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1 .Introduct ion

The long-standing problem of deriving irreversible behaviour from reversible,

Ilamiltonian, laws of motion received a great impulse from the seminal work of Ford,

Kac and Mazur [ljwho:

i) were able to account for the Brownian behaviour of a subsystem by embedding it

in a linear chain of altogether interacting harmonic oscillators, the whole system

being in equilibrium at a given temperature T;

ii) because of linearity, opened in turn the way to the subsequent theory of Quantum

Stochastic Processes, by exhibiting a Quantum Langevin Equation.

Two points emerged clearly: on one hand the need for an infinitely extended linear

chain, otherwise quasiperiodicity would forbid decaying of correlations and on the

other the difficulty of an harmonic oscillator interpretation of the heat bath that would

oblige to consider infinitely strong couplings. The latter was not a serious drawback

and, already repaired in part by the authors themselves, found a final and consistent

adjustment in a subsequent development of those initial ideas [2,3] that showed how

the previous picture were one among other possible realizations of a more general and

far-reaching scheme: the construction of a linear Hainiltonian heat bath able to induce

Brownian behaviour on one of its components, to which models like Ford, Kac and

Mazur’s, Lamb’s, Schwabl-Thirring’s and Planck’s are proved to be be isomorphic [3].

It was at the level of giving a quantum version of such a linear Hamiltonian heat bath

that the strategy as it stands met its limits [3,4]. Nevertheless some fundamental

structures [5,6,7], already well-known in ergodic theory as Kolmogorov systems [8],

made their appearance, and transported in a non-commutative frame, produced a first

attempt at a definition of a quantum Kolmogorov-Sinai entropy [10] for general type

III von Neumann algebras, line of thought that has been recently revived [11,10,13] and

developed into a quantum ergodic theory. In this note we look at the classical-quantum

differences how they show up within the above sketched approach with particular

reference to the Langevin and Fokker-Planck descriptions which are showed to be
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equivalent classically and to depart quantum mechanically. To make the content self-

consistent, we briefly review in passing the necessary background and results.

2. Brownian Motion, Hubert Space Stochastic Processes

and Kolmogorov Systems

2.1. Brownian Motion [14,15]

We shall be concerned with the following two classical Brownian particles de

scribed by the Langevin systems. of stochastic differential equations:

dq =

dp —mw2qd — 2-pdt + dW(t)
Li: m

< W(s)W(t) >= min(s,t) Vs,t 0

2=2ykT

f dq = —7qdt + qdWq(t)

I dp = —7pdt + dW(t)

<Wq(S)Wp(t) > 0

L2:
< Wq(S)I”Vq(t) >=< W(s)W(t) >= min(s, t)... s, t 0

= 2mkT

2 27kT
0. =

mw

Remarks 2.1.1.

I. W(), Wq(t) and W(t) are Wiener processes so that the corresponding stochastic

forces ,.

dv(t)
0q

dWq(t)
and

,

dW(t)
have white noise time correlations. 0., 0

and o are chosen to satisfy, in equilibrium at temperature T, the principle of

equipartition of energy.

2. Li and L2 are equivalent to the Fokker-Planck equations

FF1: 8tpt(q, p) = { —
+ mw2qôp + 18p +7kT8 } pt(q, p)

FF2: 8p(q,p) = 7{8pp ± &qq ± mkT8 ±
rnw2
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These are evolution equations for probability density distributions on R2 which

have as stationary solutions the Gibbs measure at inverse temperature =

, 2
P 2 2

p(q,p)dqdp = exp (—.(— -r mw q ))dqdp.

FP1 and FP2, or, equivalently, L1.and L2, describe classical, stationary Markov

processes, in particular, the r.h.s. of FP1 and FP2 are the generators of contrac

tion Markov semigroups on the space of probability distributions over R2.

3. All the properties of a given probability density distribution p(q, p) are fixed by

its characteristic function:

p{W(x,y)} E

fR2

dqdpep(q,p),

which amounts to be the expectation of the exponential function W(x,y)(q,p)

w.r.t. the given probability measure.

4. From a physical point of view, whenever p(q, p) is absolutely continuous w.r.t. the

equilibrium measure, we speak of a local perturbation of the equilibrium state.If

it is then let evolve according to FP1,2, it stays absolutely continuous, returns

back to the unperturbed state and the system exhibites tendency to equilibrium.

This is best seen in terms of the positivity of entropy production, or monotonicity

of the relative entropy which seems indeed to be a key word even in a quantum

setting [13,16,17]:

S(p, Pt)
fR2

dqdppt(q, p) ln{ } 0,

= 0 if pt(q,p) =p13(q,p) a.e.,

S(p,pt) 0.

To account for the type of convergence of perturbed states to equilibrium, we

make an algebraic choice, namely, we consider the abelian von Neumann algebra

L(R2,p) formed by the pa-essentially bounded functions on R2 that act as multi

plication operators on the Hubert space L2(R2, p).This algebra is linearly generated
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by the exponential functions by taking the operator strong closure on the Hubert

space. This gives us means to pass from a Schródinger like picture, in which the

state p evolves into Pt, to a Heisenberg like one in which the operators W(x, y) evolve

into Wt(x,y). Obviously the state p on L(R2,p) is given by integration w.r.t. the

probability measure and the corresponding duality

pt{W(x,y)} =p{W(x,y)}

allows us to deduce the Heisenberg equations of motion:

Hi: y) { — x8 — mw2x8 + — kT7} y)
m m

H2: 8tWt(,y) = —7{x8 +yôy +mkTx2±
kT_y2}Wt(x,y).

mw2

2.2.Hilbert Space Stochastic (H-) Processes

The strategy in the construction of a heat bath that may lead to Li and L2, is

to seek a reversible evolution over a larger system which reproduce by restriction to

the subsystem embedded in it a semigroup distinguished by a strong damping term.

Embedding and conditioning are indeed the leading concepts that come up in the

dilation theory of contraction semigroups on Hubert spaces [3,7,18].

Definition 2.2.1 [3,7]

A K-based, stationary, Markov H-process in a real Hubert space H equipped

with a one parameter group of orthogonal transformations {Ut}tER, is a strongly

continuous family
{it}ER

of isometries from a real Hubert space K onto subspaces

of H such that:

i) j : K —*H Ej[KJ ç H,

ii) t =

iii) S.3 = jU3j0 is its covariance and satisfies

iv) S5S = on K for s,t 0.

The process is called regular if {S}>0 contracts strongly to zero on K.



It turns out that the converse is also true.

Theorem 2.2.2.

Given a strongly continuous one-parameter semigroup {S}>0,strongly contract

ing to zero on a real Hilbert space K, then there exists a regular, stationary, Markov

H-process based on K, in a real Hilbert space H which has S as its covariance when

t>o.

Proof

This is Theorem 3.13 in [18].

In our examples

= { ::(-
:) }

are strongly contracting on R2 equipped with the energy norm

jIk(z,y)IJ = mw2x2 +

which will be the space K. Because of Kolmogorov theory of Positive Definite Kernels

[18, Chapt.1j, we know that the various possible triples (H, {it}R’ {Ut}teR) that

decompose the kernel < k, S_3k’ >E are unitarily equivalent [18, Theorem 3.15] and

one of them is the following [3, Lemma 2.4]:

H = L2(R ‘R,dx)

D1: (Ui,b)() =
?/7(x t) V’çb H

[ik(x,y)](s) = e(t — s)[St3k(x,y)]2Vk(x,y) K,Vt 0;

(L] 2
means the vector second component)

H =L2(R-.-÷ K,d)

D2: (Ub)(x) = ‘çb(a
—

t) Vi/’ H

[jk(,y)](s) = 8(t — s)e_t_3)k(,y) Vk(,y) E K,Vt 0.
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So far we have accomodated the semigroup but the very same dilation technique

provides us with the route to stochasticity (diffusive term in Li, L2).

Proposition 2.2.3.

The family
{it}tER

fulfils the Hubert space Langevin equation:

[jkj(x)
- rj0kj@) =

L:SGk)
+ [ki2x[3tl() G

= (2 )
j dsj3Gk](x) + kx13tj(x) G = — ( ).

Proof

This is Theorem 3.15 in [18].

Diffusion enters the picture through Minlos’Theorem, once we have observed that:

fdxx[03}(x)x[0J(x) =mim(s,) Vs,t 0.

Indeed we have:

Theorem 2.2.4. [3,19,20,21]

It is possible to embed isometrically H into a Hubert space L2(i2,) of square

summable functions over a probability space 2 with probability measure such that,

if

: H(w)eL2(f,),

and

W(b) Eexp(iLp()) E

then

= exp(-’).

The net result following from above is that x[o,tJ() goes into a gaussian stochastic

variable w(t)
j(•)

and4t{w(s)w(t)j = min(s,t)Vs,t 0. So we get
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Proposition 2.2.5.

The couple of orthogonal vectors in K

Jei Ek(—-,0)

e2 k(0,m)

is isometrically mapped into gaussian stochastic variables on

J Q

=

satisfying Li and L2, when the family of isometries
{it}ER

is given according to Di

and D2 respectively.

Proof

The choice of e1 and e2 produces the right linear dependence between them and Gel2

so that the Liouville part of the r.h.s. of Li and L2 is achieved.On the other hand the

Wiener processes

I w(t)

Wq(t)

w(t) E

are easily verified to obey the conditions required in Li,L2.

Minlos’ Theorem gives rise to the Hilbert space L2(c2,) as a Fock like space

over the generating gaussian subspace [H] [19,20], the translation operator U± pro

vides an orthogonal operator on L2 (c2,) that sends W [] into W [u] and which,

moreover, preserves the gaussian measure.What is showed in [3] is that a symplectic

structure of an infinite Hamiltonian system in equilibrium at temperature T can be

constructed so that it fits into the above infinite dimensional Hilbert space with the

given invariant measure to which all the other linear models like Ford,Kac and

Mazur’s, Lamb’s, Scwhabl-Thirring’s and Planck’s isomorphically correspond (see [2]

and [3] for a detailed account of the models). Needless to say that it is rather in

triguing that an infinite linear chain of coupled harmonic oscillators, under certain

conditions, those giving rise to Brownian behaviour, appears physically equivalent to

a semi-infinite string with an harmonic oscillator attached to the constrained end as
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is the case in the Lamb model.

The single particle description is now in terms of the gaussian stochastic variables

Q, P or of the exponential functions

W(x,y) W[yj0ei+zj0e2] =

Wj0Dk(,y)] D=
(0 _;)

We are thus led to

Proposition 2.2.6.

Given the abelian von Neumann algebra Lco(c2, 1u,) M of -essentially

bounded functions on 2 acting as multiplication operators on L2 (c2,/1), we have:

i) the abelian von Neumann algebra M3 C M generated by {W[] : i j0K} is

isomorphic to L(R2,p);

ii) the evolution given on L2(i2,) provides a group of automorphisms at : M — M

that preserves the state w given on M by integration w.r.t. ,u;

iii) the abelian von Neumann algebra M0 is not invariant under at and

at[W(x,y)] = eQt),

where Pt and Q satisfy the Langevin equations Li, L2.

Proof

We only note that the correspondence

Lc0(R2,p) W(x,y) +— W[j0Dk(x,y)] M0

is such that
z.p 2
t.L 22 Y

p[W(,y)] =exp(—-—[mw x

= exp (-IIDk(x,y)tI)

= {W[j0Dk(,y)] }
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Once the Langevin picture is obtained, we still need the Fokker-Planck equation

for the theory to be complete: the latter will be provided by a system of conditional

expectations: we have infact seen that the single particle subalgebra M is not at-

invariant.

2.3. Kolmogorov (K-)Systems.

We shall formulate algebraically some well-known classical ergodic concepts

[5,6,8,10,12,13].

Definition 2.3.1.

A dynamical system consists of a triple (M, {at}ER ,w), where:

M is a von Neumann algebra;

{-t}teR is a group of automorphisms of M;

w is an invariant state on M.

Definition 2.3.2.

The dynamical system (M, {cLt}ER, w) is a K-system whenever a subalgebra

M01 exists such that:

i) M31 a3(M0)C M1 at{M01} Vs t;

) V M31 = M (V means algebraic generation);

3>0

) A M31 = Al (A means algebraic intersection).

s<0

Proposition 2.3.3.

The dynamical system (M = L(c2, [La), w) of Proposition 2.2.6. is a

K-system.

Proof

Given the isometries t : K — H, we have the orthogonal projections

lIt] V : H
—

Hj E Vj3[1<]

s<t
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such that

= uri01u,

as = Uj0.

The regularity of the semigroup S = jUj0 on K is equivalent to A<0 JtJ = 0

(Lemma 2.3 in [3]), thence:

i)rI1 fl Vs<t,

ii V3i=
s>O

iii) A ri31 = 0.

s<O

Let M01 the subalgebra of M generated as strong closure on L2(c2, u) by

{W[i,b] :betI01H}

then the family M1 (M01)of subalgebras generated by

{W[4’] :fltjH}

fulfils the conditions for giving M the properties of a K-system.

Remarks 2.3.4.

1. Associated with the family {M1} there are conditional expectations

M —f Mt], that satisfy:

i) E1 [w [] w []] = w [] Ej [w [i]] V e ri1 H, e H,

ii) E1 = at E01 a_t,

iii) E5
.

= Vs < t,

iv),i.E1 =iVt,

v)Ej [w[]] = W[fl1b] {W[(I
- Hi)] }.

They correspond indeed to Hilbert space projectors ontoL2(i2j,ji) where the

latter is the Fock like space which has fljH as a generating subspace [19,20].
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2. The following natural semigroup {r}>0 on M arises {7,13J:

= E01

which can be also viewed as a semigroup on L2(12,,u) because of previous re

mark.It is then worth noticing that as such the sernigroup appears to be the co

variance of a stationary, regular, Markov L2(i2, i)-process based on L2(f201
,

and acting on the orthogonal complement of the constant functions in L2(c2,

the Kolmogorov decomposition being given by

fit

j=Ej

The presence of this state-preserving, contraction semigroup is quite independent

from any other considerations but the existence of a Kolmogorov structure within

the underlying algebra or Hubert space. Our a priori knowledge that the structure

has come up from dilating the semigroup St gives:

Proposition 2.3.5.

Let E0 be the expectation M —* M0 and i, the corresponding embedding

M0 —+ M, then

7E0•Fti0:M0—*M0VtO

is the Markov seinigroup associated with the Fokker-Planck equations FP1 and FP2.

Proof

It is immediately verified that {-y}>0 is indeed a semigroup, by taking into account

that

a)M0CM0]E0.E0]=E0

b)7{W(x,y)} = EQ{1bV[Uj0Dk(x,y)] } =

= W[j0StDk(z,y)] exp{ - IDk(x,y)II - SDk(x,y)I]}

= W(Sk(,y))exp
‘w2

[Uk(z,y) -

where
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DS=SD D=(°
iT

0 ,j

see discussion after Proposition 2.2.5.. By appealing to Proposition 2.2.6. and a time

derivative we can check that Hi and 112 are satisfied.

3. Heat Baths Quantized.

3.1. Quantum Kolmogorov Systems.

Definitions 2.3.1. and 2.3.2. are well suited to embody some kind of non-

commutative ergodicity for they are formulated in the most general algebraic

terms.Nevertheless we encounter a first basic departure from the classical case.

Proposition 3.1.1. {13]

Given a dynamical K-system (M, cz, w) and the G.NS. triple (H, U, fL)

based on it, there are two natural semigroups

fFt=E3j.a onM

r;=rI31.u onH

associated with the Kolmogorov structure {MtJ}tER. The two coincide if the condi

tional expectations Et] : M —* M1 are canonical, that is w = W Vt.

Remarks 3.1.2.

1. In the classical case of an abelian von Neumann algebra (H, U, !2) is uni

tarily equivalent to (L2(c2,1u), U, ) and as any conditioning is canonical no

differences arise. Quantum mechanically things change in that a canonical condi

tional expectation (projection of norm one) exists if and only if the algebra onto

which it focuses is invariant under the modular automorphism, , relative to the

state w, supposed to be faithful {22J.Thus, if o happens to coincide with at there

is no chance how could r describe an irreversible evolution of M that has w as

an equilibrium state.Moreover, irreversibility at the algebraic level seems to be

somewhat disconnected from its Hubert space counterpart whereas they coincide

classically.
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2. There is to mention a second point at which classical and quantum Kolmogorov

systems differ from each other. Classically the algebraic structure is equivalent to

strict positivity of the Kolmogorov-Sinai(K-S-)dynamical entropy which is a mea

sure of the predictability of the future stages in the history of a dynamical system,

whenever a finite grained knowledge of all its past is given [8,12]. Strict positivity

of the K-S-entropy implies complete memory loss of the initial conditions and if we

use the recently developed concept of non -commutative dynamical entropy [11]

to extend this fact to giv an entropic characterization of quantum K-systems [12]

we see that a distinction has to be made between Algebraic Quantum K-Systems

and Entropic Quantum K-Systems [23].

3. From the point of view of tendency to equilibrium, the properties of Algebraic

Quantum K-systems can find a nice analog to what discussed in Remark 2.1.1.4.

concerning the monotonic behaviour of quantum relative entropy and entropy pro

duction [13,16,17], whereas stronger decorrelations (clustering properties) seem to

be offered by Entropic Quantum K-systems [24].

Remark 3.1.2.1 is of the most importance in outlining the properties of Hamilto

nian models of heat baths. If we want to quantize any of the available linear models,

what we have to do is to construct a representation of the Canonical Commutation

Relations over the symplectic infinite linear structure made fit in the infinite dimen

sional Hubert space H, that be compatible with equilibrium conditions at temperature

T. This has been done in [3,25] by using the CCR representation based on a quasifree

state, KMS w.r.t. the translation operator U on H.

There are two main intriguing features and corresponding drawbacks in the ensuing

boson system: a quantum Langevin equation is constructed for quantum position and

momentum operators and tendency to equilibrium indeed show up to a certain extent

[3,25]. On the other hand the momentum observable exhibits wild fluctuations and

the quantum noise as well so that they cannot fit into the algebra of observables and

point instead to a renormai.ized theory. Moreover, according to Remark 3.1.2.1., there

is no way to obtain a Quantum Markov semigroup that might have the KMS-state as

14



an invariant state, by using canonical expectations. Indeed, the equilibrium state has,

as its own modular automorphism, the one which arises from the translation operator

on the basic space H and, therefore, will move any of the M1 out of itself by def

inition. Embedding and conditioning have been the key tools in the construction of

a general heat bath able to characterize the irreversible behaviour of a single particle

system in the classical setting. Embedding a semigroup of contractions in a unitary

group on a larger space provides the Kolmogorov structure of the latter and in turn

that of the ensuing algebra of observables, the noise in the Langevin equations being

the result of the existence of the family of moving subalgebras {M[t] }teR
[19]. The

very same Kolmogorov structure, on the other hand, which plays a fundamental role

in this context, is at the basis of the Fokker-Planck description that arises through

conditioning with respect to the past history of the sytem. This twofold consistent

picture of irreversibility breaks up in a quantum setting where embedding works,

apart from divergences, but conditioning does not. The only way out is to consider

sytems, utterly different, in spirit and construction, in which the equilibrium state is

translation-invariant, but KMS w.r.t. another evolutions that leaves, instead, all the

subalgebras M1 invariant and makes things look classical.

3.2.2. Modified Quantum Heat Baths.

In this last paragraph we follow the theory of Dilations of Quasi-Free Dynamical

Semigroups [18, Chapt. 10,11,12] and apply it to the cases considered.

Proposition 3.2.1. [18, Chapt.12]

Let {S t o} be a strongly continuous semigroup of contractions on a Hubert

space K and

(H,
{it}ER’ {Ut}tER)

the triple arising from its dilation. For each A 1 there is a strongly continuous

semigroup

{*(s)}>0
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of completely positive contraction maps on the CCR representation over H, WA(H),

such that:

1)W(S) = WA(j)*(Ut)W(j0)Vt 0

2) WA(j0)embeds the CCR algebra over K into W,(H) and

3) W(j) is the corresponding expectation

4) *A(St) {*[j0k] } = W [jSk] exp { -
[I jkj

- I IStkI ] } Vk e K.

The above CCR representation is determined by the positive definite functional

= e12

over the Weyl operators {*,, [7,b] : H} satisfying:

*A[]*A[] =*A[+]em<>

[18, Chapt.7]. With the choice

hwj5’ 1coth —i---, =

=j0Dk(,y), D = (° _)
k(,y) EKE{R2,HHE}

(see Proposition 2.2.5,6.), we have:

w{*A[j0Dk(x, y)] } {*[j0Dk(, y)J }
1 hw3 2

=exp
—

which is the expectation of the one-particle Weyl operator

W(,y) =

in the Gibbs state

exp{
[2

]}
Tr exp { — ± }

The state w on WA(H) defined by the functional j is the equilibrium state at

temperature T w.r.t. the evolution o given by:

t{*A[] } =

* [twt]

16



i.e. the modular automorphism of w [9,10]. On the other hand we have on H the

translation operator U that gives H its Kolmogorov structure.

The latter can be lifted to W(H), as done in Proposition 2.3.3.for the classical

case, providing the family of subalgebras W1 E W(H1) fulfilling the conditions

for a K-system and that, above all, are left globally invariant by ot. Thence, the

expectations E : WA(H) —
Wj generate a state-preserving semigroup, in agreement

with Remark 3.2.1.:

=*A [fl ]w{* [(I -n1)] }.
The subalgebra W(j0[K]), describing the one-particle system, is left invariant as

well and, upon identification of W(, y) with W,[j0Dk(x, y)], we eventually get:

=

.exp{ - coth[k(x,y)II - ISk(x,y)II]}

where SD = DS and S is the same of Proposition 2.3.5..

Remarks 3.2.2.

1. If S = e_7t, then

= *(e(,y)) . exp { k(,y)[1 - e27t] }

which is studied in [9,10] as a model of quantum diffusion in a harmonic well.

2. It is straightforward to connect with f of proposition 2.3.5. by letting h —÷ 0.

We follow [26] and introduce the symmetric representation

I h = q, ()(z) =

= ()(x) =

on L2(R, dx), and the overcomplete family of coherent states

1 > = 0 >L. q,p
— J(q,p)ER2

17



After setting (x(t),y(t)) = S(x,y), we find

• q p q
lrn <==j7tjW(hx,hy)1I7= > =

= I urn < —--- _

q P

h-O Jh/

- coth[Ik(x,y) IS (Y)II]} =

= W((Sk(,y)) exp { - [k(y)H - jSk(x,y)jI] }.
(see Proposition 2.3.5.).
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