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Abstract

The Twin “Paradox” is investigated using a method that emphasises the symmetry

between the twins. All the calculations arc 1)crforrrled using the Schwarzschild

metric, making the result valid in General Relativity as well in the special case of

Minkowski space.
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1 Introduction

Most textbooks on Special Relativity contain an analysis of the well-known Twin

Paradox. (See, e.g. [1-14].) The discussion is usually formulated as follows:

Let K be the frame in which Twin 1 is at rest at the origin x = 0. At t 0,

Twin 2 leaves the origin arid, after a journey in K, comes back and discovers that

lie is younger than Twin 1. The same situation, analysed from K’, the frame in

which Twin 2 is at rest at the origin x’ = 0, might seem to lead to the contradictory

result that Twin 1 is now younger than Twin 2 since, in K’, it is Twin 2 who is

at rest and Twin 1 who moves.

The “paradox” is resolved by saying that, if K is an inertial frame, then

K’ cannot be inertial since it is accelerated with respect to K. This breaks the

symmetry of the problem and forbids to draw the (erroneous) conclusion that, as

calculated in K’, Twin 1 is younger that Twin 2.

This explanation is correct and has been analysed by various authors. (See

e.g. [15] quoted in [1].) However, to the best of our knowledge, a calculation

restoring the symmetry of the problem is not available in the literature, and it

might therefore not be devoid of interest to present it in this brief note. In other

words, it is possible to reformulate the question so that the same treatment applies

to both twins, provided one handles appropriately the non-inertial frame K’.

Given that we have to deal with accelerated frames, it is most convenient to

use the formalism of General Relativity applied to Minkowski space. It turns out

that this discussion can easily be generalised to the Schwarzschild space-time. We

shall thus treat the case of the general-relativistic Twin Paradox in a Schwarzschild

background. (This obviously contains the Minkowskian Twin Paradox as the spe

cial case rn = 0, where in is the Schwarzschild mass.)

The development will be conducted in three steps: In Section 2, we shall ob
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tam the ages of the twins as calculated in a frame K adapted to the Schwarzschild

metric. Then, in Section 3, we shall establish the transformation rule linking K to

K’, the rest frame of Twin 2. Finally, the ages of the two twins will be obtained

from an analysis in K’. In the conclusion, a symmetry argument will then show

that the predictions made by the two twins agree with one-another.

2. Analysis in the Frame K

In this section, we are going to calculate the ages of the twins as predicted by

an observer using Schwarzschild coordinates, i.e. in the frame K defined by (1)

below. We shall restrict attention to radial motion in the Schwarzschild geometry

M.

In the tangent space TJ’vI and its dual T*M, we shall use respectively the

bases

0 0 dt
[ej , and

dr
‘ (1)

in such a way that the Scliwarzschild metric reads, in matrix notation:

g = [6]T [g] [8] (2)

[g]
[coo o

] , goo = —g’ = 1 — 2m/r . (3)
0 gii

(The coordinates t, r are the standard Schwarzschild coordinates, and the set of

vectors [e] in (1) will be referred to as “Frame K”.)

The world line of Twin i, i = 1,2, is represented by the curve 2f depending

on a parameter ,\:

Zp
= zx(Z)) , Z,\o <i,\ ‘A

—

ZT(Z)

— [e]
R()
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where 1T and z]? denote respectively the t and r components of the position 2x of

Twin i. It would be possible to assume, e.g. that I’ is a geodesic, i.e. that Twin

1 is freely falling, but this is unnecessary since the treatment below is valid for

arbitrary world lines iI’. We are thus studying a slight generalisation of the Twin

Paradox.

By virtue of (4), the tangent vector ‘t to ‘I’ is given byf

1
1’()

5— 1ej ZR(z,\) ( )

where a dot over a function denotes the derivative of this function with respect to

its argument. As a result, the proper-time lapse 2r along I’ reads, by (2), (3),

(5):

= ] (g(t, ‘t))’12d (6)

= f (g ita ztb)l/2 d i,\ (7)

=

(gooi2+giii2)1/2dZA (8)

= J i71iTdi\ (9)
A0

Z7
(goo + gil
i2)_l/2 , i

. (10)

We are now going to prove that, when calculated in K’, the rest frame of Twin

2, the expressions for L 2r, i = 1, 2, are identical with (9). Geometrically, this

is obvious since, by (6), t r involves a tensor contraction of the metric and

the tangent vector to the trajectory. Such a contraction is invariant under any

frame change. In particular, the result of the integration (6) must have the same

numerical value when calculated in the Schwarzschild frame K and the rest frame

f We assume, without loss of generality, that the parameter
Z,\

is chosen so that T > 0.
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A’ of Twin 2 However, it is enlightening to do the calculation in K’ in some

detail since it shows the origin of the asymmetry between the twins in the standard

treatment, as explained in the conclusion

3. Analysis in the Frame K’

The frame K’ is the frame in which Twin 2 is at rest. This means that the time

vector of K’ is the proper velocity u of Twin 2. The spatial vector e1) is then

most conveniently taken orthogonal to e(0) and of square norm —1.

The calculation of u in A is elementary

d 2x
u

d 2r

d2x (d2rN

= d2 d2A)

= [ej [] (11)

where 2r is the proper time of Twin 2, and use has been made of (4). The derivative

term in (11) is evaluated from (9) as

d2r = 27 2i’d2 , (12)

in such a way that the final form of (11) reads:

u = [e] [4] 27 (13)

Furthermore, there is no difficulty in finding a vector w orthogonal to u and of

square norm —1 as

w = [e]
[2]

27 (14)

x (lgiil/goo)’12 (15)
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Consequently, K’ is obtained from K by the transformation

[e’J {e(0) , e(1)J = [u,wJ = [eJB (16)

B 271 ] . (17)

(In the special case of the Minkowski metric, goo = —gii = 1, and B is then clearly

a Lorcntz transformation.)

Under a change (16) of frame, the components of an arbitrary (contravariant)

vector V and of tlie nietric g transform as

V = [ej[VJ = [e’][V’] , [V’j = B1[V] (18)

[g’j = BT [g] B . (19)

This implies, for the matrix B given by (17), the tangent vectors t of (5) and

the metric (2), (3), that the proper-time lapses A as calculated in K’, the rest

frame of Twin 2, read:

A1

A r
= J (g itla itlb)1/2 d \ (20)

‘A0

p A1

J
([i1IjT [gP}[ztlJ)1/2 d z (21)

‘A0

A1

= J {(B’ [ijj)T (BT [g]B)(B’ [it]))1!2 d (22)

p A1

= J (gab
ita tb)l/2 d ‘\ , (23)

in agreement with the prediction (7) made in the Schwarzschild frame K. We shall

now conclude with the analysis of the results.

4. Conclusion
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In the light of the considerations of Sections 2 and 3, the argument of the absence

of paradox in the twin problem can be reformulated as follows: We proved that

the time lapses obtained in the rest frame of Twin 2 agree with those obtained in

the Schwarzschild frame. By interchanging the roles of the twins, this means that

the results in the rest frame of Twin 1 also agree with those in the Schwarzschild

frame, and consequently that the predictions of the twins agree with one-another.

It is important to realise that, in our framework, the two twins are equivalent since

their world lines ‘F and 2P were treated as completely arbitrary curves. It was,

for instance, not assumed that one of them was a geodesic. In other words, our

method restores the symmetry of the problem.

In the standard Special-Relativistic treatment, one usually restricts attention

to global inertial frames. This means that one considers only holonomic frames in

which the metric g equals the Minkowski metric ii. Then, with the same notation

as in (7), the proper-time lapses Zr of the twins arc written as

- A1

= J (7iabta itb)1/2 d) . (24)
A0

In a non-inertial frame, the metric cannot be assumed globally Minkowskian, and

the transformation law (19) must be taken into accountf. Such a framework is,

therefore, necessarily asymmetric since (24) cannot hold in both rest frames of the

twins.

The fact that the rest frame of at least one twin is non-inertial appears very

clearly in our framework since, by (17), the frame [e’} is, in general, non-holonomic

and the connection is non-vanishing (even in the Minkowskian case goo = —gil =

f It is indeed obvious from (21), (22) that the outcomes of the calculations would not be the same

in K and ISi if the transformed metric BT [g]B were not used, but rather the Minkowskian value

[ii].
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1) when B depends on the position. Moreover, this must be so for at least one

twin if the two twins are to meet again after completing their journey through

space.

Finally, it should also be noted that we never had to exploit the explicit values

of the metric functions goo and gii The conclusions thus hold for all the metrics

of the form (2), (3), irrespective of gjo and gii.
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