go) Yj2(go)

, (4.11)
0 \Y21(go) Y22(go)j

which corresponds to writing the general element of as a column vector, whose upper

and lower components belong to Pi and Q, respectively.

The action functional of the effective field theory resulting from the WZNW reduction

at hand reads as follows:

I(go,qi,qi) Swz(go)
— f d (goMg1,M_)

(4.12a)

+ J d2 ((Oqi , goU+q_g1)+ (74 Xl

where the objects ?i e P are given by the formulae

[M+,q.j+Yi2.8_q and , =[M_,qj—Xi2.ôq. (4.12b)

The Euler-Lagrange equation of this action is the zero curvature condition of the following

Lax potential:

A =M_ + Ogo g01 + go(Oq + Xjj’
.

(4.13)
=

—g0Mg0 — + Y11 .

The above new (conformally invariant) effective action and Lax potential are among

the main results of the present paper. Clearly, for an integrally embedded sl(2) this action

and Lax potential simplify to the ones given by equation (4.3) and (4.4).

The derivation of the above formulae is not completely straightforward, and next

we wish to sketch the main steps. First, let us remember that, by (2.29a), to specialize

the general effective action given by (2.40) and the Lax potential given by (2.32) to our

situation, we should express the objects 8+cc1 anda1&a in terms of b by using the

constraints on J and J, respectively. (In the present case it would be tedious to compute

the inverse matrix of ‘4 in (2.27), which would be needed for using directly (2.29b).) For
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this purpose it turns out to be convenient to parametrize the WZNW field g by using the

grading defined by the sl(2), i.e., as

g = g go g_ where g = a• exp[q}, g_ = exp[q_1j c. (4.14)

We recall that the fields a, c, g and q have been introduced previously by means of the

parametrization g = abc, with b in (4.9). Also for later convenience, we write g as

= exp[ri +p + q] and g_ = exp[r<_1+p + q_]. (4.15)

Note that here and below the subscript denotes the grade of the variables, and p E 7::i:

In our case this parametrization of g is advantageous, since, as shown below, the use of

the grading structure facilitates solving the constraints.

For example, the left constraint are restrictions on J<0, for which we have

J<o = (g+goNg’g’)<o with N = g:’. (4.16)

By considering this equation grade by grade, starting from the lowest grade, it is easy to

see that the constraints corresponding to c>1 C F are equivalent to the relation

N<1 =g1Mgo . (4.17)

The remaining left constraints set the part of J_ to zero, and to unfold these

constraints first we note that

J_4 = [p + q4, M_] +go N_ •g’, with N_ = + (4.18)

By using the notation introduced in (4.10), the vanishing of the projection of J to is

written as

[q., M_]+X11 Opt +Xi2Oq_ =0, (4.19)

and from this we obtain

= X’ {[M_, q] — X12 . (4.20)

Combining our previous formulae, finally we obtain that on the constraint surface of the

WZNW theory

. (4.21)
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A similar analysis applied to the right constraints yields that they are equivalent to the

following equation:

—g’ •ô_g =—goMgf1—O_q4 +Yj1(go) •{[M÷,q_4J+Yi2(go).O_q4}. (4.22)

By using the relations established above, we can at this stage easily computeb1Tb =

O+cc1 and bTb1 =a1&a as well, and substituting these into (2.40), and using the

Polyakov-Wiegmann identity to rewrite Swz(b) for b in (4.9), results in the action in (4.12)

indeed. The Lax potential in (4.13) is obtained from the general expression in (2.32) by

an additional gauge transformation’ by the field exp[—q4], which made the final result

simpler. Of course, for the above analysis we have to restrict ourselves to a neighbourhood

of the identity where the operators Xii(go) and Yii(go) are invertible.

The choice of the constraints leading to the effective theory (4.12) guarantees that the

chiral algebra of this theory is the required one, x ‘VVg, and thus one should be able to

express the 34)-currents in terms of the local fields in the action. To this first we recall that

in Section 3.1 we have given an algorithm for constructing the gauge invariant differential

polynomials W(J). The point we wish to make is that the expression of the gauge invariant

object W(J) in terms of the local fields in (4.12) is simply W(O+bb1 -I- T(b)), where b

is given by (4.9). Applying the reasoning of [40,18j to the present case, this follows since

the function W is form-invariant under any gauge transformation of its argument, and

the quantity (O+bb1 + T(b)) is obtained by a (non-chirai) gauge transformation from J,

namely by the gauge transformation defined by the field a1 E eT’, see equations (2.31-

2). (In analogy, when considering a right moving 34)-current one gauge transforms the

argument J by the field c e’.) We can in principle compute the object T(b), as explained

in the above, and thus we have an algorithm for finding the formulae of the W’s in terms

of the local fields go and q
.

The conformal symmetry of the effective theory (4.12) is determined by the left and

right Virasoro densities LM0(J) and L_M,(J), which survive the reduction. To see this

conformal symmetry explicitly, it is useful to extract the Liouville field çb by means of the

decomposition go = e#Mo o, where contains the generators from o orthogonal to M0.

One can easily rewrite the action in terms of the new variables and then its conformal

symmetry becomes manifest since e# is of conformal weight (1, 1), is conformal scalar,

and the fields q have conformal weights (, 0) and (0, ), respectively. This assignment

of the conformal weights can be established in a number of ways, one can for example

derive it from the corresponding conformal symmetry transformation of the WZNW field

g in the gauged WZNW theory, see eq. (5.30). We also note that the action (4.12) can be
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made generally covariant and thereby our generalized Toda theory can be re-interpreted

as a theory of two-dimensional gravity since 4 becomes the gravitational Liouville mode

[14].

We would like to point out the relationship between the generalized Toda. theory

given by (4.12) and certain non-linear integrable equations which have been associated

to the half-integral sl(2) subalgebras of the simple Lie algebras by Leznov and Saveliev,

by using a different method. (See, e.g., equation (1.24) in the review paper in J. Soy.

Math, referred to in [31.) To this we note that, in the half-integral case, one can also

consider that WZNW reduction which is defined by imposing the left and right constraints

corresponding to the subalgebras and of I’ and I’ in (4.7). In fact, the Lax

potential of the effective field theory corresponding to this WZNW reduction coincides

with the Lax potential postulated by Leznov and Saveliev to set up their theory. Thus,

in a sense, their theory lies between the WZNW theory and our generalized Toda theory

which has been obtained by imposing a larger set of first class KM constraints. This means

that the theory given by (4.12) can also be regarded as a reduction of their theory.

There is a certain freedom in constructing a field theory possessing the required chiral

algebra W,, for example, one has a freedom of choice in the halving procedure used here

to set up the gauge algebra. The theories in (4.12) obtained by using different halvings in

equation (3.51) have their chiral algebras in common, but it is not quite obvious if these

theories are always completely equivalent local Lagrangean field theories or not. We have

not investigated this ‘equivalence problem’ in general.

A special case of this problem arises from the fact that one can expect that in some

cases the theory in (4.12) is equivalent to one of the form (4.3). This is certainly so in

those cases when for the half-integral sl(2) of M0 and M one can find an integral grading

operator H such that: (i) [H, M] = ±M, (ii) ‘P +c>1 = (iii) P_ +G_1 =

(iv) Q + Qo + Q where one uses the M0 grading and the H-grading on the left-

and on the right hand sides of these conditions, respectively. By definition, we call the

halving P, + Q an H-compatible halving if these conditions are met. (We note

in passing that an sl(2) which allows for an H-compatible halving is automatically an

H-compatible sl(2) in the sense defined in Section 3.4, but, as shown in Appendix C,

not every H-compatible sl(2) allows for an H-compatible halving.) Those generalized

Toda theories in (4.12) which have been obtained by using H-compatible halvings in the

WZNW reduction can be rewritten in the simpler form (4.3) by means of a renaming of

the variables, since in this case the relevant first class constraints are in the overlap of.the
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ones which have been considered for the integral gradings and for the half-integral sl(2)’s

to derive the respective theories. Since the form of the action in (4.3) is much simpler than

the one in (4.12), it appears important to know the list of those s1(2) embeddings which

allow for an H-compatible halving, i.e., for which conditions (i)... (iv) can be satisfied with

some integral grading operator H and halving. We study this group theoretic question

for the 81(2) subalgebras of the maximally non-compact real forms of the classical Lie

algebras in Appendix C. We show that the existence of an H-compatible halving is a very

restrictive condition on the half-integral sl(2) subalgebras of the symplectic and orthogonal

Lie algebras, where such a halving exists only for the special 8l(2) embeddings listed at

the end of Appendix C. In contrast, it turns out that for = 81(n, R) an H-compatible

halving can be found for every 81(2) subalgebra, since in this case one can construct such

a halving by proceeding similarly as we did in Section 3.5 (see (3.78)). This means that

in the case of = sl(n, R) any chiral algebra )4 can be realized in a generalized Toda

theory associated to an integral grading. V

It is interesting to observe that those theories which can be alternatively written in

both forms (4.3) and (4.12) allow for several conformal structures. This is so since in this

case at least two different Virasoro densities, namely Ljj and LM0, survive the WZNW

reduction.

4.3. Two examples of generalized Toda theories

We wish to illustrate here the general construction of the previous section by working

out two examples. First we shall describe a generalized Toda theory associated to the

highest root sl(2) of 8l(n. + 2, R). This is a half-integral 81(2) embedding, but, as we shall

see explicitly, the theory (4.12) can in this case be recasted in the form (4.3), since the

corresponding halving is H-compatible. We note that the )‘V-algebras defined by these sl(2)

embeddings have been investigated before by using auxiliary fields in [29]. It is perhaps

worth stressing that our method does not require the use of auxiliary fields when reducing

the WZNW theory to the generalized Toda theories which possess these W-algebras as

their symmetry algebras, see also Section 5.3. According to the group theoretic analysis

in Appendix C, the simplest case when a VVg-algebra defined by a half-integral sl(2)

embedding cannot be realized in a theory of the type (4.3) is the case of q = sp(4, R).

As our second example, we shall elaborate on the generalized Toda theory in (4.12) which
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realizes the 34)-algebra belonging to the highest root sl(2) of 8p(4, R).

i) Highest root sl(2) of sl(n + 2, R)

In the usual basis where the Cartan subaigebra consists of diagonal matrices, the sl(2)

subalgebra S is generated by the elements

/0..
M0 = ( 0 On 0 ) and M = M!.. ( 0 on 0 ) . (4.23)

—1) \0 0)

Note that here and below dots mean 0’s in the entries of the various matrices. The adjoint

of sl(n + 2) decomposes into one triplet, 2n doublets and n2 singlets under this S. It is

convenient to parametrize the general element, go, of the little group of M0 as

f1...o\ fn ...

go
= eT. 1 0 0 I , where T = I 0 2In 0 (4.24)

1) 2+no
... n)

is trace orthogonal to M0 and is from SL(n). We note that T and M0 generate the

centre of the corresponding subalgebra, o. We consider the halving of which is

defined by the subspaces P and Q± consisting of matrices of the following form:

/0 p o\ fo ...

p=I0 0 Oj, q=0 O, q,
0) \o 0)

(4.25)
fo ... o\ fo ...

_=( o o), q_=(o O, o),
0) \0 0)

where q and j3 are n-dimensional column vectors and pi and are n-dimensional row

vectors, respectively. One sees that the and Q subspaces of are invariant under the

adjoint action of go, which means that the block-matrices in (4.10) and (4.11) are diagonal,

and thus = [M±, q]. One can also verify that X11 = e’o, and that using this

the effective action (4.12) can be written as follows:

Ieff(gO, qi , q ) = Swz(go)
— fd2x [e_e (O+ . . (O_q)

(4.26)

+e’ .qj,
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where dot means usual matrix multiplication. With respect to the conformal structure

defined by M0, e has weights (1, 1), the fields q and have half-integer weights (, 0)

and (0, ), respectively, i,b and §,, are conformal scalars. In particular, we see that cb is the

Liouville mode with respect to this conformal structure.

In fact, the halving considered in (4.25) can be written like the one in (3.78), by using

the integral grading operator H given explicitly as

1 (n+1 0 )• (4.27)
2 n+2 0 1n+i

It is an H-compatible halving as one can verify that it satisfies the conditions (i). . . (iv)

mentioned at the end of Section 4.2, see also Appendix C. It follows that our reduced

WZNW theory can also be regarded as a generalized Toda theory associated with the

integral grading H. In other words, it is possible to identify the effective action (4.26)

as a special case of the one in (4.3). To see this in concrete terms, it is convenient to

parametrize the little group of H as

/1 .. o\
b = exp(q) .go exp(q), where go e e ( 0 o 0 ) , (4.28)

1)

and S = M0 — (!!j)T is trace orthogonal to H. It is easy to check that by inserting this

decomposition into the effective action (4.3) and using the Polyakov-Wiegmann identity

one recovers indeed the effective action (4.26), with

and i,b
— 2+ fl

(4.29)
2 2n

The conformal structure defined by H is different from the one defined by M0. In fact,

with respect to the former conformal structure F is the Liouville mode and all other fields,

including q and , are conformal scalars.

ii) Highest root sl(2) of sp(4,R)

We use the convention when the symplectic matrices have the form

g ( where B Bt, C C, (4.30)
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and the Cartan subalgebra is diagonal. The sl(2) subaigebra S corresponding to the

highest root of 8p(4, R) is generated by the matrices

M0 (e11 — e33), M+ e13 , and M_ = e31 , (4.31)

where e3 denotes the elementary 4 x 4 matrix containing a single 1 in the ij-position. The

adjoint of sp(4) branches into 3 + 2 2 + 3 1 under S. The three singlets generate an

sl(2) subalgebra different from 5, so that the little group of M0 is GL(1) X SL(2). GL(1)

is generated by M0 itself and the corresponding field is the Liouville mode. Using usual

Gauss-parameters for the SL(2), we can parametrize the little group of M0 as

/1 0 0 0\

— #M ( 0 e + a/3e 0 ae
‘4 32go—e jo 0 1 0

/3e 0 e

We decompose the subspaces (spanned by the two doublets) into their P and Q parts

as follows

fOp 0 q\ /0000
(0 0 q ol (j5 0 0 0

p + q
=

j 0 0 0 0 J’ p_ +
= 0 0 —

(4.33)

\o 0 —p oJ \ 0 0 0

Now the little group, or more precisely the SL(2) generated by the three singlets, mixes

the 1’ and Q subspaces of so that the matrices Xjj and Y, in (4.10) and (4.11) possess

off-diagonal elements:

= .i (S +cq3e ae) X,. (4.34)

Inserting this into (4.12) yields the following effective action:

I(go,q,4) =Swz(go)
— Jd2x [e — 2e (ô_q) (ô)

(4.35)

+2e
(+e ‘1’38_q) (q+e”a8+e)

e4’+a3e

for the Liouville mode q, the conformal scalars i/i’, a, t3 and the fields q, with weights
11 (‘ 1Ic 1\ I

i -, U) an u, ), respectaveiy.

It is easy to see directly from its formula that it is impossible to obtain the above

action as a special case of (4.3). Indeed, if the expression in (4.35) was obtained from (4.3)

then the non-derivative term r’.’ q(S + ae)’ could only be gotten from the second

term in (4.3), but, since g and b are matrices of unit determinant, this term could never

produce the denominator in the non-derivative term in (4.35).
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5. Quantum framework for WZNW reductions

In this chapter we study the quantum version of the WZNW reduction by using the

path-integral formalism and also re-examine some of the classical aspects discussed in

the previous chapters. We first show that the configuration space path-integral of the

constrained WZNW theory can be realized by the gauged WZNW theory of Section 2.2.

We then point out that the effective action of the reduced theory, (2.40), can be derived

by integrating out the gauge fields in a convenient gauge, the physical gauge, in which

the gauge degrees of freedom are frozen. A nontrivial feature of the quantum theory

may appear in the path-integral measure. We shall find that for the generalized Toda

theories associated with integral gradings the effective measure takes the form determined

from the symplectic structure of the reduced theory. This means that in this case the

quantum Hamiltonian reduction results in the quantization of the reduced classical theory;

in other words, the two procedures, the reduction and the quantization, commute. We

shall also exhibit the ‘V-symmetry of the effective action for this example. By using the

gauged WZNW theory, we can construct the BRST formalism for the WZNW reduction

in the general case. For conformally invariant reductions, this allows for computing the

corresponding Virasoro centre explicitly. In particular, we derive here a nice formula for

the Virasoro centre of )‘V for an arbitrary sl(2) embedding. We shall verify that our result

agrees with the one obtained in [16], in spite of the apparent difference in the structure of

the constraints.

51. Path-integral for constrained WZNW theory

In this section we wish to set up the path-integral formalism for the constrained

WZNW theory. For this, we recall that classically the reduced theory has been obtained

by imposing a set of first-class constraints in the Hamiltoniari formali3m. Thus what we

should do is to write down the path-integral of the WZNW theory first in phase space

with the constraints implemented and then find the corresponding configuration space

expression. The phase space path-integral can formally be defined once the canonical

variables of the theory are specified. A practical way to find the canonical variables is the

following [41]. Let us start from the WZNW action Swz(g) in (1.2) and parametrize the

group element g E G in some arbitrary way, g = g(). We shall regard the parameters
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a = 1, ..., dim 0, as the canonical coordinates in the theory. To find the canonical

momenta, we introduce the 2-form A Aeb() ddi to rewrite the Wess-Zumino term

as
Tr(dgg_1)3=dA. (5.1)

The 2-form A is well-defined only locally on 0, since the Wess-Zurnino 3-form is closed

but not exact. Fortunately we do not need to specify A explicitly below. We next define

Nab(+) by
( 0g \ —1 irg =

where T” are the generators of g. The matrix N is easily shown to be non-singular,

detN 0. Upon writing Swz(g) = fd2x£(g), the canonical momentum conjugate to

is found to be

Ha =
= [Nab()(oogg_1)b _Aab()Olb]. (5.3)

The Hamiltonian of the WZNW theory is then given by H = f d’fl with

— Tr [P2 +(81gg’)2j, (5.4)

where
pa

= (N’ )ab(ll + kAb81). (5.5)

Since P = ic.8ogg1 in the original variables, the Hamiltonian density takes the usual

Sugawara form as expected.

Classically, the constrained WZNW theory has been defined as the usual WZNW

theory with its KM phase space reduced by the set of constraints given by (2.16), which

in the canonical variables read

= (-y,P + i(8igg1 — M)) = 0,
( 6)

= (j,g1Pg
—

i(g’8g + 2r)) 0,

with the bases I’, - E f. As in Section 2.2, no relationship is assumed here between

the two subalgebras, F and F. Now we write down the phase space path-integral for the

constrained WZNW theory. According to Faddeev’s prescription [42] it is defined as

Z
= f dlld 6()8()S(x)8() det j{, x}I det f{, }I

x exp(ifd2x(llaaor _fl)), (5.7)
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where we implement the first class constraints by inserting 6(#) and S() in the path-

integral. The S-functions of x and refer to gauge fixing conditions corresponding to

the constraints, cf and q, which act as generators of gauge symmetries. By introducing

Lagrange-multiplier fields, A_ = A7 and A = (5.7) can be written as

Z
= J dllddA+dA6()6() det I{& x}I det }(

x exp(ifd2x [Tr(H0o + A_# +A÷)
— ni). (5.8)

By changing the momentum variable from 11a to pa in (5.5), the measure acquires a

determinant factor, dll = dP det N, and the integrand of the exponent in (5.8) becomes

Tr(llOo+A_c5+A+)—?i

= Tr [(p)2
+ P(A_ + gAg’ + Oogg1) — N’AO1(Oogg1)

—

(8gg_1)2 + A_(ô1gg1 — M) — A(g1O1g+ a)]. (5.9)

Since the matrix N() is independent of P, we can easily perform the integration over

P provided that the remaining 6-functions and the determinant factors are also P

independent. We can choose the gauge fixing conditions, x and , so that this is true. (For

example, the physical gauge which we will choose in the next section fulfills tliis demand.)

Then we end up with the following formula of the configuration space path-integral

Z
= J ddetNdA+dA_6()6()det I{&x}Idet I{}t iIg,A,A (5.10)

where I(g, A_, A) is the gauged WZNW action (2.18). We note that the measure for the

coordinates in this path-integral is the invariant Haar measure,

d4g) = f[drdetN = fJ(dgglyL. (5.11)

This is a consequence of the fact that the phase space measure in (5.7) is invariant under

canonical transformations to which the group transformations belong.

The above formula for the configuration space path-integral means that the gauged

WZNW theory provides the Lagrangian realization of the Hamiltonian reduction, which

we have already seen on the basis of a classical argument in Section 2.2.
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5.2. Effective theory in the physical gauge

Having seen how the constrained WZNW theory is realized as the gauged WZNW

theory, we next discuss the effective theory which arises when we eliminate all the unphys

ical degrees of freedom in a particularly convenient gauge, the physical gauge. We shall

rederive, in the path-integral formalism, the effective action which appeared in the classical

context earlier in this paper. For this purpose, within this section we restrict our attention

to the left-right dual reductions considered in Section 2.3. It, however, should be noted

that this restriction is not absolutely necessary to get an effective action by the method

given below. In this respect, it is also worth noting that Polyakov’s 2-dimensional gravity

action in the light-cone gauge can be regarded as an effective action in a non-dual reduc

tion, which is obtained by imposing a constraint only on the left-current for G = SL(2)

[43,12]. We will not pursue the non-dual cases here.

To eliminate all the unphysical gauge degrees of freedom, we simply gauge them away

from g, i.e., we gauge fix the Gauss decomposed g in (2.25) into the form

g = abc —, b. (5.12)

More specifically, with the parametrization a(x) exp [cri(x)yj], c() = exp [ö,(z)] we

definc the phy3ical gauge by

Xi = = 0, = = 0. (5.13)

We here note that for this gauge the determinant factors in (5.8) are actually constants.

Now the effective action is obtained by performing the A± integrations in (5.10). The

integration of A_ gives rise to the delta-function,

fJ6((7,bA+b_1 +8+bb’ — M)), (5.14)

with I’ normalized by the duality condition (2.22). One then notices that the delta

function (5.14) implies exactly condition (2.29) with Occ1 replaced by A+. Hence, with

the help of the matrix V11(b) in (2.27) and T(b) in (2.29), it can be rewritten as

(det V)’ S(A+ — b1T(b)b). (5.15)

Finally, the integration of A yields

Z
= f cliieir(b) (5.16)
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where Iff(b) is the effective action (2.40)*, and dgUeg(b) is the effective measure given by

dlteff(b) (det V)’ dt(g)S()S(i) = (det V)’ . (5.17)
(7 (7

Of course, as far as the effective action is concerned, the path-integral approach should

give the same result as the classical one, because the integration of the gauge fields is

Gaussian and hence equivalent to the classical elimination of the gauge fields by their field

equations. However, a non-trivial feature may arise at the quantum level when the effective

path-integral measure (5.17) is taken into account. Let us examine the effective measure

in the simple case where the space B = (1’ + f’)’, with which b e13, forms a subalgebra

of satisfying (2.34), and thus the effective action in (5.16) simplifies to

Ieff(b) = Sw(b) — d2x (bMb1,M). (5.18)

In this case, the 1-form appearing in the measure (4(g) of (5.11),

dgg1 = daa’ + a(dbb’)a’ + ab(dcc1)b’a’, (5.19)

turns out, in the physical gauge, to be

dgg’0 = 7dr + dbb’ + (5.20)

As a result, the determinant factor in (5.17) is cancelled by the one coming from (5.20),

and the effective measure admits a simple form:

dLeff(b) = dbb1. (5.21)

The point is that this is exactly the measure which is determined from the symplectic

structure of the effective theory (5.18) obtained by the clas3ical Hamiltonian reduction.

This tells us that in this case the quantum Ilarniltonian reduction results in the quantization

of the reduced classical theory. In particular, since the above assumption for B is satisfied

for the generalized Toda theories associated with integral gradings, we conclude that these

generalized Toda theories are equivalent to the corresponding constrained (gauged) WZNW

* Actually, the effective action always takes the form (2.40) if one restricts the WZNW

field to be of the form g = abc with a E e1’, c E e and b such that Vj(b) is invertible.

The duality between I’ and 1’ is not necessary but can be used to ensure this technical

assumption.
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theories even at the quantum level, i.e., including the measure. This result has been

established before in the special case of the standard Toda theory (1.1) in [44], where the

measure dpeff(b) is simply given by fl 4.
We end this section by noting that it is not clear whether the measure determined

from the symplectic structure of the reduced classical theory is identical to the effective

measure (5.17) in general. In the general case both measures in question could become

quite involved and thus one would need some geometric argument to see if they are identical

or not.

5.3. The )‘V-symmetry of the generalized Toda action If(b)

In the previous section we have seen the quantum equivalence of the generalized Toda

theories given by (4.3) and the corresponding constrained WZNW theories. It follows from

their WZNW origin that the generalized Toda theories possess conserved W-currents. It is

thus natural to expect that their effective actions, Ieff in (4.3) and I in (4.12), allow for

symmetry transformations yielding the W-currents as the corresponding Noether currents.

We demonstrate below that this is indeed the case on the example of the theories associated

with integral gradings, when the action takes a simple form. We however believe that

there are symmetries of the effective action corresponding to the conserved chiral currents

inherited from the KM algebra for any reduced WZNW theory.

Let us consider a gauge invariant differential polynomial W(J) in the constrained

WZNW theory giving rise to the effective theory described by the action in (4.3). In terms

of the generalized Toda field b(x), this conserved )‘V-current is given by the differential

polynomial

Wff(f3) = W(M +/3), where /3 0bb’. (5.22)

This equality [40,18] holds because the constrained current J and (M + /3) (which is,

incidentally, just the Lax potential A in (4.4)) are related by a gauge transformation,

as we have seen. By choosing some test function f(x+), we now associate to Weff(/3) the

following transformation of the field b(z):

6wb(y) = [Jd2af b(y) , (5.23)

and we wish to show that Swb is a symmetry of the action I(b). Before proving this, we

64



notice, by combining the definition in (5.23) with (5.22), that (8b)b1 is a polynomial

expression in f, and their 0+-derivatives up to some finite order.

We start the proof by noting that the change of the action under an arbitrary variation

6b is given by the formula

61H

5I(b) =
— J d2y (6b b (y), b(y)

Sb
(5.24)

- Jd2y (6bb’(y), O-43(y) + [b(y)Ib’(y), M]).

In the next step, we use the field equation to replace 0_/3 by _[bM b—1 , Mj in the obvious

equality

0_Weff(X) fd2y , &3(y)), (5.25)

and then, from the fact that O_Weff = 0 on-shell, we obtain the following identity:

f cL2y
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, [b(y)JIb’(y), M]) = 0, (5.26)

Of course, the previous argument only implies that (5.26) holds on-shell. However, we

now make the crucial observation that (5.26) is an off-ihell idenlity, i.e., it is valid for any

field b(x) not only for the solutions of the field equation. This follows by noticing that

the object in (5.26) is a local expression in b(x) containing only x-derivatives. In fact,

any such object which vanishes on-shell has to vanish also off-shell, because one can find

solutions of the field equation for which the -dependence of the field b is prescribed in

an arbitrary way at an arbitrarily chosen fixed value of a.

By using the above observation, it is easy to show that 6wb in (5.23) is indeed a

symmetry of the action. First, simply inserting (5.23) into (5.24), we have

6wI(b) _Jd2xf(z+)Jd2y(
, 0f3(y) + [b(y)ib’(y),Mj). (5.27)

We then rewrite this equation as

5wI(b) = _fd2af(xj0_Weff(a), (5.28)

with the aid of the identities (5.26) and (5.25). This then proves that

5w1!jr(b) = 0, (5.29)
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since the integrand in (5.28) is a total derivative, thanks to ELf = 0. One can also see, from

equation (5.23), that Weff is the Noether charge density corresponding to the symmetry

transformation Swb of I(b).

5.4. BRST formalism for WZNW reductions

Since the constrained WZNW theory can be regarded as the gauged WZNW theory

(2.18), one is naturally led to construct the BRST formalism for the theory as a basis for

quantization. Below we discuss the BRST formalism based on the gauge symmetry (2.19)

and thus return to the general situation of Section 5.1 where no relationship between the

two subalgebras, I’ and F, is supposed.

Prior to the construction we here note how the conformal symmetry is realized in

the gauged WZNW theory when there is an operator H satisfying the condition (2.13).

(For simplicity, in what follows we discuss the symmetry associated to the left-moving

sector.) In fact, with such H and a chiral test function f+(x+) one can define the following

transformation,
5g =f8+g+8+fHg,

SA = f8A_ +c3+f[H,A_], (5.30)

SA fôA +

which leaves the gauged WZNW action I(g, A_, A+) invariant. This corresponds exactly to

the conformal transformation in the constrained WZNW theory generated by the Virasoro

density LH in (2.10), as can be confirmed by observing that (5.30) implies the conformal

action (2.11) for the current with f(x+) = f+(x+) We shall derive later the Virasoro

density as the Noether charge density in the BRST system.

Turning to the construction of the BRST formalism, we first choose the space F C

which is dual to r with respect to the Cartan-Killing form (and similarly F dual to

1’). Following the standard procedure [1 we introduce two sets of ghost, anti-ghost and

Nakanishi-Lautrup fields, {c E F, P} and {b 1’, ,B_ E T}. The BRST

transformation corresponding to the (left-sector of the) local gauge transformation (2.19)

is given by
Sg —cg, = iB+,

6BA = D_c, 6BB+ = 0, (5.31)

5BC = C2, 6B(others) = 0,
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with D 8 [A±, ]. After defining the BRST transformation 6]3 for the right-sector

in an analogous way, we write the BRST action by adding a gauge fixing term and a ghost

term to the gauged action,

‘BRST = I(g,A_,A) + ‘gf + ‘ghost. (5.32)

The additional terms can be constructed by the manifestly BRST invariant expression,

Igf+Ighost —i(SB +6B)fd2 ((÷,A) + (_,A+))

= fd2x ((B+, A_) + (B_,A) + i(ë,D_c) + i(L, D+b)), (5.33)

where we have chosen the gauge fixing conditions as A± 0. Then the path-integral for

the BRST system is given by

Z
= J eI9T, (5.34)

which, upon integration of the ghosts and the Nakanishi-Lautrup fields, reduces to (5.10).

(Strictly speaking, for this we have to generalize the gauge fixing conditions in (5.10) to

be dependent on the gauge fields.) By this construction the nilpotency, 6 = 0, and the

BRST invariance of the action,8B’BRST = 0, are easily checked.

It is, however, convenient to deal with the simplified BRST theory obtained by per

forming the trivial integrations of A and B in (5.34),

IBRsT(g,c,e+,b,b_) = Swz(g) + ikfd2x ((ë+,O_c) + (_,O+b)). (5.35)

We note that this effective BRST theory is not merely a sum of a free WZNW sector and

free ghost sector as it appears, but rather it consists of the two interrelated sectors in

the physical space specified by the BRST charge defined below. At this stage the BRST

transformation which leaves the simplified BRST action (5.35) invariant reads

= —cg, SBC+ = —lrr. [i(o+gg_1
— M) + (cë+ + e+c)j,

(5 36)
6BC C2, SB(others) = 0,

where lrr. = , l7)(yjI is the projection operator onto the dual space F with the nor

malized bases, = 6,,. From the associated conserved Noether current, 6_j 0,

the BRST charge QB is defined to be

QB =
f djB(z) = f dx(c,Ogg’ — M — cE). (5.37)
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The physical space is then specified by the condition,

QBIphys) = 0. (5.38)

In the simple case of the WZNW reduction which leads to the standard Toda theory, the

BRST charge (5.37) agrees with the one discussed earlier [46].

In the case where there is an H operator which guarantees the conformal invariance,

the BRST system also has the corresponding conformal symmetry,

Sg = fög + OfHg, Sb = f8b,

Se = fö + ôf(e + [H, eJ),

inherited from the one (5.30) in the gauged WZNW theory.

provides a grading, one finds from (5.39) that the currents of

conformal weight 1 — Ii, except the H-component, which is not

the ghosts c, of grade h, —h have the conformal weight h, 1

the ghosts b, are conformal scalars. Now we define the total

L0 from the associated Noether current, &j5 = 0, by

fdxjr) = fdx+f+(xiLtot(z). (5.40)

The (on-shell) expression is found to be the sum of the two parts, L0 LH + Lghost,

where LH is indeed the Virasoro operator (2.10) for the WZNW part, and

Lghost = ik((+,ôc) + 8+(H,cö+ + +c)), (5.41)

is the part for the ghosts. The conformal invariance of the BRST charge, 6QB = 0, or

equivalently, the BRST invariance of the total conformal charge, SBLt0t = 0, are readily

confirmed.

Let us find the Virasoro centre of our BRST system. The total Virasoro centre Ctot

is given by the sum of the two contributions, c from the WZNW part and Cghost from the

ghost one. The Viraso centre from LH is given by

kclimQ
—12k(H,H), (5.42)

k+g

where Jc is the level of the KM algebra and g is the dual Coxeter number. On the other

hand, the ghosts contribute to the Virasoro centre by the usual formula,

Cghost = —2 [i + 6h(h — 1)], (5.43)

Sc = föc + af[H, c], = f+ (5.39)

If the H operator further

grade —h have the (left-)

a primary field. Similarly,

— h, respectively, whereas

Virasoro density operator
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where the summation is performed over the eigenvectors of adjj in the subalgebra r. (One
can confirm (5.43) by performing the operator product expansion with Lghot in (5.41).)

5.5. The Virasoro centre in three examples

By elaborating on the general result of the previous section, we here derive explicit

formulas for the total Virasoro centre in three interesting special cases of the WZNW

reduction.

i) The generalized Toda theory Ie’j(b)

In this case the summation in (5.43) is over the eigenstates of adH with eigenvalues

Ii> 0, since I’
.

We can establish a concise formula for ct0t, (5.46) below, by using

the following group theoretic facts.

First, we can assume that the grading operator H E J is from the Cartan subaigebra

of the complex simple Lie algebra Q., containing 1. Second, the scalar product ( , ) defines

a natural isomorphism between the Cartan subalgebra and the space of roots, and we

introduce the notation S for the vector in root space corresponding to H under this iso-

morphism. More concretely, this means that we set H 6H1 by using an orthonormal

Cartan basis, (Hi, II,) = 6,,. Third, we recall the strange formula of Freudenthai-deVries

[47], which (by taking into account the normalization of ( , ) and the duality between the

root space and the Cartan subalgebra) reads

dim=Ip12, (5.44)
g

where 5is the Weyl vector, given by half the sum of the positive roots. Fourth, we choose

the simple positive roots in such a way that the corresponding step operators, which are

in general in and not in , have non-negative grades with respect to H.

By using the above conventions, it is straightforward to obtain the following expres

sions

1 = dim F = (dim — dimc’), h = 6),
h>O h>O (5.45)

= tr(adH)2 =g(H,H) =gj2,
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for the corresponding terms in (5.43). Substituting these into (5.43) and also (5.44) into

(5.42), one can finally establish the following nice formula of the total Virasoro centre 114]:

Ctot = C + Cghost = dimg
— 12IS_ k+ g

(5.46)

In particular, in the case of the reduction leading to the standard Toda theory (1.1) the

result (5.46) is consistent with the one directly obtained in the reduced theory [8,10].

ii) The )‘V-algebra for half-integral sl(2) embeddings

For sl(2) embeddings the role of the H is played by M0 and in the half-integral case

we have F = + P1 = — Q. It follows that the value of the total Virasoro centre

can now be obtained by substracting the contribution of the ‘missing ghosts’ corresponding

to Q, which is dim, from the expression in (5.46). We thus obtain that in this case

Ctot = N — N3
— 12Iv’T_ /k+g

(5.47a)

where

= dim0 , and N3 = dima , (5.47b)

are the number of tensor and spinor multiplets in the decomposition of the adjoint of

under the sl(2) subalgebra S, respectively. We note that, as proven by Dynkin [39], it is

possible to choose a system of positive simple roots so that the grade of the corresponding

step operators is from the set {0, ,1}, and that is (-x) the so called defining vector of

the sl(2) embedding in Dynkin’s terminology.

As has been mentioned in Section 3.4, Bais et al [16] (see also [29]) studied a similar

reduction of the KM algebra for half-integral sl(2) embeddings where all the current com

ponents corresponding to Q>0 are constrained from the very beginning. In their system,

the constraints (3.59) of Ø, being inevitably second-class, are modified into first-class by

introducing an auxiliary field to each constraint of g1. Accordingly, the auxiliary fields

give rise to the extra contribution —dimgi in the total Virasoro centre. It is clear that

adding this to the sum of the WZNW and ghost parts (which is of the form (5.46) with

M0 substituted for H), renders the total Virasoro centre of their system identical to that

of our system, given by (5.47). This result is natural if we recall the fact that their re

duced phase space (after complete gauge fixing) is actually identical to ours. It is obvious

that our method, which is based on purely first-class KM constraints and does not require

auxiliary fields, provides a simpler way to reach the identical reduced theory.
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iii) The W,-algebras

By using the results of Section 3.5 we can easily compute the Virasoro centre of the

W,-algebras. We consider the conformal structure given by LM0, where M0 is the 81(2)

generator (3.68), and introduce ghosts for the first class constraints defined by F (3.74).

The contribution to the Virasoro centre from LM0 is given by

=

_______

— km(m + 1)[3n — (2m + 1)1]. (5.48)

Taking into account the multiplicities of the grades in F, we find from (5.43)

Cghost = —2dimV0+ dimP —2 [1 + 6i(i — 1)]dimc

= —(m3 + 4m2 + 3m + 1)12 + [n(2m3 + 3m2 + 6m + 2) + iji . )

—n2(3m2 +2).

The result disagrees with the one obtained for W, in [26], where instead of our LM0 a

different Ljj was adopted for defining the conformal structure and (instead of performing

the symplectic halving) a set of auxiliary fields was introduced to render the constraints

first class. This disagreement is not surprizing because of the ambiguity in defining the

conformal structure of W,, i.e., in choosing the H in (2.10), which eventually reflects in

the value of the Virasoro centre. In addition, there is also an arbitrariness in the number

of the auxiliary fields introduced, and the Virasoro centre agrees only when one uses the

minimal number of the fields (with the same H).
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8. Discussion

The main purpose of this paper has been to study the general structure of the Hamil
tonian reductions of the WZNW theory. Considering the number of interesting exam
ples resulting from the reduction, this problem appears important for the theory of two-
dimensional integrable systems and in particular for conformal field theory.

Our most important result perhaps is that we established the gauged WZNW setting
of the Hamiltonian reduction by first class constraints in full generality. It was then used
here to set up the BRST formalism in the general case, and for obtaining the effective
actions for the left-right dual reductions. We hope that the general framework we set up
will be useful for further studies of this very rich problem.

The other major concern of the paper has been to investigate the )‘V-algebras and
their field theoretic realizations arising from the WZNW reduction. We found first class
KM constraints leading to the 3’V-aJgebras which allowed us to construct generalized
Toda theories realizing these interesting extended conformal algebras. We believe that the
sl(2)-embeddings underlying the )‘V-algebras are to play an important organizing role
in general for understanding the structure, especially the primary field content, of the
conformally invariant reduced KM systems. This is quite a natural idea since we have
seen that the presence of an sl(2) embedding can be exhibited in every polynomial and
primary KM reduction and that the W,-algebras are nothing but further reductions of
We-algebras belonging to particular sl(2)-embeddings (see also [37]). The importance of
sl(2) structures in classifying VV-aigebras have been advocated in the recent preprint [501
as well, on the basis of different arguments. In our study of W-aigebras we employed
two (apparently) new methods, which are likely to have a wider range of applicability
than what we exploited here. The first is the method of sympleciic halving whereby we
constructed purely first class KM constraint for the 3’Vg as well as for the W,-a1gebras.
The second is what we call the sl(2)-method, which can be summarized by saying that if one
has conformaily invariant first class constraints given by some (I’, M_) with M_ nilpotent,
then one should build the sl(2) containing M_ and try to analyse the system in terms of
this sl(2). We used this method to investigate, in the non-degenerate case, the generalized
Toda sytems belonging to integral gradings, and also to provide the )‘V-interpretation of
the W,-algebras.

We wish to remark here that, as far as we know, the technical problem concerning the
inequivalence of those )‘V-algebras which belong to group theoretically inequivaient sl(2)
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embeddings has not been tackled yet.

It is well known [22] that the standard )‘V-algebras can be identified as the second

Poisson bracket structure of the KdV type hierarchies of Drinfeld-Sokolov [5]. This fact

leads to the question whether there is a relationship between )‘V-algebras and integrable

hierachies also in more general cases [16,17,28,48,49].

We gave a general local analysis of the effective theories arising in the left-right dual

case of the reduction, and investigated in particular the generalized Toda theories obtained

by the reduction in some detail. In the case of the generalized Toda theories associated

with the integral gradings we exhibited the way in which the W-symmetry operates as

an ordinary symmety of the action, and demonstrated that the quantum Hamiltonian

reduction is consistent with the canonical quantization of the reduced classical theory. It

would be nice to have the analogous problems under control also in more general cases.

In our analysis we restricted the considerations to Gauss-decomposable fields. The fact

that the Gauss decomposition may break down can introduce apparent singularities in

the local description of the effective theories, but the WZNW description is inherently

global and remains valid for non Gauss-decomposable fields as well [12,13]. It is hence an

interesting problem to further analyze the global (topological) aspects of the phase space

of the reduced WZNW theories.

We should also note that it is possible to remove the technical assumption of left-right

duality. In particular, the study of purely chiral WZNW reductions could be of importance,

as they are likely to give natural generalizations of Polyakov’s 2d gravity action [43,12].

In this paper we assumed the existence of a gauge invariant Virasoro density LH,

of the form given by (2.10), for obtaining conformally invariant reductions. However,

the example of Appendix A indicates that there is another class of conformally invariant

reductions where the form of the surviving Virasoro density is different from that of an

LH. The study of this novel way of preserving the conformal invariance may open up a

new perspective on conformal reductions of the WZNW theory.

There are many further interesting questions related to the Hamiltonian reductions

of the WZNW theory, which we could not mention in this paper. We hope to be able to

present those in future publications.
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contribution in [12,13] to the reported research. We also wish to thank B. Spence for a

suggestion which has been crucial for understanding the W-symmetry of the Toda action.
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Appendix A: A solvable but not nilpotent gauge algebra

In all the cases of the reduction we considered in Chapters 3 and 4, the gauge algebra I’

was a graded nilpotent subalgebra of. On the other hand, we have seen in Section 2.1 that

the first-classness of the constraints implies that F is solvable. We want here to discuss

a constrained WZNW model for which the gauge algebra is 3olvable but not nilpo tent.

Interestingly enough, it turns out that in this example no H satisfying (2.13) exists which

would render the constraints conformally invariant. However, conformal invariance can

still be maintained, showing clearly that the existence of such an H is only a sufficient but

not a necessary condition.

We choose the Lie algebra 0 to be sl(3, R) and the gauge algebra I’ as generated by

the following three generators

/0 1 O’ /0 0 i\

7’ = = ( 0 0 0 ), 72 = Eat+t,2 = ( 0 0 0 ) , (A.la)
\O 0 0) \o 0 0)

0 0\

73 (2Hi + 112) + (Ea2
—

E) 0
—- ), (A.lb)

0 — —

where the Cartan-Weyl generators are normalized by [H1,E±aj] = ±Ea and

[Eai, E_] = 2H1, for the simple positive roots cr. Note that, being diagonalizable over

the complex numbers, 73 is not a nilpotent operator. The algebra of I’ is

1 1
[71,72] = 0, [71,73] “j71 + 72, [72,731 = —71 —

(A.2)

It is easy to verify that 1’ is a solvable, not-nilpotent Lie algebra. It qualifies as a gauge

algebra since Tr( ,) = 0.

It is readily checked that the spaces F-’- and [J1, F]-’- are given by

= span{H2,Eai,Eai+a2,2H1+ V’Ea2,2Hi — \/E_a2},
(A 3)

[F,r]± = span{H,,H2,IFJa1 , Ecjcr2,EcK,,E_a2}.

Thus [I’, F]-’-/F-’-, which is the space of the M’s leading to first class constraints, is one-

dimensional, and we can take

M =jY 4H, +2H2)= ( (A.4)
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without loss of generality.

The next question is the conformal invariance. As discussed in Section 2.1, a sufficient

condition for conformal invariance is provided by the existence of a (modified) Virasoro
density L = Ljç — 6(II, J(x)) weakly commuting with the constraints. For this to

work, the generator H must satisfy the three conditions in (2.13). However, it is an easy

matter to show that those conditions are contradictory in the present case, and therefore

no such H exists.

The above analysis can also be carried out for the simpler gauge algebra spanned by ys
only. This gauge algebra is obviously nilpotent, since it is Abelian. Nevertheless, the pre

vious conclusion remains: There exists no H which would render the first class constraints

conformally invariant, for any M 0 from [I’, F]/F’. This shows the importance of the

gauge generators being nilpotent operators, rather than the gauge algebra being nilpotent.

It would be interesting to know whether there is always an H satisfying (2.13) for gauge

algebras consisting of nilpotent operators.

Although there is no H such that the constraints are preserved by L11, we can nev

ertheless construct another Virasoro density A which does preserve the constraints. It is

given by

A(z) = LjçM(x) — p(’y, J(x)). (A.5)

For M given in (A.4), the constraints read

(‘yr, J(x)) = (‘12, J(x)) = 0, (‘y, J(x)) = p, (A.6)

and are checked to weakly commute with A: {A(), 7j, J(y))} 0 on the constraint

surface (A.6). (Note that, when going from LKM to A, we have not changed the conformal

central charge, which is classically zero.) Therefore we expect the reduced theory to be

invariant under the conformal transformation generated by A being its Noether charge

density. We now proceed to show that it is indeed the case. Before doing this, we display

the form of A on the constraint surface:

(A.7a)

+E_cr2,J), T2 (H2,J). (A.7b)

Following the analysis of Section 2.3, we take the left and right gauge algebras to be

dual to each other ((y, j) = Se,)

F = span{71,’y2,’ys}, fi = span{1,’2,3} = span{’1,7,7}, (A.8)
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and consider M = 1iY and ]t = vYt = vY. We write the SL(3, R) group elements as

g = ab•c, with a e expl’, bE expfl and c E expl’, with fl = span{Y,H2}the Cartan

subalgebra. We did not conform to the general prescription given in Section 2.3, which

required to write g = abc with b exp 13 for a space 13 complementary to I’ + I’ in ,

eqs.(2.25-26). Had we done that, the resulting effective action would have looked much

more complicated. Here, we simply take a set of coordinates in which the action looks

simple.

The reduction yields an effective theory for the group-valued field b, of which the

effective action is given by (2.40) with (2.29b). Using the parametrization b = exp (aY).

exp (2/3H2), the explicit form of the effective action is

Ieff(a,13) = fd2 { Oa8_a + O/3O_/3
— (a÷a — p)(_a — v)}

(A.9)
cosh /3

By inspection, we see that this effective action is going to be conformally invariant if the

field /3 is a scalar, and if the transformation of a is such that u — 8+a and ‘ — 0_a are

(1,0) and (0,1) vectors respectively. It implies that, under a conformal transformation

—‘ — f±(zj, the fields a and 46 transform as

Sa=f(8+a—p)+f(8_a—v),
(A10)

We now want to show our previous claim: the action (A.9) is conformally invariant un

der the conserved Virasoro density A(x), which reproduces the f+..transformations (A.10)

by Poisson brackets. (The f—-transformations could also be realized by constructing the

corresponding Virasoro density A in the right-handed sector in a similar way.) For this,

we first note that in terms of the reduced variables a and 3 the two current components

T1 and 7’2 of (A.7b) read

Ti=—(t—0a)tanh46, and T2=8f3. (A.11)

These expressions can be obtained as follows. Writing g = a b. c and using the constraints

(2.29b), the constrained current reads

J = a[T(b) + Ob b’]a’ + 0a• a1, (A.12)

with T(b) given by (2.29). Although neither T1 nor 7’2 is gauge invariant, the quantity we

want to compute, A(), is gauge invariant. As a result, it cannot depend on the gauge
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variables contained in a. Hence we can just as well put a = 1 in (A.12). Doing that, the

definitions (A.7b) yield (A.11). We thus find the following expression for A:

A (L — 0+ a)2 tanh2 3 + (0+13)2. (A.13)

It is an easy matter to show, by using the field equations obtained from the action (A.9),

sinh2/38O_a + tanh/3 [0+/3(&a — v) + 8_/3(0a
—

= 0,

cosh2/3O8_/3 — tanhf3(8_a — v)(0±a —) = 0,

that A is indeed chirai, satisfying

LA=0. (A.15)

Moreover one also checks the following Poisson brackets

{A(x), a(y)} —(Oia
— i’) 6(2,1 11),

A
{A(a,),/3(y)} —(8/3)6(x’ —yl),

which reproduce the transformations (A.10). Thus the density A features all what is

expected from the Noether charge density associated with the conformal symmetry.

Finally, we present here for completeness the general solution of the equations of

motion (A.14). Along the lines of Section 2.3, it can be obtained as follows:

sinh(OL OR) + —
a = (L + R) + tan’

[sinh(OL + OR)
tan(L PR)] + +

(A.17)

cosh(2/3) = cosh(20L) cosh(20R) + sinh(20L) sinh(20R) cos(2(AL PR)),

where {ij,,, A,, OL} and {1R, PR, O} are arbitrary functions of x and x only, respectively,

and the three functions of each chirality are related by the equations,

0+?7L + O+?L cosh(20L) 0, O—77R + O—PR cosh(28R) = 0. (A.18)

77



Appendix B: H-compatible 81(2) and the non-degeneracy condition

Our purpose in this technical appendix is to analyse the notion of the H-compatible

81(2) subalgebra, which has been introduced in Section 3.4. We recall that the sl(2)

subaigebra S {M_, M0,M} of the simple Lie algebra Q is called H-compatible if H

is an integral grading operator, [H, M±] = ±M±, and M± satisfy the non-degeneracy

conditions

Ker(adM) fl = {O}. (B.1)

Note that the second property in this definition is equivalent to the fact that S commutes

with (H — M0). We prove here the results stated in Section 3.4, and also establish an

alternative form of the non-degeneracy condition, which will be used in Appendix C.

Let us first consider an arbitrary (not necessarily integral) grading operator H of Q and

some non-zero element M_ from Q”. We wish to show that to each such pair (H, M_)

there exists an sl(2) subaigebra S = {M_,M0,M} for which M € g4’1. To exhibit

the S-triple in question, we need the Jacobson-Morozov theorem, which has already been

mentioned in Section 3.4. In addition, we shall also use the following lemma, which can

be found in [33] (Lemma 7 on page 98, attributed to Morozov).

Lemma: Let £ be a finite-dimensional Lie algebra over a field of characteristic 0 and

suppose £ contains elements h and e such that [h, e] = —e and Ii E [L, e]. Then there

exists an element f £ such that

[h, fj = f and [f, e] = 2h. (B.2)

Turning to the proof, we first use the Jacobson-Morozov theorem to find generators

(m_,mo,m+) in completing m_ M_ to an 81(2) subalgebra. We then decompose the

elements m0 and m+ into their components of definite grade, i.e., we write

m0 = m and m = m, (B.3)

where n runs over the spectrum of the grading operator H. Since M._ is of grade —1, it

follows from the sl(2) commutation relations that

[mg, M] = —M_ and [m, M_] = 2mg, (B.4)
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and these relations tell us that h = mg and e = M satisfy the conditions of the above

lemma. Thus there exists an element f satisfying (B.2), which we can write as f =

by using the H-grading again. The proof is finished by verifying that M f1 and

M0 mg together with M_ span the required 81(2) subalgebra of Q.

From now on, let H be an integral grading operator. For an element M± of grade

±1, respectively, the pair (H, M±) is called mon-degenerate if it satisfies the corresponding

condition in (B.1).

We claim that if S = {M_, M0,M+ } is an 8 1(2) for which the generators M± are from

Qj, then the non-degeracy of the pairs (H, M_) and (ii, M+) are equivalent statements.

This will follow immediately from the sl(2) structure if we prove that the non-degeneracy

of the pair (H,M±) is equivalent to the following equality:

dimKer(adM) dimg0”. (B.5)

It is enough to prove this latter statement for a pair (H,M_), since then for a pair

(H, M) it can be obtained by changing H to —II. To prove thi let us first rearrange the

identity

dimg = dimKer(adM ) + dim [M_,q] (B.6)

by using the grading as

dim Ker(adM ) — dim ={dim‘ — dim[M, g]}
B

+ {dimQ — dim [M_, + i}
Since both terms on the right hand side of this equation are non-negative, we see that

dim Ker(adM_)> dimQ, (B.8)

and equality is achieved here if and only if

dim = dim[M,4] and [M_, + Q] =. (B.9)

On the other hand, we can show that the two equalities in (B.9) are actually equivalent to

each other. To see this, let us assume that the second equality in (B.9) is not true. This is

clearly equivalent to the existence of some non-zero u e such that (u, [M_, f’+c1)
{O}. By the invariance and the non-degeneracy of the Cartan-Killing form, this is in turn

equivalent to [M_,uJ = 0, which means that the first equality in (B.9) is not true. By

noticing that the first equality in (B.9) is just the non-degeneracy condition for the pair
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(H, M), we can conclude that the non-degeneracy condition is indeed equivalent to the

equality in (B.5).

We wish to mention a consequence of the results proven in the above. To this let us

consider a non-degenerate pair (H, M). By our more general result, we know that there

exists such an sl(2) subalgebra S = {M, M0,M} for which M is from Q. The point

to mention is that this S is an H-compatible sl(2) subaigebra, as has already been stated

in Section 3.4. In fact, it is now easy to see that this follows from the equivalence of (B.1)

with (B.5) by taking into account that the kernels of adM are of equal dimension by the

sl(2) structure.
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Appendix C: H-compatible 81(2) embeddings and halvings

In Section 3.4, we showed that, given a triple (F, M, H) satisfying the conditions for

first-classness, conformal invariance and polynomiality (eqs. (2.6), (2.13) and (3.2-4)), the

corresponding )‘V-aigebra is isomorphic to ‘l’Vg, provided that H is an integral grading

operator. Here S {M_,M0,M} is some sl(2) subalgebra containing M_ = M. A

natural question is what sl(2) subalgebras arise in this way, or equivalently, given an

arbitrary sl(2) subalgebra, can the resulting l’Vg-algebra be obtained as the W-algebra

corresponding to the triple (F, M, H), for some integral grading operator H? Whether

this occurs or not depends only on how the 8 1(2) is embedded, and it is therefore a pure

group-theoretic question. According to Section 3.4, the 81(2) subalgebras having this

property are the 11-compatible ones. This appendix is devoted to establishing when a

given s 1(2) embedding is H-compatible, and if so, what the corresponding H is.

The question of an 81(2) being H-compatible is very much related to another one,

which was mentioned at the end of Section 4.2. We noted that in some instances, a

generalized Toda theory associated to an sl(2) embedding could as well be regarded as a

Toda theory associated to an integral grading operator H. This means that the effective

action of the theory is a special case of both (4.12) and (4.3) at the same time. We have

seen that this is the case when the corresponding halving is H-compatible, i.e., when the

Lie algebra decomposition g = (Q> + P) + (Q + Th + Q_) + (P + <_) (subscripts

are Mo-grades) can be nicely recasted into = + c + g. Our second problem,

addressed at the end of the appendix, is to find the list of those sl(2) subalgebras which

allow for an H-compatible halving. Clearly, an 8 1(2) subalgebra which possesses an H-

compatible halving is also H-compatible in the above sense, but it will turn out that the

converse is not true.

Let $ {M_, M0,M } be an sl(2) subalgebra embedded in a maximally non-compact

real simple Lie algebra g. For the classical algebras A1, B1, C1 and D1, these real forms

are respectively sl(l + 1, R), 80(1, 1 + 1, R), 3p(2l, R) and so(l, 1, R). (We do not consider

the exceptional Lie algebras.) For $ to be an H-compatible sl(2), one should find an H

in Q with the following properties:

1. adH is diagonalizable with eigenvalues being integers,

2. H — M0 must coimnute with the S-triple,
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3. dimKer(adH) = dim Ker(adM).

We remark that here the equivalence of relations (B.1) and (B.5), proven in the previous
appendix, has been taken into account. Under conditions 1-3, the decomposition

= [M_,I’] + Ker(adM+) (C.1)

holds, where F = Q in the (I’, M_, H) setting, or F = + Q° in the sl(2) setting,
respectively. (For clarity, note that these two gauge algebras are in general not equal.) As
a consequence, Jred(X) M_ + jrecj(25) with jred(X) Ker(adM+) is a DS gauge in both
settings, and thus the 14)-algebras are the same.

In order to answer the question of whether an 81(2) embedding is H-compatible, it is
useful to know what these embeddings actually are. For a classical complex Lie algebra,
this question has been completely answered by Malcev (and Dynkin for the exceptional
complex Lie algebras) [391 The result can be nicely stated in terms of the way the
fundamental vector representation reduces into irreducible representations of the sl(2):

A, : the sl(2) reduction of the (1+1)-dimensional representation can be arbitrary,

B, : the (2l+ 1)-dimensional representation of B, reduces in such a way that the multiplicity
of each sl(2) 3pinor appearing in the reduction is even,

Cj: the 21-dimensional representation of C, reduces in such a way that the multiplicity of
each 31(2) ten3or appearing in the reduction is even,

D, : same restriction as the B, series: the spinors come in pairs.

The above conditions are necessary and sufficient, i.e., every possible 81(2) content satis
fying the above requirements actually occurs for some sl(2) embedding. Moreover, for the
classical complex Lie algebras, the way the fundamental reduces completely specifies the
sl(2) subalgebra, up to automorphisms of the embedding cc [39].

The above description of the sl(2) embeddings remains valid for the maximally non-
compact classical real Lie algebras, except the last statement. First of all, this means that
the above restrictions apply to the possible decompositions of the fundamental under the
sl(2) subalgebras in the real case as well. It is also obvious that those sl(2) embeddings for
which the content of the fundemantal is different are inequivalent. The converse however
ceases to be true in the real case in general: inequivalent 8 1(2) subalgebras can have
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the same multiplet content in the fundamental of . The answer to the problem of H-

compatibility will in fact be provided by looking more closely, at the decomposition of the

fundamental of under the sl(2) subalgebra in question, as will be clear below.

As an inimediate consequence of condition 2, H — M0 is an 81(2) invariant and can

only depend on the value of the Casimir. If, in the reduction of the fundamental of , a

spin j representation occurs with multiplicity m2, the sl(2) generators ii2 and H can be

written

X Imp (C.2a)

H M0 + I,+i x D(j), (C.2b)

where I,,, denotes the unit m x n matrix, and the D(j)’s are m, x m2 diagonal matrices.

Hence, within each irreducible representation of sl(2), H is equal to M0 shifted by a

constant. Obviously, this is also true in the adjoint representation and, in turn, this implies

that ad11 takes the value zero at most once in each sl(2) multiplet in the adjoint of c. From

condition 3, ad must take the value zero exactly once, i.e., each sl(2) representation must

intersect Ker(adH) exactly once, In particular, the sl(2) singlets must bead11-eigenvectors

with zero eigenvalue.

The trivial solution H = M0 exists whenever adM0 is diagonalizable on the integers,

i.e., when the reduction of the fundamental of is either purely tensorial or purely spinorial.

From now on, we suppose that the reduction involves both kinds of sl(2) representations.

1) A, algebras.

The problem for the A, series is simple to solve since, in this case, an H alway3 exists. As

a proof, we explicitly give an H which fulfills all the requirements. In (C.2b), we set

ifjEN, CD(J)l(\+)I ifjEN+,
.3

where A is a constant that makes H traceless. In order to show that the H so defined has

the required properties, we recall that for the A, algebras, the adjoint representation is

obtained by tensoring the fundamental with its contragredient. As a result, the roots are

the differences of the weights of the fundamental (up to a singlet) and we have
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ad11 = adM0 + [D(ji) — D(j2)], (C.4)

where ji and 2 are the spins of the states in the fundamental representation from which a

given state in the adjoint representation is formed. That the conditions 1-3 are satisfied is

obvious from the fact that adH adM0 on tensors and adH = adM0 ± on spinors, with

+ occurring as many times as —

It should be pointed out that (C.3) is by no means the only solution. Since in the

product ji x .12, the highest weights have an Mo-eigenvalue at least equal to Iii —

another solution is given by D(j) = (A + j) Im,.

2) C1 algebras.

For the symplectic aigebras, the adjoint representation is obtained from the 3ymmetric

product of the fundamental with itself and we therefore have

ad11 = adM0 + [D(j1)+ D(j2)1. (C.5)

Since the symmetric product of a tensor with itself produces a singlet, which must belong

to Ker(ad11), we have 2D(i) = 0 for every integer j = L Hence in the fundamental

representation, H = on tensors. Similarly, the symmetric product of a spinor with

itself always produces a triplet, one member of which must belong to Ker(adH). This

implies that the diagonal entries of 2D(s) are either 0 or +1, for every half-integer j = 8.

However D(s) cannot have a zero on the diagonal, because adH would not be integral on

the representations contained in s x t. Therefore, in the fundamental, H M0 ± on

spinors.

Let us now look at the m3 spinor representations of spin s, say s, 82,. . . sm’. The

product s’ x s’ of any two of those contains a singlet, and that implies D(s’) +D(s’) = 0.

This equality must hold for any pair of spin s representations, which is impossible unless

m3<2.

Let us consider the restriction g, of the symplectic form to the spin s representations.

The restricted form is non-degenerate, because the original non-degenerate metric is block-

diagonal with respect to the eigenvalues of the sl(2) Casimir.

If m3 = 1, then the H given by M0 ± . I on the unique spin 8 representation, should

be in the symplectic algebra: g3H + Hg3 = 0. Since M0 is already symplectic, we require
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that the identity be symplectic, which is impossible for a non-degenerate form. Hence m,

must be 2.

If m9 = 2, H — M0 and g look like (in the basis where M0 and H are diagonal)

H_MO=±( °) gs=(t ), (C.6)

where the blocks a and c are antisymmetric. H — M0 being symplectic leads to a c = 0.

To summarize, for an integral H to exist, the sl(2) embedding must be such that: (i)

the multiplicity of any spinor representation in the fundamental of 7 is 2, (ii) if (s, s’) is

such a pair of spinors, they must be the dual of each other with respect to the symplectic

form. If these two conditions are met, then H is given in the fundamental by

I Mo on tensors,
H=c 1 •

C.7
on a pair of spinors 8/8.

Conditions 1-3 are satisfied since (0.7) implies adH = adM0 on singlets, adj. adM0 ± (1

or 0) on tensors and adH = adM0 + on spinors.

3) B1 and D1 algebras.

The analysis here is similar to what has been done in 2), and we can therefore go through

the proof quickly.

For the orthogonal algebras, the adjoint is got from the ani!isymmeiric product of the

fundamental with itself and we still have

adH = adM0 + [D(j1)+ D(j2)]. (C.8)

The antisymmetric product of a tensor (spinor) with itself produces a triplet (singlet), so

that with respect to the symplectic algebras, the situation is reversed in the sense that the

tensors and the spinors have their roles interchanged: H M0 + on tensors, H M0

on spinors and mt <2 for any tensor representation of spin t.

If as in 2), we look at the restriction g of the orthogonal metric to the spin t tensors, we

have mt 2 on account of the non-degeneracy of g. From this, we get at once that there

can be no solution for the B1 algebras. Indeed, the fundamental being odd-dimensional,

at least one tensor representation must come on its own.
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On the 2(2t + 1)-dimensional subspace made up by the two spin t tensors, H — M0

and g take the form

H_Mo=±(g
0), (C.9)

where a and c are now symmetric. Requiring that H — M0 be orthogonal, we again obtain

a = c = 0.

Therefore, for the orthogonal algebras, we get the following conclusions. There is

no solution for the B1 series if the sl(2) embedding is not integral. As to the D1 series,

the sl(2) embedding must be such that: (i) every tensor in the fundamental of has a

multiplicity equal to 2, (ii) if (t, t’) is such a pair of tensors, they must be the dual of each

other with respect to the orthogonal metric. In this case, H is given in the fundamental

by

H = ( M0+/— on a pair of tensors t/t’, (C 10)
Mo on spinors.

Summarizing the analysis, the H-compatible sl(2) embeddings are the following ones:

Aj: any 31(2) subalgebra,

Bj: only the integral sl(2)’s,

C1: those for which each .spinor occurs in the fundamental of C1 with a multiplicity 0

or 2, the pairs of spinors being symplectically dual,

those for which each teriior occurs in the fundamental of D1 with a multiplicity 0

or 2, the pairs of tensors being orthogonally dual.

The reader may wish to check that the above results are consistent with the isomorphisms

B2
-‘ 02 and A3 ‘s.’ D3.

We now come to the second question alluded to at the beginning of this appendix,

namely the problem of H-compatible halvings. From the definition, an sl(2) subalgebra

allows for an H-compatible halving if in addition to conditions 1-3 one also has

4. P + 1 = G’1, and P + c<-1 =
g’_1.
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In particular, this fourth condition implies . So we readily obtain that H and

Mo must satisfy

adjj- = adM0, on tensors, (C.11)

since we know, from the previous analysis, that adH — adM0 is a constant in every rep

resentation (condition 2). Therefore, we can simply look at those solutions of the first

problem which satisfy (C.11) and check if condition 4 is fully satisfied or not. We get that

the sl(2) embeddings allowing for an H-compatible halving are as follows:

A1 : any sl(2) subalgebra. There are only two solutions for H given by setting in

(C.2b): D(j) = ± €(j)) ‘m with E(j) = for a tensor/spinor,

B, : only the integral .91(2)’s with H = M0,

C,: only the integral 81(2)’s,

D, : the integral sl(2)’s, and those for which the fundamental of D, reduces into spinors

and two singlets, with H given by (C.1O).

87



References

[1] A. N. Leznov and M. V. Saveliev, Lett. Math. Phys. 3 (1979) 489; Commun. Math.

Phys. 74 (1980) 111.

[2] A. V. Mikhailov, M. A. Olshanetsky and A. M. Perelomov, Commun. Math. Phys.

79 (1981) 473.

[3] A. N. Leznov and M. V. Saveliev, Lett. Math. Phys. 6 (1982) 505; Commun. Math.

Phys. 83 (1983) 59; J. Soy. Math. 36 (1987) 699; Acta Appi. Math. 16 (1989) 1.

[4] M. V. Saveliev, Mod. Phys. Lett. A 5 (1990) 2223.

[5] V. Drinfeld and V. Sokolov, J. Soy. Math. 30 (1984) 1975.

[6] D. Olive and N. Turok, Nuci. Phys. B257 (1985) 277;

L. A. Ferreira and D. I. Olive, Cornmun. Math. Phys. 99 (1985) 365.

(7] B. KostanL, Adv. Math. 34 (1979) 195;

A. M. Perelomov, “Integrable Systems of Classical Mechanics and Lie Algebras”,

Birkhäuser Verlag, Basel-Boston.-Berlin, 1990.

[8] P. Mansfield, Nucl. Phys. B208 (1982) 277; B222 (1983) 419;

T. Hollowood and P. Mansfield, Nuci. Phys. B330 (1990) 720.

[9] J.L. Cervais and A. Neveu, Nuci. Phys. B224 (1983) 329;

E. Braaten, T. Curtright, G. Ghandour and C. Thorn, Phys. Lett. 125B (1983) 301.

[10] A. Bilal and J.-L. Cervais, Phys. Lett. 206B (1988) 412; NucI. Phys. B314 (1989)

646; NucI. Phys. B318 (1989) 579.

[11] 0. Babelon, Phys. Lett. 215B (1988) 523.

[12] P. Forg.cs, A. Wipf, J. Balog, L. Fehér and L. O’Raifeartaigh, Phys. Lett. 227B

(1989) 214.

[13] J. Balog, L. Fehér, L. O’Raifeartaigh, P. Forgács and A. Wipf, Ann. Phys. (N. Y.)

203 (1990) 76; Phys. Lett. 244B (1990) 435.

[14] L. O’Raifeartaigh and A. Wipf, Phys. Lett. 251B (1990) 361.

[15] L. O’Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, W-Algebra3 for Generalized Toda

Theories, Dublin preprint DIAS-STP-91-03, Cominun. Math. Phys., to appear.

88



1

[16] F. A. Bais, T. Tjin and P. Van Driel, Nucl. Phys. B357 (1991) 632.

[17] T. Tjin and P. Van Driel, Coupled WZNW-Toda models and Covariant KdV hierar

chies, Amsterdam preprint IFTA-91-04.

[18] 1,. Fehér, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, Generalized Toda

theories and W-algebras associated with integral gradings, Dublin preprint DIAS-STP

91-17, Ann. Phys. , to appear.

[19] P. Mansfield and B. Spence, Nuci. Phys. B362 (1991) 294.

[20] A. B. Zamolodchikov, Theor. Math. Phys. 65 (1986) 1205.

[21] V. A. Fateev and S. L. Lukyanov, mt. J. Mod. Phys. A3 (1988) 507;

S. L. Lukyanov and V. A. Fateev, Additional Symmetries and Exactly Soluble Models

in Two Dimensional Conformal Field Theory, Kiev preprints ITF-88-74R, ITF-88-

75R, ITF-88-76R.

[22] K. Yamagishi, Phys. Lett. 205B (1988) 466;

P. Mathieu, Phys. Lett. 208B (1988) 101;

I. Bakas, Phys. Lett. 213B (1988) 313;

D.-J. Smit, Commun. Math. Phys. 128 (1990) 1.

[23] B. Feigin and E. Frenkel, Phys. Lett. 246B (1990) 75;

J. M. Figueroa-O’Farrill, Nucl. Phys. B343 (1990) 450;

H. G. Kausch and G. M. T. Watts, Nucl. Phys. B354 (1991) 740;

R. Blumenhagen, M. Flohr, A. Kliem, W. Nahm, A. Recknagel and R. Varnhagen,

Nuci. Phys. B361 (1991) 255.

[24] P. Di Francesco, C. Itzykson and J.-B. Zuber, Classical W-Algebras, preprint PUTP

1211 S.Ph.-T/90-149;

V. A. Fateev and S. L. Lukyanov, Poisson-Lie Groups and Classical W-Algebras, Paris

preprint PAR-LPTHE 91-16.

[25] 0. Sotkov and M. Stanishkov, Nuci. Phys. B356 (1991) 439;

A. Bilai, V. V. Fock and I. I. Kogan, NucI. Phys. B359 (1991) 635.

[26] M. Bershadsky, Commun. Math. Phys. 139 (1991) 71.

[27] A. M. Polyakov, mt. J. Mod. Phys. A5 (1990) 833.

89



[28] I. Bakas and D. Depireux, Mod. Phys. Lett. A6 (1991) 1561;

P. Mathieu and W. Oevel, Mod. Phys. Lett. A6 (1991) 2397;

D. Depireux and P. Mathieu, On the classical W algebras, preprint LAVAL PRY-

27/91.

[29] L. J. Romans, Nuci. Phys. B357 (1991) 549;

J. Fuchs, Phys. Left 262B (1991) 249.

[30] E. Witten, Commun. Math. Phys. 92 (1984) 483.

[31] P. Goddard and D. Olive, mt. J. Mod. Phys. Al (1986) 303.

[32] N. Bourbaki, “Groupes et Algèbres de Lie”, Hermann, Paris, 1975; chap. 8.

[33] N. Jacobson, “Lie Algebras”, Interscience Publishers, Wiley, New York - London,

1962.

[34] V. I. Arnold, “Mathematical Methods of Classical Mechanics”, Springer, Berlin-

Heidelberg-New York, 1978;

V. Guillemin and S. Sternberg, “Symplectic techniques in physics”, Cambridge Uni

versity Press, 1984.

[35] A.M. Polyakov and P.B. Wiegmann, Phys. Lett. 131B (1983) 121.

[36] S. Helgason, “Differential Geometry, Lie Groups and Symmetric Spaces”, Academic

Press, New York, 1978.

[37] L. Feh&, L. O’Raifeartaigh, P. Ruelle and I. Tsutsui, Rational vs Polynomial Char

acter of W,-Algebras, Dublin preprint DIAS-STP-91-42a.

[38] B. Kostant, Amer. J. Math. 81 (1959) 973.

[391 A.I. Maicev, Amer. Math. Soc., Transl. 33 (1950);

E. B. Dynkin, Amer. Math. Soc. Transi. 6 [2] (1957) 111.

[40] L.Palla, Nuci. Phys. B341 (1990) 714.

[41] P. Bowcock, Nuci. Phys. B316 (1989) 80;

see also, A.P. Balachandran, CL Marmo, B.-S. Skagerstam and A. Stern, “Gauge Sym

metries and Fibre Bundles”, Springer-Verlag Lecture Notes in Physics 188, (Springer-

Verlag, Berlin and Heidelberg, 1983).

[42] L.D. Faddeev, Theor. Math. Phys. 1 (1970) 1.

90



[43] A. Alekseev and S. Shatashvili, Nuci. Phys. B323 (1989) 719.

[44] L. O’Raifeartaigh, P. Ruelle and I. Tsutsui, Phys. Lett. 258B (1991) 359.

[45] See, for example, T. Kugo and I. Ojima, Prog. Theor. Phys. Supplement 66 (1979)

1.

[46] M. Bershadsky and H. Ooguri, Commun. Math. Phys. 126 (1989) 49;

N. Hayashi, Mod. Phys. Lett. AG (1991) 885; Conformal Iniegrable Field Theory

from WZNW via, Quantum Hamiltonian Reduction, Osaka preprint OU-HET 149.

[47] H. Freudenthal and H. de Vries, CCLi Lie Groups”, Academic Press, New York and

London, 1969.

[48] M. F. De Groot, T. J. Hollowood and 3. L. Miramontes, Generalized Drinfeld-Sokolov

Hierachies, preprint IASSN-HEP-91/19, PUTP-1251, Commun. Math. Phys., to

appear;

H. 3. Burroughs, M. F. De Groot, T. J. Hollowood and J. L. Miramontes, Gener

alized Drinfeld-Sokolov Hierachjes II: The Hamiltonian Structures, preprint PUTP

1263, IASSN-HEP-91/42; Generalized W- algebras and Integrable Hierarchies, preprint

PUTP-1285, IASSN-HEP-91/61.

[49] B. Spence, W-algebra Symmetries of Generalized Dririfeld-Sokolov Hierarchies,

preprint IMPERIAL/TP/91-92/02.

[50] P. Bowcock and C. M. T. Watts, On the classification of quantum W-algebras, preprint

EFI 91-63, DTP-91-63.

91


