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ABSTRACT

A simple hierarchical fermion model is constructed which gives rise to an exact

renormalization transformation in a 2-dimensional parameter space. The behaviour

of this transformation is studied. It has two hyperbolic fixed points for which

the existence of a global critical line is proven. The asymptotic behaviour of the

transformation is used to prove the existence of the thermodynamic limit in a certain

domain in parameter space. Also the existence of a continuum limit for these

theories is investigated using information about the asymptotic renormalization

behaviour. It turns out that the “trivial” fixed point gives rise to a two-parameter

family of continuum limits corresponding to that part of parameter space where the

renorma]ization trajectories originate at this fixed point.

Although the model is not very realistic it serves as a simple example of the

application of the renormalization group to proving the existence of the thermo

dynamic limit and the continuum limit of lattice models. Moreover, it illustrates

possible compications that can arrise in global renormalization group behaviour,

and that might also be present in other models where no global analysis of the

renormalization transformation has yet been achieved.

part of the material here presented was used in the author’s thesis.
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1. Introduction.

Hierarchical models were introduced by Dyson [8] before Wilson [19] formulated

his theory of the renormalization group. It was Baker [1] who pointed out the

simple renormalization group structure of the model. Actually, Bakers’s model is

different from Dyson’s in that it has continuous spins instead of Ising spins. The

first mathematical investigation of hierarchical models was carried out by Bleher and

Sinai [3] and [4]. It was elaborated by Collet and Eckmann [5] and, more recently, by

Gawedzki and Kupiainen [11,12]. Here we construct a fermionic analogue of Baker’s

model by replacing the spins with elements of a Grassmann algebra. Thus we

obtain a model with a very simple renormalization group structure. It is somewhat

like a hierarchical version of the Gross-Neveu model, the renormalization group

structure of which was studied by Gawedzki and Kupiainen [14] and Feldman et.

aL[9]. However our hierarchical model does not satisfy reflection positivity, so that

the continuum limit is not a feasible candidate for a quantum field theory. The

renormalization group transformation of our model takes place in a two-dimensional

space of coupling parameters r and g. It is given by formulas (2.16). The simplicity

of the transformation enables us to study the global flow of the transformation.

In the next section the model is introduced and its renormalization transforma

tion derived. In Section 3 the main results about the asymptotic behaviour of the

transformation are stated and discussed. Theorems 1 and 2 are precise statements

about the existence and uniqueness of a global critical line for each of the fixed

points (0,0) and (—i, Theorem 3 is a result about the asymptotic behaviour

of points that are not critical. Proofs of these theorems are deferred to Section 7.

Figure 1 shows a computer picture of the flow of the transformation. In Section 4

we use the asymptotic renormalization group behaviour to investigate the existence

of a thermodynamic limit. Along the same lines, in Section 5, we prove a result

about the decay of correlation functions, which is used in the study of the contin

uum limit in Section 6. The existence of a continuum limit is proven for each point

on the trajectories receding from the trivial fixed point (0,0). The existence of a

continuum limit for points on the line g = 0, r > 0 is the easiest to establish: it is

Gaussian. As in the case of the Gross-Neveu model, the other trajectories give rise

to non-trivial continuum limits. Section 8 contains some concluding remarks.
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2. The model.

For a Grassmann algebra with an even number of generators arranged in

conjugate pairs {L1,, . . .
, ‘Ø, there exists an analogue of a Gaussian integral

due to Berezin [2}. It is given by the linear functional wc on with

21
-

B’ —C(-) fexp[,B)JdØd —(

Here dØdib stands for db1 . * . ... d1 and f •db is the usual fermionic inte

gration defined by

fd=1, fd=O.

B is a non-degenerate ri x n matrix and

(, B) =

i,j=i

The exponential is given by its (terminating) Taylor expansion.

Wc satisfies the usual fermionic Wick formulae,

(2-2) wc (i =C1j1C22 C12C21,etc.

For a degenerate matrix C we can still define wc by wc (ibb) = and the Wick

formulae.

We now introduce a hierarchical covariance C as follows. We consider a

2-dimensional square lattice AN c 12 with(2N)2 sites and subdivide it into blocks,

blocks of blocks and so forth at each level or scale. The blocks B1 at the l-th

level will contain 22! lattice sites each. For x E AN we denote by th E AN_i the

index of the block B(th) containing x. More generally, x E AN_k is defined by

xk_ E B(x(?c)). We define a matrix F = (Fxy)ZYEAN by p2!, = (I’, if th = and

= 0 if th . F is defined on a block B(th) by

1 —1 1 —1
if—i 1 —i 1

1 —i 1 —1

\—i 1 —1 1
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with an arbitrary numbering of the sites in a block, fixed once for all. The hierar

chical covariance is now defined by the series

(2-4) (CN) =2_kF

A slightly different covariance was considered in [6]. Our present choice has the

advantage that MI’ = 0, where the operator M is defined by (2.5).) This de

fines a Gaussian state on the Grassmann algebra generated by the 2 22 spins

{ib, br}xEAN. Introducing an average spin (M) for each block B(±) by

(2-5) (Mb) =

xEB(i)

with d = 2, cr = L = 2 and analogously for b, we find for the renormalized

covariance (cf. [7]):

(2-6) (CN)’ = MCNMt = CN_1.

Here Mt is the transposed matrix.

Before being able to introduce a non-trivial local interaction we have to double

the number of spin components so that the corresponding Grassmann algebra

now has 4. 22’ generators. The covariance of the resulting 2-component lattice field

becomes CN CN, i.e.

(27) WCNCN (‘azby) = Sa(CN)zy ; o,/3 = 1,2; x,y E AN.

We consider the general local potentials VN(b, ) = XEAN v(b, b) with

(2-8) v(b,b) = r(bibi +b2b2)

In the presence of the potential VN the ‘expectation value’ of a general polynomial

F in the fields is given by

(2-9) p(F)
= WN(F(,) exp [-VN(b, sb)])

wN(exp [—VN(b, b)j)

where we have written wN instead of WCNeCN. The renormalized state p’ is defined

on cN-1 by

(2-10) p’(F) = p(F(M, Mb)).
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Due to the fact that

(2-11) (GN) = + rzy,

we can split the field b into b’ = Mib and a fluctuation field ( with covariance

I’ I’ so that

(2-12) WN(F) = wNl Øwrr (F + + (z))

It then easily follows that

WN_l(F(,b’,,b’) exp[—V_1(].’,JY)j)
(2-13) p (F) = , —,

wN_l(exp[—VN_l(,/) )])

where the effective potential V_1 is also local, V_1(b’, sb’)
= lEAN

v’(%, b)

with v’ given by

(2-14)

exp[-v’(,)]
= wrer (exp [-EEB + +

wrf (exp [—EXEB()v(cz,cz)])

Remark. In this expression one has to collect the (‘s before calculating the

expectation w.r.t. cL..’rer. Thus, for instance, wr0er0
(

i
= —•

The fact that local potentials are conserved under the block-spin transformation is

a general property of hierarchical models, much stressed by Gawedzki and Kupiainen

[11,12]. It is due to the fact that P, = 0 if i ‘, so that Wpp
= ®±EAN_t Wrar.

Our fermionic hierarchical model has the additional simplifying property that the

exponentials in (2.14) break off. Therefore we can calculate the expectations ex

plicitly. Diagonalizing I’ and rewriting the result as an exponential, we obtain

(2-15)
Wr0r0 (ex [ xEB()

+ + =

= [(1+r)2 - gj .exp[_r’( +) -g’4]

with

TI 2r—1
g(1+r)

(2-16)
— 2 (1 + r)2 g/4

—

___________

g
(1+r)2—g/4
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Notice that (2.15) is in fact independent of th, so that we can omit all indices th and

write P0 instead of P.

To derive (2.15) we define Q = ( 1 ) , and troduce new

variables i = (Q(,) satisfying wpoero((Q(a)z(Q()y) = cr96z36y3 Clearly only

the third component i of q matters and we can write

wrr (ex
=

= wi (ex

[_
2r

=2s1 + +

(+s:i)

1 1
(2 + S2) (2 +

= exp [—2r (7b + 7b) — g

- w1 (ex

[_
r(ii + 2) — 4

1 —,—, 1 — 1 ,—,
+gb1,b2i1ii12 — — gçb1b277v72

1 ,, 1—, 1
+gb1b2fif2 — —

= exp [—2r(14 + 1414) — gbL4].

{1
+ 2r + g(1 + r)( +) - + r2 + g2}

= [(1 + r)2 - g] exp [-r’( +) -

From (2.15) it follows that the denominator in (2.14) equals (1 + r)2 — , so that

v’ has the same form as (2.1) but with r and g replaced by r’ and g’ respectively.

Apparently, the renormalization transformation for this model is given by a simple

explicit transformation (r, g) —* R(r, g) in a 2-dimensional parameter space.
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3. Analysis of the flow of R.

Figure 1 shows a computer picture of the flow of R. For clarity successive points

under the iteration of R have been connected by straight lines. The parabola is the

set of singular points of the transformation

FIGURE 1.

The fixed points of R are (0,0) and (—i, ) . By construction the linearized

transformation about the ongin is

(3-1) aR(o0)=(
_)

7

g

6

3
r



The () eigen&rection is repulsive, () is a marginal eigen&rection To second

order the latter is attracting, which is also clearly visible in Fig.l. The existence

and uniqueness of a critical line in this direction is stated in Theorem 1.

The linearization of R about (—i, ) is given by

/ 4 8\ /22
(3-2) DR ) =

I\\3 13

The eigenvalues are = ± /IW7, + 35, — 057 The correspond

ing eigendirections are ( ±,‘i-)
= () resp ( 63)

The exis

tence and uniqueness of a critical line for this hyperbolic fixed point is stated in

Theorem 2. Finally, the asymptotic behaviour of other parameter values (r, g) un

der the iteration of R is stated in Theorem 3. TJufortunately, we have not been able

to prove any rigorous result about the behaviour of points (r, g) with g > 0 between

the two critical lines

For a precise statement of the existence and uniqueness of a critical line associated

with the fixed point (0,0) we define a region S(go) with g > 0 as follows. Let the

curves r_(g),r(g) and ro(g) be defined by

=/rj_i)
(3-3) r(g) = /1 + 4g — 1)

I ro(g) =/]—i,

for g 0. Then S(go) is the region bounded by these curves and the line g = g0,

i.e.

(3-4) S(go) = {(r,g)0 g go, max (r_(g),ro(g)) <r <r(g)}.

We shall prove

Theorem 1

For all g > 0 there exists a unique critical r—value rc(go) > 0 such that

R’(r(go),go) E S(go) for all ri. 0, and Rn(r(g0),g0)
—+ (0,0) as ri. —÷ cx.

The existence of a critical line in the neighbourhood of (0,0) also follows from the

Centre Manifold Theorem. We can use it in the form proven by Lanford in [16] (see
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also [17]) by inverting R The inverse mapping can be calculated explicitly,

1+1
g’(1+r’/2)

T
— 2T

(1 + r’/2)2 — g’/2

—
, f(l + r’/2) — g’/4

2

g — g
(1 + r’/2)2 — g’/2 J

The centre manifold is not unique in general. (See Van Strien [18] for a striking

counter example.) Our uniqueness result in Theorem 1 together with the Centre

Manifold Theorem imply

Corollary

The critical line rc(g) is C°° for g 0.

The inverse mapping has also been used to draw the critical line in Fig.1. It is in

fact sufficient to know only a small portion of the critical line to generate the whole

line in a finite number of steps. This follows from Lemma 2 below together with the

fact that, if g’ > 4E with and g’ > r’(l + r’) then g > (1 + e)g’. A small piece

of the critical line extending from g’ = 0 to g’ > 4e will therefore extend beyond the

line g’ = 2(1 + r’)2 after applying R a finite number of times. The next time R’

is applied it extends to infinity. Points above the line g’ = 2(1 + r’)2 are mapped

into the second quadrant, which therefore also contains critical points ! Applying

R1 sufficiently many times critical points may even return to the neighbourhood

of (0,0), which is why Theorem 1 contains the clause Rli(r(g0),
go) S(go).

An analogous result holds for the fixed point (—i, We define

fg(r) =(1+r)2
“ 2 2

i. g_(r) = 2(1 + r) + y,

and

() f 7j ={(r,g)r -,g(r)gg+(r)}

={(r,g)— rro,ggg_(r)}.

We have put

(3-8) T =

9



so that 2(1 + ro)2 = g_(ro).

Theorem 2.

For all r < r0 there exists a unique critical value gc(r) such that R(r, gc(r)) E

71 UT for all n 0 and Rn(r,g(r))
—+ (—,) as ri —* oo.

For the proof of both theorems we make use of a version of the interval argument

due to Bleher and Sinai [3]. We need several technical lemmas which are postponed

to Section 7.

We now state our result about the asymptotic behaviour of other points (r, g) in

the plane. This result will prove to be useful for taking the infinite volume limit

N —* oo and the continuum limit in Sections 4 and 6 respectively.

Theorem 3.

For all g < 0 there exists a unique value r3(g) of r such that

(1.) R(r3(g),g)—+(—.,_oo) asn—oo,

(2.) r >r3(g) == R(r,g) —÷ (oo,g<(r,g)) as n —* oo,

(3.) r <r3(g) R7’(r,g) —* (—oo,g(r,g)) as n —+ oo.

where — <g(r,g) <oo.

Furthermore, if g > 0 and r > rc(g) then R’(r, g) —÷ (oo, g(r, g)), and if r ro

and 0 g <gc(r) or r —1 and 0 g < (1 +r)2 then R’ —* (—00,g(r,g)) as

n —* oo, with 0 g(r,g) <g.

We postpone the proof to Section 7. Finally we mention a result about the

existence of an unstable line for the fixed point (—i,

Proposition 1.1.

For all r between —2 and —4/3 there exists a unique value gu(r) such that

(,) R’(r, gu(r)) satisfies (4 + f)(1 + f)2 (1 + )2 for n 0,

(—,) asn—*oo.
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4 The Infinite Volume Limit

We can use the renormalization transformation to study the existence of the

infinite volume limit N — oo and the existence of the continuum limit. (Cf. [11]

and [15).) We shall find that the infinite volume limit exists for the points (r, g)

such that R’(r, g) —* (±oo, g), and also for the critical points (r, g) associated

with the fixed point (0,0), but not for the critical points associated with the fixed

point (—i, f). An elaboration of the methods used to prove the existence of the

thermodynamic limit yields information about the decay of correlation functions.

This is shown in Section 5. In Section 6 this information is used to prove the

existence of the continuum limit for points (r, g) on the trajectories receding from

the ‘trivial’ fixed point (0,0).

To study the thermodynamic limit N —* co we start by considering the 2-point

function pN(cbllbl) given by (2.9). Assume first that i . Then we can use the

decomposition formula (2.12) to reduce N by 1. Indeed, by symmetry and the fact

that MF = 0, it follows that pN(?,blbl) = Iterating this relation

we find

(44) pN(blzly) = 2p3(ø(8))),

where s = s(x, y) is the smallest number s 0 such that (‘) (s+1). We are left

with the calculation of pN(b12b1y) when d = i. Again we apply the decomposition

formula (2.12) to find

(4-2) pN(7hx,bi) =

where, for a general polynomial F in ‘b and ,b, we define TF by

(4-3)

(TF)(’,’)
= Wrer (F (‘ + + ) exp [_v (‘ + +

wrr (exp [_v (kb’ +
+

Let us also introduce a block expectation (•) by

(4-4) (F(( ))
= wrep( F((, ) exp[-V(, ()])

wrer( exp[-.-V((, )j)

it



It is easy to see that this is a product state over blocks, and that, for x, y with

± =

(45) (crzsy) = zEySaflC1

with

1 1+r
(4-6) C1

= 4(1 + r)2 — g/4

and
1+1, ifx=1,3;

=

1—1, ifx=2,4;

i.e. = —1 if x and y are nearest neighbours, and =+1 otherwise. (Assuming

that the points in a block are numbered in a circular way.)

Similarly, for th = = Yi = Y2,

(4-7) (Ca1xiiyi(a2z22y2)=EziEz2yiy27(1,a2,/31,/32)C2

with

1 1
(4-8) C2

16(1 +r)2 —g/4’

and

cr2; /3i, /32) = (&iii — &Y2fl2)(1 — Sata2)(1
— 91,32)

=
—

All other block expectations are zero. We define truncated block expectations

(Fi; . .
. ; F) = (n F) for monomialsF1,..., F by the usual inductive proce

dure:

(4-10) (F1 .. . F) = (—i)(””””) II (n F)

{I}’ 1=1 iEIi

where the sum is over all partitions {I} of {1,. .. , n}, and ir(11,...
,
I,,) is the

number of odd transpositions needed to reorder (1,. . .
,
ri) according to Ii,. . .

,
Ii,.

A transposition of i and j is called odd if the monomials F and F both have odd

degree.

Let us denote a general monomial by b, where X is a set of pairs (a, x) with

12



e {1, 1,2, 2}. Thus, for example, /1zb2y = øx with X = {(1, x), (2, y)}. We then

have:

Proposition 4.1

The coefficient of zb! in the expansion of T bx:

(4-11) Tb = >22’2Txyb’y

is given by

(4-12)
Y\XoI

Txy
= >2 >2 (—1)” >2 (_ly7(Xo...XP)

{X0IX0c Y} ° {X1}.1

(aIxoI ;81 V((0;
; oVQ:())

ã(x0 0x1

Here the first sum is over all sets Xo of pairs (a, x) such that X0 {() I @ x) E

X0 } Y and the third sum is over all collections of sets X1,... , X, such that

{X1,.. . , X, } is a partition of Y \ X0. The sets X0,... , X are assumed to be

ordered according to Y and the differentiation is to be performed in reverse order.

cr(Xo,. . * , X,,) is the number of transpositions needed to reorder X according to

xo,.. . ,xp.

Proof. This kind of formula is standard in perturbation theory: see e.g. formula

(5.8) in [11]. However, since we are dealing with Grassmann variables here, we have

to be careful about reordering factors.This gives rise to factors (_l)aXo...XP) in

the expression (4.12). Notice also that = 0 unless all ( with (, x) X1

are situated at the same lattice point x. Moreover, looking at the expressions (4.5)

and (4.7) for the non-zero block expectations it transpires that changing the lattice

point at which X1 is situated can only change the sign of the expectation. Since we

are summing over all X1 it follows that IX1I must be even. This justifies puffing the

derivatives through F. It also means that all
81

are also even so that we

can restrict the sum to collections {X1} with the same order as (1,.. . , n) omitting

a factor 1/k!.
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Notice that the non-zero terms in (4.12) must satisfy:

1. X0 C md (F) and, in particular, IX0 I deg (F), where md (F) is the index

set of F, and deg (F) is the degree of F.

2. IX1I = 2 for all 1 = 1,2,... ,p and the points of X1 are equal, because of the

factors .

3. X0UX1U . UXp C UE supp (F) B(th), where supp (F) = S is the set of points

x such that çb occurs in F(/, ‘0) for some o = 1,1,2, . Hence supp Y C S.

Applying (4.12) to F(’0,’0) = we find that the only non-zero terms are:

Y = 0; Y = {(1,±),(I,±)},X0 = 0,X1 = {(1,u),(I,u)} with ± =

Y = {(1,th),(I,±)},X0 = {(1,x),(I,y)}; Y = {(2,±),(,±)},X0 = 0,

X1 = {(2,u),(,u)} with zt = ±; Y = {(1,±),(i,±),(2,±),(,±)},X0 = 0,

= {(1, u), (I, u)}, X2 = {(2, v), (, v)} or = {(1, u), (2, u)},

X2 = {(I,v),(,v)} or X1 = {(l,u),(,u)},X2 = {(I,v),(2,v)} with ü = =

Y = {(1, th), (I, ±), (2, th), (, ±)}, X0 = {(1, x), (I, y)}, X1 = {(2, u), (, u)}

with z = th.

In all we find:

(4-13) T(?jJ11) = {c +ai1?/4 +ai2’0’tj4± +ai374}

with

f a11 = a22 = —2g(c2 — c)

( - ) a12 — a21 — 2gc1
— _o2 f2j a3 — a23 — og ClC1

— LC2

Of course, by symmetry, the same formula (4.13) but with the indices 1 and 2

interchanged, holds for T(’02’02)with ± = . Apparently, in order to be able to

iterate these equations as in (4.1) we need to include the 4-point function in our

consideration. A straight-forward calculation yields

(4-15)
T(’0i0i’02’cb2) = C2 + a3i’01L4 +a32’0l4±

+ a33’01’01’02j’Z/)2,

14



where

4 16 f a31 = a32 = ci(l + 4gc2)
-

a33 = + 2gc — 6gc2 +4g2c2(2c — 3c2).

By inserting the equation (4.13) into (4.2) we have expressed the pN—expectation

into p— —expectations. We can do the same with and equation

(4.15). In fact the pN—expectation of aiy polynomial can be expressed in terms of

a finite number of pk—expectations of monomials at a single point x(. Thus, in

order to prove the existence of the thermodynamic limit it suffices to consider the

monomials at a single point x:

Theorem 4.

Let V be the set of points (r,g) satisfying g < 0 or (g > 0 and r rc(g))

(r r0 and g < gc(r)) or (ro < r < —1 and g < *(1 + i’)2), where ro is defined

by (3.9) and r(g) and gc(r) have been defined in Theorems 2 and 3. Define the

state PN on the Grassmann algebra c(EN) over EN = (R)” by (2.8). Then the

thermodynamic limit exists if (r, g) E V in the sense that p(F) = limN._ pN(F)

exists for all polynomials F in the fields.

Proof. It is sufficient to consider the cases F = , F = b2ø2 and

F = By symmetry all other single point expectations vanish. Also,

PN(’1zt’1z) = pN(cb2b2). Writing

((N) (N) -

U1 = 112 = PN(hx/’1x) and

PN liz 2z 2z,

and defining the matrices

/ (n) (n) (Ti)

a11 a12 a13

(4-18)
= I a) a a

(n) (n) (n)
a31 a3 a33

where the a7 are given by (4.14) and (4.16) with r and g replaced by (n) and

g(fl), we can rewrite (4.13) and (4.15) in the form of a vector equation:

/ (N) \ / (0) \ / (N—i)
1111 I IC1 jUi

(N)
— ( (°) I ... •4(°) I (N—i)

1112 I—Ic2 I’ 1112

(N) I 1 (0) 1 1 (N—i)
\1L3 / \C3 J \113

15



/ (N—n) \ / (n)
I U1 \ Cl

f (N—n)
= j + A

l (N—n) I (n)
\U3 / \C3

We used the fact that u° = c(N) ; the ri = 0—term is simply )
We now want to study the convergence of (4.20) as N —* oc. We use the following

lemma:

Lemma 4.1

Suppose that lim sup. IIAII < 1 and that IIcII is bounded.
_2 (o’ (a_fl (nThen E—0 A’ ‘ . . . A’ ‘c’ ‘ converges.

and

Now, for points (r, g) such that R’(r, g) — (+oo, g) we have

/1/2 0 o\
A

—÷ ( 0 1/2 0 ) as n ---+ CX),

0 1/4)

1 1+r
—*0andc

— 16(1+r(n))2(1 + r(2 — g(n)/4

so that the thermodynamic limit exists. For points (r, g) such that (r(), g)) —*

(0,0), i.e. r = rc(g), we have

and more generally,

(4-19)

Iterating this equation we obtain

(4-20) 11(N)

=

A° Ac

(ii) —
Cl — —* 0,

/ 1/2

0

0 0

1/2 0

1/8 1/4

and (1/4),

\1/8)

so that, again, limpj exists.

Next consider the points (r,g) with r =r3(g), so that R7(r,g) —* (—,—oo). In

that case
/1

1 0

‘0

0 —4/3

1 —4/3

0 1

and

16

/0

(0

‘0



and Lemma 4.1 does not apply. Instead we can use

Lemma 4.2

Suppose that —* 6> 0 and limsup. IIAHI <6’.

Then A(°) . . . converges absolutely.

In the present case, g(fl+1) 4g(fl), so that c’’ .-‘ c(’), and A(n)j,,,

<4. It follows that A(°) . . . still converges.

Finally, we consider the points (r, g) on the critical line belonging to the fixed point

(—i, i.e. g = gc(r). We have

/ 5/2 3 —8/3\
—* 1 3 5/2 —8/3 ) and c

— ( —9/4

\—27/8 —27/8 13/4) \27/16

and A°° has three eigenvalues: — and A.j = ± Since (—i, ) has a

component in the expanding right-eigendirection, fl (A())c c()II —* oo, and the

thermodynamic limit does not exist. W
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5. Decay of Correlation Functions.

By an extension of the methods used to prove the existence of the thermody

namic limit we can obtain information about the decay of correlation functions. We

shall do this in the region g <0 which is relevant for the continuum limit.

We need a few definitions:

Given a point (r, g) with g < 0 we define the trajectory T(r, g) as the set of points

R’(r, g) with n ... , —2, —1,0, 1,2,.... The (truncated) correlation functions

PT(lxlfllyl
anxy)

T( ..

(5-1)
= T (jjp

\z=1

are defined inductively as in (4.10):

(5-2)

p(xY)
(_1)({Xk})+({Yk}) fl T

(xkYk),

{Xk}_1{Yk}_.1 : IYkI = fXkJ k=1

where {Xk} and {Yk} are partitions of the sets

X = {(oj,xj)} and Y = {(/3,y)}71respectively.

For two sequences of points x = (xi,.. . , x,) and y = (yi,.. . , y,.) we define a

quantity £(x,y) as follows.

Let S(x, y) be the set of permutations a E S of (1,. . . , n) such that every block

B3 at any level s containing at least one point x or Yj but not all x and all Yj

is connected to another block B. Here two level-s blocks B3 and B are called

connected if there exists an i = 1,.. . , ri such that either x E B3 and Y(i) E B or

B and Ycr(i) e B3.

Next we define

(5-3) £(x,y)
= ES(y)

S(Xj,Y(j))

if S(x, y) 0 and £(x, y) = co otherwise.

18



The main theorem in this section is:

Theorem 5.

Let (r, g) be a point in the lower hail-plane (g < 0) such that R’(r, g)

(±x, g). For all n 1 there exists a constant C(r, g) depending only on ri and

the trajectory T(r,g), such that, for any set of 2ri points Xl,...,Xn,Y1,.. .,yn and

indices oi,... ,0n,/3i, .,/3 E {1,2},

(54) IpT( . ‘cnza6nyn)I

with x = (x1,. . . ,x) andy = (yi,. .

We shall prove this theorem by inductive application of the renormalization

transformation. However, unlike the proof of Theorem 4, we do not have a nice

iteration formula for T as we did for p in (4.2) We therefore replace the truncated

expectation (5.1) by partially truncated expectations of the form

(5-5) P(ll;Fk) =p(Fi;F2;...;Fm)

where each Fk is a poiynomial concentrated at a single point Zk, i.e. supp (Fk) =

{zk}, and zk zkl if k k’. In fact we can subdivide the polynomials Fk into classes

which are invariant under renormalization, as follows. For an arbitrary monomial

F = . . . . . . , we introduce “charges” qa(F) (c = 1,2) by

(5-6) qa(F) = = c}
— ${iI /3 = a}.

Next we observe

Lemma 5.1

If F is a monomial then T(F) given by (4.11) is a charge-homogeneous polynomial,

and qa(T(F)) = q(F).

Proof. Clearly, for any polynomial G in and (, <G >= 0 unless

qa(G) = 0 (o = 1, 2). It follows that, in formula (4.12),

qa(F)—q(x0)

—

()= 0 if Txy #0.



But Y
= so that

p

k=1

We now restrict our consideration to polynomials of the form F
= fl Fk

where the polynomials Fk are concentrated at distinct points zk and each Fk is

charge-homogeneous, i.e. it belongs to one of the following classes:

The third column in this table shows the general form of a poiynomial Fk

belonging to this class. The f’s are coefficients, stands for /1z etc. The number

d is defined in formula (5.12).

The collection of poiynomials F
= fJ Fk described above we shall denote by F.

For F € F we write p(; F) for p (H; Fk). It is defined analogous to (Fi;..
. ; F,)

in Section 4.

Instead of Theorem 5 we shall prove an analogous result for the expectations

p(; F), from which Theorem 5 then follows. In order to formulate this result we

need to extend the definition of £(x, y) to polynomials of this form. This is possible

because of the following fact.

q() = qbx0)+ qa(bx) = qa(F).

qi=+1 q2=+1 F=fib1b2 d=O

qi=—1 q2=—1 F=f&1b2 d=O

qi=+1 q2=O F=f1b1+f2b1,b2b2 d=1

qi=O q2=+1 F=f1çb2+f21&1,b1,b2 d=1

q1 = —1 q2 = 0 F = f b1 + f2 /‘i22 d = 1

q=0 q2=—1 F=f12+f2112 d=1

q1=0 q2=0 d=0

q1=—1 q=+1 F=fb1b2 d=0

qi=+l q2=—1 F=fb1?,b2 d=0

TABLE 5.1
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Lemma 5.2

Suppose that, for two sequences of points x = (xi,.. . , x) and y = (yi,. . . , y7-) the

following holds:

= and there exists i n such that j = or = (or both). Then

£(x,y)=.e(x’,y’), wherex’ =(x1,...,x_1) and y’=(yi,...,yn_i).

Proof. Suppose that a E S(x’, y’). Then we can define 5 E S(x, y) by ö(i) =

u(i) for i = 1, . . . , ii — 1, and ö(n) = n. Obviously £(a) = £‘(cr) if we put £‘(cr) =

E’ S(Xi,Y(j)) and £() = $(Xi,Y&(i)).

Conversely, for ‘r E S(x, y) we shall presently construct a E S(x’, y’) with

£(r). That completes the proof of the lemma.

similar.) There are five separate cases to be considered:

(i) Xn = !Jr(n) or th = Xr1(n) or 2 = Yr(i).

(11) X1() = !Ii-(n) =

(iii) Xj !Jr(n) = Yr(i) # Xr1(n) X or X Xr1(n) = Yr(i) # Yr(n)

(iv) j Xr1(n) = Yr(n) # Yr(i) #

(v) x = x, = y and Xr-t(n) and Yr(n) and Yr(z) all different

11 Yi-(n) = i but -r(ri) ri then we can put u(r(ri)) = r(n). It is clear that

e S(x’, y’) and t(cr) = £(-r) since every block containing x, y or !ir(n) contains

all three.

Remark. Notice that the connectivity of s = 0—blocks, i.e. points, need not be

checked because if there is a point not connected to another point (that is Yj) = x)



then the level-i block containing that point contains another point xk connected

outside the block; we can then simply modify o as follows: o’(i) = cr(j) and c(j) =

Similarly, if ‘r(i) = th then we can put a(i) = r(n) and 0(T’(n)) = r(i). If

XT-l(n) = we can put a(r—1(n)) = r(n).

Case (ii).

In this case we can simply define o(r’(n)) = T(n). Clearly o E S(x’,y’) because

the two blocks are still connected via i —* a(i) r(i). Also £‘(o) <£(r) because

s(x, yn) + S(Xr-1(n), Yr(n)) = 0 <s(x, Yr(n)) + S(Xrl(n), Yn). This means that r

is not a minimiser of £(r) since £(o) = £‘(cr) <£(r).

Case (iii)

In both these cases we define a(r’(n)) r(n) as in case (ii). This connects

the blocks B(i-l()) and B(’r(n)), while the block B(th1) is still connected to

B(()) = B(()) or = B(thr-1(n)) respectively. These equalities ensure

that the connectivity of higher-level blocks is not destroyed: the three different

level-i blocks cannot be disconnected by higher level blocks. Hence u E S(x’, y’).

As in case (ii) we have £‘(u) <£(r).

Case (iv).

Here we define o(i) = r(rt) and o(r’(n)) = r(i). The blocks B() and B(’r(n))

are then connected as well as B(’()) and B(thr_l(n)) = B(()). The latter equal

ity guarantees higher-level connectedness as in case (iii). Finally, s(x, Y(j)) +

S(Xr_1(n),y(r_1(n))) S(Xj,y,.) + S(Xn,yr(n)) + s(z_I(),y) because

S(Xj,yy(j)) S(Xn,Yr(n)) and S(Xr_1(n),Yr(n)) S(Xr_t(n),Yn)+S(Xn,Yr(n)) by the

triangle inequality.

Case (v).

This is the most complicated case. We must distinguish the following two possibil

ities:

(a) s(x,y()) + S(Xr_1(n),Yr(j)) 5(Xj/()) + s(x_1(),y()),
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and

(b) s(x, Yr(n)) + s(x-1(), Yr(i)) > s(x, Yr(i)) + s(xT-1, Yr(n)).

In the first case we put o-(i) = r(i) and J(T1(n)) = r(n); in the second case we

put o(i) = -r(ri) and u(r’(n)) = r(i). Both instances are similar. We consider only

the first

Let B,, be a level-s block containing x. If it does not contain Yr(i) then B,, is

connected to B,, (Y)) = B,, (Y)). If Yr(i) E B,, then either Xr’l(n) € B,, or

Yr(n) E B,,. Indeed, suppose X,-_1() B,, and Yr(n) 0 B,,, and let B,, be the

highest-level block containing x and Yr(i) but not Xrl(n) and Yr(n) Then

S(Xj,Y,-(j)) +S(X,-_1(n),Yr(n)) S 1+5(Xr_1(n),Yr(n))

< s’ + max{s(xr_t(n), Yr(i)), s(x, Yr(n))}

S(X_1( Yr(i)) + s(x, Yr(n))

contradicting hypothesis (a).

A similar reasoning applies to blocks B,, containing Yr(i), Xr-1(n) and Yr(n) respec

tively. We conclude that a’ E S(x’, y’). Moreover, £‘(u) <e(r) because

S(X7.1(), Yr(n)) <s(x—1(), y) + s(x,, Yr(n)).

From this lemma it follows that, for a polynomial F = ll Fk in the class F,

we can define

m m

(5-7) £ (II Fk) = £ (u Xk)

where /Xk is one of the monomials of Fk. (Xk C {(1, zk), (I, zk), (2, zk), (, zk)})

We can now state the result for p(; F) from which Theorem 5 follows:

Lemma 5.3

If F = fl Fk is a polynomial in the class F then there exists a constant Cm(r, g)

depending only on m and the trajectory T(r, g) such that

(5-8) Ip(; F)I Om(r, g) II lIFkII 2.

23



Proof of Theorem 5 given Lemma 5.3 We use the following relation:

Lemma 5.4

Let Fk bxk Yk Then

(5-9) p(; F) = (1)({X})+({Yl’}) flT
(x;’),

{ i}=1 { }=

where the sum is taken over all partitions {X}1 and {Y’}1 of U=1 Xk and

U=1 Yk respectively, such that 1XI = I1’7 and for each pair (k, k’) with k, k’ e

{ 1,2, . . . , m} there exists a sequence of “links” (kg, k+1) (i = 1,.. . , r —1) such that

k, kr = k’ and for each i = 1,.. . , r — 1 there exists i E {1,. .
.
,p} such that

Xk fl x;. 0 and Yk1 fl ‘7 0 or Xk1 fl X. 0 and Yk fl 1’s’ #

Now assume that Lemma 5.3 has been proven. We can then make the following

rough estimate by moving all the terms in (5.9) with p> 1 to the left-hand side of

the equation:

(5-10)
IpT(baixi .

. anzn8nyn .iI C(r,g)2X

> fJcnj(r,g)2”)

2 n1,. . . ,n 1 {X}1 {‘7}’ 1=1

Z”= Ix;l=nz IY/I=nz

Next we use the following result:

Lemma 5.5

If {x}1 and {y} are partitions of x and y satisfying the link property of

Lemma 5.4 then

£(x, y) £(x, y).

Proof. We show that, if cr1 S(x, y9 then fl u E S(x, y) where

(fj u,) (a, x) = uj(a, x) if (a, x) E x. If a block B3 contains points of x U y

but not all, then there must exist k, k’ such that zj E B3, zk’ B3. Suppose
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xk fl x 0 and Yk’ ii y 0. Then B3 contains a point (namely zk) of x but not

all points of y. Therefore B3 is connected via u to another block B.

Inserting this into the estimate for T gives:

IpT(11 “‘iyi)I C(r,g)2 £(r,g)

with

(5-il) C(r,g) =

(fl!
,)llz(r,)

p2 1 l=1

=

depending only on rz. and T(r, g). This provides the induction step in the proof of

the theorem, proving the estimate for n given Lemma 5.3 and the same estimate

for smaller n. W

Given F = fJ F, E .F with supp (F) = {zk}, we define

(5-12) dk(F) =q1(F) +q2(F) mod 2.

Essential in the proof of Lemma 5.3 is the following iterative evaluation of £(x, y):

Lemma 5.6

Let x = {x1,... , x,} and y = {y1,. . . , y1 } and assume that m’ 2 where m’ =

{zj i: = z or = z}. Assume also that Iqa(B)I 1 for every level-i block B.

Then

m’

(5-13) £(x, y) = £(*, r) + m’ — > d.

Here ±
=
(ij) ,r

= (yi)1,and

d = dk(bbs,) = th1 = Zk}
— {I j = zk} (mod 2).

Proof. It is clear that if o S(x, y) then ö S(±, Sr), where oj) = u(x).

On the other hand , if f € S(±, r) then we can modify r to a E S(x, y) so that
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£(u) = £(r) and £(ö) = £(). (See the remark on page 21)

Next we use Lemma 5.2 to conclude that we may assume that a block B(zk) does

not contain an x and a Y,• Since q(B(zk))I 1 for each k we have the following

possibilities for each block:

B(zk) contains 2 points x, x E x

B(zk) contains 1 point x x

B(zk) contains 1 point y E Y

B(zk) contains 2 points j, Yj E y.

For blocks containing 2 points q(B) = qi(B) +q2(B) is even so that d = 0; for

blocks containing 1 point, d = 1. If x E B(zk) then S(Xi,Ya.(i)) = s(th,()) + 1.

Hence £(x, y) — £(±, r) equals n which is the number of blocks + the number

of blocks containing two points = the number of blocks — the number of blocks

containing 1 point = m’ — d. R

Lemma 5.3 now follows from the following lemma:

Lemma 5.7

Let (r, g) be a point in the lower half-plane such that R’(r, g) — (±oo, g). Let

F
= ll= Fk be a polynomial in the class .F and suppose that m’ = m. Then the

coefficients of FL = T(Fk) are obtained from those of Fk by multiplying with a

factor 2_1+412 and the transpose Mt of a matrix M(r, g) satisfying the following

property:

If M(1’) = M (RP(r, g)) then j M(P)/ is bounded on the trajectory T(r, g) by a

constant K(r,g) independent of q. Here =21d/2 (1—Po)T(1—Po) where Po is

the projection on the constants in the class (0,0). If {e}j1 is the set of basic mono

mials of Table 5.1, b1b2,‘ç11b2, b1b2L2,çb2, b1?/1b2,b1,/,1b2?/2, L’2, i?/iz/2,
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b1b1,b2b2,11b2b2,b1b2,b1b2, then we can write

(5-14) Fk = fke and F =

with

(5-15) f
=

Mf

M is the direct sum of the matricesM+1,+i,M..1,_i,M+i,o,Mo,+i,M_i,o,Mo,_i,

M0,0, kI—i,+1, .M+1,_1.

Proof of Lemma 5.8 given Lemma 5.7. Denote the points of support of

the successive = TF by z , that is = Fwith supp (Fr)

{z”) }. We are going to proceed by induction on the number r of p’s such that

m > m+i 1. This number is obviously less than m. Clearly, if r = 0 then

£(F)=Oandm=land

(5-16) IC F)I = Ip(F)I Ifol + (IfiI + 1f21)A2 + 1f3 IA4,

where F = fo +f1,b1Q-1+f2çb22 +f3çbib1’çb2’çb2 and A2(r, g) and A4(r, g) are con

stants bounding p(i/1i7.i) = p(b2/2)and p(bjb1b2b2) respectively on the trajectory

T(r,g).

Now consider the induction step. TI m’ = m> 1 then

m

p(; F) = 2_m+k=1 dk/2 i (
where

F’ = Fk =

with

f = fM = (Mtfk).

More generally, if m = m,

(5-17) p(; F) =2-pm+p dk/2) (; F)
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and

(5-18) F =

=

f e,

with

(5-19) f)=
[(hM)tfk]

Notice that

(5-20) pm + p d = £(F) —

by Lemma 5.6. Indeed, we can disregard the monornials in F containing and

or and i,b with th = ‘, and choose in F’ the monomiaLs ibb1,. Since

f1 M’)fl K(r,g) we find that

(5-21) p(, F) =2—t(F)+L(F()) pQ’) (, F)

where

(5-22) II lIF”II K(r,g)m fJ IIFi1I.

Now assume that m+i <mr. We shall prove that

(5-23) JpQ’) (;F) 2_tC(r,g) 1IFII,

where it is now gwen that

m+ 1

(5-24) p(P+i)
(; G) I Cm1(r,g) [I IIGII2—(G)

for all G = Gk E F with m(G) <rn,.

Without loss of generality we can put p = 0 here From (5 24) it follows that

p (; fi F1) k(r,g)m’,(r,g) II IIF1II2’
k1 l:ij=z l=1
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for all F = flfl1.11, F1 E .2 and m’ <i-n. Let us first remark that it is sufficient

to prove (5.23) for a monomial F, since then

Ip(; F)I = flfkvkp (; euk(zk))

{vk}k=1 k=1

(5-25) II fkvkfOm(r,g)2_

{vk } k=1

m(r,g) IIFkIl2-(F)

For F = fl er,, (zi) we proceed as on page 24 using the following analogue of

Lemma 5.4:

fm’ *

(5-26) p
:

evi(zi)) fJ(1)7r({A1})flp (fl;evi(zi))
k 1 lzj z {A) z lEA

where the sum is over all partitions {A} of {1,. .. , m} such that every pair (k, k’)

is connected by a chain of “links” (k1,k2),.. . (k,., kr+i). A link (k, k’) satisfies:

3i: (31 E A: = z and 31’ E A: = 4,).

ir({A1}) is the number of odd transpositions needed to reorder {l,. . . ,m} according

to {A}. ( assuming that the e, in the left-hand side of (5.26) are in increasing

order.) The required result now follows by moving all terms in the sum with A- #
{1,. . . , m} to the left and using induction on n and Lemma 5.5. Notice that the

number of terms in the sum is bounded by mm± and that m n 4rn. H

It remains to prove Lemma 5.7.

Proof of Lemma 5.7 The classes of Table 5.1 transform according to the matrices

Mqj,q2 given by

M1,_1 = M1,1 = 1 (i.e. T(çbii,b2) = 2’iL414),

M1,0 = M0,_1 = M+1,o =

= ( 2g(c—

M0,0 = 2A°,
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where A° is the matrix defined in (4.18), and

M1,+1 = M+i,_i = (1 — 4gc2).

/1 0
Now, as (r,g) (0,0), M_1,0 (114 “) and M0,0 ( 0 1 0 ) and

/ \1/4 1/4 1/2)
—* , all exponentially fast. Furthermore,

( i. o f’ 1 0
1/4 o) 1/4 0

and
/1 0 o\” / 1 0 0
(0 i o)=( 0 1 0
\%1/4 1/4 1/2) \1-.-2’) (1—2)

are both bounded. The bound on the norm of then follows from

Lemma 5.8

Let be a sequence of matrices satisfying = M + where

lIMIl Ao, lIElI c, and > 1. Then

fl+JJ ..,.( )
1IllMII AO1e,

where rQy)=E1]n(1 7’) < oo.

Proof.

n+p

lI]J’II =

= II(M +7E())(M +7’E’))... II

IIM’II+7IfMII IIE+71E’’ + . +7EIf

+ 7 2jlA4’ II {-‘ )jE( 11 IIE’1fl + 7 II IIE’2f +

+731IE

A0 {i + C71 + (C7)2(1

— ‘)(l — 7_2)

<Aoe_r(7) {i + C7 + (c7)2+ ... }
e_r(7)

=A0
1 — C7

30



S

_

0
/10 O’\

As (r,g) ‘ (±cc,g),M_i,o ) ( ) ,o,o
‘ f 0 1 0 ) and

0 1/2)

M_1,+i —÷ . This proves Lemma 5.7 for all trajectories except the trajectory going

off to (—i, —cc). For the latter we remark that as (r, g)
—+ (—i, —cc),

2 0 —8/3

( 1/2)’
M010 (o 2 _8/3) and M_1,1 1, so that the

bound on the product of matrices does not hold.

If we extend the definition of s(x, y) to n—tuples by

(5-27) s(x,y) = mc

then we have the following

Corollary

Let (r, g) be a point in the lower half-plane (g < 0) such that R(r, g)

(—cc, g). For all n 1 there exists a constant D(r, g) depending only on n and

the trajectory T(r,g) such that

(5-28)
. . banzn1flnyn)l Dn(r,g)2_811

for any set of 2n points x1,. . . , x,, yj, . . .
y, and indices o,. .. , a,,/3i, .. . , /3,-i E

{1,2}.

Proof. Use the formula (5.2) together with the relation

(5-29) s(x,y) (xk,yk)

Remark This bound on the n—point functions is also correct in the case of the

“critical” trajectories T(r3(g), g).
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6. The Continuum Limit.

Using the information about the decay of correlation functions obtained in Sec

tion 5 we shall prove the existence of the continuum limit for theories corresponding

to points (r, g) on the trajectories receding from the “trivial” fixed point (0,0). This

is particularly easy for the unstable line g = 0, r 0: these theories are “Gaus

sian” so that we need only consider the 2-point functions. The theories with g < 0

are non-trivial and we have to consider the behaviour of the general n—point func

tion. However, it turns out that the result of the Corollary of Theorem 5 is strong

enough to ensure the existence of the continuum limit, so that the latter also exists

for the theories with R”(r, g) —+ (—j, —oo). The existence of an unstable line for

the fixed point (—,) suggests that there also exist continuum limits associated

with this fixed point. In fact this appears not to be the case in the proper sense to

be defined below. This pathology can be seen to be connected to the fact that the

thermodynamic limit does not exist for this fixed point.

The usual way to proceed in constructing a continuum limit is the following.

We choose a sequence (rn, gn) converging to a point on either of the two critical

lines such that WVm+n converges as n — oo for all m (large enough). Here v

v(r, gn) is the potential with coupling constants (rn, gn) defined by (2.7) and 7?.v =

v (R(r, gn)) is the transformed potential. Thus we obtain states Pm satisfying

(64) PmPm—i

We then define states 13m “living” on the rescaled lattices 2Z2 by

(6-2) 15m(F) = Pm (F (2m/22m.,2m/22m.)),

where F(cbm, bm) is a polynomial in the fields bm living on 2_Z2. By (6.1) we

have

(6-3) mi(F) = m (F ( Øm( + 2mx), m( + 2mx))).

zEB(O) zEB(O)

We want to consider the fields bm as the means of a putative continuum field 0
over blocks Dm:

(64) 0m() = 22m0 (lc(.)) (x E 2_m12),
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where ‘A is the indicator function of the set A. C R2 and

(6-5) Dm(.) = {v e 2Ix _2_m_i 2 +2m1}.

Approximating the smooth functions f and g (i = 1, . . . , k) on R2 successively

by

(6-6)
f(m) =

> f()1am(J
zE2-m12

and
gm)

defined analogously, we accordingly define the k—point function of the

continuum state 3 on (E) with E = S(R2,E) by

(6-7)

1 (ai(fl)bfli(gl). (fk)?k(gk)) =

= lim f dmXi J dmx f dmUi dmUkfl(Xl )gi(u1) — fk(k)gk(k)
m —+oo

Pm (a1,2mi1,2mi ,bcr1,2mzkk,2mk).

Here fdm. 2_2mzE2_ml2 and fr,. .. ,fk,gi,.. ,gk S([;F). One easily

checks with the help of (6.3) that the limit (6.7) would be trivial if
= fcm)

and gj
gcm)

for some m and all i. We remark that the above procedure is only

possible in the infinite volume limit. Hence we must take (rn, g) E V for all ri. As

the transformation R does not depend on N it is unchanged in the infinite volume

limit. From Lemma 7.1 below we can deduce that, if we keep g = go 0 fixed

and letr1rc(go) then we end up with a Gaussian theory, i.e. Pm = 7?Zmpo where

Po is given by a point (ro, 0) with ro > 0. (If we take r = rc(go) then r0 = 0.)

This means that we might as well start from Pm = 7mPo. Il the same way, taking

= ro fixed and letting g I gc(ro) from below we obtain points (fm, m) On the

unstable line of the fixed point (—i, ) tending to this fixed point as m —* cc.

Finally, we can take sequences (rn, gn) = R(ro, go) converging to (0,0) from the

lower half-plane, i.e. with go <0. In that case (im, m) =Rm(ro, go). It remains

to verify that the limit (6.7) exists in these three cases. In fact this is only in the

cases where (im, m) ; (0,0)
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Theorem 6.

Let Pm be the state on c(E,) with E = (R2)12 defined by Theorem 4 with

(rm, gm) = R_m(ro, go) where go <0 or g = 0 and r0 0. Then the continuum

limit (6.7) exists for all k and €

Proof. We estimate the m—th and the m + n—th element in the sequence:

(6-8)

f dmX1 f dm+n J dm+ni f dm+nfi(1)gi(!&1)

Ii i 7
Pm+n Yai,2m+1Yfli,2m+i Yak,2m+kYflk,2m+yk

— f dmX1 fdx f dmU dm!fi(1)gi(1)” fk(k)gk(k)

2m1c
Pm (ai,2mz1ôi,2mu1 øcrk,2mxk/3k,2muk)

fdm+nXlJdm+nXkfdm+nUlfdm+nUk

{fi(x1)gi(u1). f()g() - fm)(xi)gm)(ui)..

II I

Pm+n Pal,2m+h121Wj,2m+tu1 Wcrk,2m+nzkyflk,2m+nuk

Now, given > 0, we can choose m so large that

If()
-

f(m)()I <(1+ 1I2)2

and the same for gj (i = 1,.. . , k). Assume also that we have the bound

If(Jt M(1 + II2)_2

and the same for gj (i = 1,. . . , k). Then , writing ii instead of m + ri in the
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expression (6 8) we find

(6-9)

fdx1 fdx fdu f
{fi(1)gi(& f()g(i&)

- f(m)(xi)gm)(ui) fm)(x)gm)(u)}

2nkp
(aj,2n1fli,2n1 ak,2zkflk,2)

k

dx1 f dnx f4u1 f dnU

{ If() - f(m)(x)I II f(X.)flfm) (x.)

j<i j>i j=1

Ig(j) - gm)(u.)l fi f()() fi fJ }j=1 j<i j>i

1an (pn ( 112nz1 1,2u1

<2kM2k1fd1 fdnxk f dnUi fdnuk*

11(1 +II2)2(1 + Il2)2 2nk
ak,2xk’flk,2uk) I

where by the Corollary of Theorem 6,

I Pn (t,t’ai ,2’x1 ,2Xk I’I3k ,2uk) I Dk(r, g)2—s(x,y)

with x1 = 2x and y = 2u2.We now use the following simple estimate:

Lemma 6.1

For x, y E Z2 the following bound holds:

(6-10) 23(z,Y) < 3

— 1+Ix—yl

It follows from this lemma that

k

(6-11)
2-s(x,y) <mac H

— 1 +2’[—I’
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and hence the right-hand expression of (6 9) is bounded by

2kM2k_lklD(r,g) {fdxJdu(1 + II2)2(1 + 1I2) 2i
+

}k

The double “integral” is bounded by a constant independent of ri. This concludes

the proof of the existence of the continuum limit.

Notice that in the case that (fm, m) = Rm(ro, go) —*
—,) we have

(‘ax’tky) Sa with A = j. + if s(x, y) <<2g. This means

that the continuum limit does not exist for the same reason that the infinite volume

limit does not exist at the fixed point.
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7. Proofs of the results in Section 3.

The existence part of Theorem 1 follows from

Lemma 7.1

Let be a continuous curve in S(go) with endpoints (ri, gi) and (r2, g2) at the

left- and right-hand boundary respectively, i.e. r1 = max {r....(gi), ro(gi)} and r2 =

r+(g2). Then -y’ = R(7) is contained within the region 0 g g = F+(go), where

the function F is defined by

(7-1) +(g)
= (1 + r(g)/2)2

Furthermore, the endpoints (r,g) and (r, g) satisfy r max {r_(g), ro(g)}

and r r(g).

Proof. If (r,g) is a point of then g 2(1 +r)2, so 0.

Consequently,

g’ g {::: :}2
= F(g) F+(go) = g.

This proves the first statement of the lemma. The second statement follows by a

simple calculation. S

The existence of the critical line now follows with the interval argument of Sinai

and Bleher [3]:

Proposition 7.1

For all go > 0 there exists a critical r—value rc(go) such that R’1(r(go), go) -* (0,0)

as n —* oc.

Proof. Let Io be the interval of r—values: Io = [max {r_(go), ro(go)}, r+(go)],

and let o be the curve of points (r, go) where r runs through 10. Let 7i be a maximal

connected part of fl S(g) and let I C 1o be such that the corresponding part

of 7o is mapped onto ‘yi. Proceeding in this way we find I C such that Rz
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maps the corresponding part of o onto the connected part of 7—i fl S(g) with

g = F(g_1).We take rc(go) e flo I,. Then, by construction,

R7(r(go), go) S(g). The fact that F(go) —+ 0 implies that R’2(r(go), go) —*

(0,0).

The proof of the uniqueness is rather delicate. Again we make use of a hori

zontal curve -y and prove by induction that it is stretched in the r—direction. The

induction works only after the first iteration with which we have to deal separately.

Let us first define the variable

f—7 c• g
Z

4(1 + r)2

Then

l—z 1
(7-3) 1+r=12(1+r’)

and

/1

(7-4) = z 1
‘

\ 1+r’

The following result is easy:

Lemma 7.2

if (r,g) e S(go) for some go > 0, and (r’,g’) S(go) then g’ 2 (i + r’)2 and

Lemma 7.3

Assume (r,g) S(go) and (r’,g’) E S(go). Then 0 <6z’(l +r’).

Proof. We have j = 2{1 +Z(l.tz)2 } and = 16i(1z)(1+r). With (7.3)

and (7.4) we find

ãg’ 16z2 1 , l6zz’ 1 + r’

= (1— z)2(1 + r )
= (1— z)2 1 +r’/21

+r’)

8zz’ 1 + r’ , ,

l_z+2z2l+rI/2+T)ãr<6Z+T)Ur
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since z 1_z±2z2
1 and

i±r’/2
<

i+\/ <
according to Lemma 7.2.

For the next iterations we may assume that r < and g 2(1 + r)2 <

+ But then g’ F ( + jJ) = 2. In addition g 2(1 + r)2 = z 5 z0,

where zo is given by 4z0(1 + r)2 = 4r(1 + r) = 2(1 + r)2, i.e. zo = <.

Lemma 7.4

Let y be a curve in S(go) lying entirely below the line g = 2(1 + r)2. Assume that

its tangent satisfies

(7-5) O<6z(1+r),

and assume also that the endpoints of-y’ lie within S(go). Then 0 $ <6z’(l+r’).

In particular ‘ lies entirely within S(go).

Proof. One easily shows that the denominator in the expression

ãg’ ôg’ dg

dgl ôr+ãg dr

dr’ôr’ ãr’ dg

is positive. Indeed, putting = 4az(1 + r) we have

(7-6)
or Ogdr (1—z)2

Furthermore, using (7.3) and (7.4),

(7-7)

+
— 16z2(1 — 2z)(1

+ +
(1— 2z)(1 — 5z + 2z2) dg

Or Og dr — (1 — z)3
“ r)

(1 — z)3 dr

— 4[o — (5o — 4) z + 2oz2] 1 + r’
+ r’

— (1—z)2 l+r’/2

It remains to show that
— (5 4) z + 2z2 + r’ < 3. This is simple if we
1—(1—)z+2z2 1+r/2

use the fact that g’ <2 and g’ 2r’(l + r’)
1+r2

< and z
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Proposition 7.2

For all go > 0 there exists a unique critical value rc(go) > 0 such that

R’(r(go),go) E S(go) for all n 0 and Rn(r(g0),g0)
—* (0,0) as ri —÷ cc.

Proof. Suppose that for a certain value of g > 0 there exist two values r1 (go)

andr2(go) with the required properties. Consider the horizontal line o connecting

the points(r1(go),go) and (r2(go),go), and its iterates According to Lemma 7.3,

71 C S(go) and its tangent is less than 6z(1 + r). Furthermore, Lemma 7.2 shows

that (r, g) E -y = g <2(1 + r)2. Thus we can use Lemma 7.4 to iterate R and

find that (7.5) holds for all For large n, z becomes small and from (7.6) we have

zxr’ > where Lir is the distance in the r—direction between the endpoints.

Clearly, this contradicts the hypothesis that ‘Yiz lies in S(go) for all n. S

The proof of Theorem 2 is similar to the above proof of Theorem 1. We simply

state the necessary lemmas.

Lemma 7.5

Let be a continuous curve in 21 with endpoints at the upper- and lower boundary

respectively, i.e. assume that the points (r1,g1) and (r2,g) satisfy g1 = g_(r1) and

g = g+(r2). Then 7’ is contained in the region 2(1 + r’)2 g’ (1 + r’)2 with

r’ > —2, and g g(r) and g g_(r). If, in addition, lies below the line

g
= ( + e) (1 + r)2 then ‘ lies above the line g’

= ( — e) (1 + r’)2 provided

that .

Lemma 7.6

Let ‘ be a continuous curve in T2 with endpoints (ri, gi) and (r2, g2) satisfying

gi = g(r1) and g = g_(r2). Then ‘ is contained in the region (1 + r’)2 g’

4(i + rI)2 with r’ > —2, and g g_(r), g g(r).

if lies above the line g
= ( — ) (1 + r)2 with then “ lies below

Only the proof of the final parts of these lemmas is somewhat tricky. In Lemma
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7.5, for instance, we use the fact that

8 1 1
2 (8 1’\ 2

g’> (_e) (i+r’) g>

The right-hand inequality then follows with a little calculation from

g 2(1 + r)2 + % and r r_, where 2(1 + r)2 + % = ( + e) (1 + r_)2.

The uniqueness part of Theorem 2 is straightforward. One immediately shows that

z.\g’ > 2zig in every iteration provided that Lr 0.

Proof of Theorem 3.

The proof consists of a succesive reduction to smaller regions.

Case 1. g > 0,r > rc(g).

The proof of Proposition 7.2 shows that these points eventually end up in the region

g <2r(1 + r). We can then use the simple

Lemma 7.7

If g = 2ar(1 + r) with 0 < a < 1 and r > 0, then g’ = 2a’r’(l + r’) with c

to reduce the problem to the case g < r(l + r). But then r’ > so that

—+ oo in all cases. Since g’ <g, g(Z) stays bounded. In fact —* oo so fast

that g(fl) does not reach 0 but tends to some finite value g(r, g) > 0.

Case 2. r <—1, 0 <g <2(1+r)2.

We use

Lemma 7.8

Jfr<—1andg==4z(1+r)2with<z<thenr’<—2andg’<(1+r’)2.

But when z < then r’ < so that —* —. Since g(fl) is decreasing

and positive it converges also.

Case3.rr0, g<g(r)orr<—1, g<g(r).

We can reduce this case to the former by the following argument. First of all we
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may assume that g < 2(1 + r)2 + and g (1 + r)2

7.6. We may also assume that g f(i + r)2 and r

2(1 + r)2 < g < gc(r) end up in this region anyhow.

problem to the region <z <
(142)

2;

r < —

putting S = — — r. It follows that 8’ > 48.

using the Lemmas 7.5 and

> —2 since all points with

Thus we have reduced the

This can be dealt with by

Case4.g<O, r>O.

One easily shows that g = —Cr with c> 0 implies that g’ = —c’r’ with c’ <c and

r’ > 2r. Also g’ (1 + g so that g(fl) is bounded.

CaseS. —<r<0, g<4r1r)2

These points end up in the fourth quadrant after a finite number of iterations.

Case6. r<

= (1 +

Hence
g(n+1) >

and therefore convergent.

Case7. —1<r—*, g<0.

This case can be reduced to the former by remarking that, if r = — then r’ <—

andif_1<r<_.thenj!.>.

Case8. —<r<0,

The existence and uniqueness of the line r8(g) can be proven in the same way as

the existence and uniqueness of rc(g) and gc(r) was established in the proofs of

Theorems 1 and 2.

—1, g<0.

g > (1 + fzl)2g and II + r’I > 2 (i +) jl + ri, <IzI.
(1 + 49z)2g(1) from which it follows that g(7) is bounded below
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8. Final Remarks.

Although the model that we have studied in this paper is rather artificial it has

the advantage that it can be renormalized easily. The renormallzation transforma

tion involves only two coupling parameters r and g and is given by the exact trans

formation formulas (2.16). Thus many technicalities that appear in other models

when studying the asymptotic renormalization group behaviour do not occur here.

Other simple renormalization group transformations were considered by Nelson and

Fisher [10]. Their aim was different, however, and they did not consider the decay

of correlations or the existence of a continuum limit.

Also unlike most other models it is possible to make non-perturbative, i.e.

global statements about the renormalization group flow. In particular we have seen

that there exists, apart from the trivial fixed point (0,0), a non-trivial fixed point

(—i, ), and we have managed to prove the existence and uniqueness of global

critical lines for both fixed points. This is not to say that everything about the flow

in parameter space is fully understood. Computer studies show that the behaviour

in the region above and between the two critical lines in rather erratic. Iterating the

inverse mapping for a small part of the critical line near (0,0) one obtains an array

of points that seem to be concentrated on a bundle of curves in this region. (For a

picture, see [7].) if this behaviour is genuine all these curves are critical lines for the

fixed point (0,0) ! Also, some of the points thus obtained lie in the neighbourhood

of (0,0) itself.

Some of the unusual features of the renormalization group flow may be due

to the hierarchical structure of the model. However, it cannot be ruled out that

similar complications uccur also in other, more realistic models. For instance, the

recurrence of critical points to the neighbourhood of the fixed point is a possibility

to be kept in mind. The large null space of I’ means that there is no Hamiltonian

formulation for this model. Hence the concept of a phase transition is unclear but,

judging by the behaviour of the correlation functions, the line r3(g) in the lower

half-plane behaves as a critical line: The decay of correlation functions for points

(r, g) on this line is slower than for other points of the lower half-plane.
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