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Abstract

Using a variational approach based only on three dimensional

properties of Chern-Simons theory, a skein relation for the expec

tation value of Wilson line operators in the adjoint representation of

SU(2) is derived, in the large k limit. The result agrees with that

obtained from RCFT. The generalization to arbitrary representations

is then straighforward, once an important phase factor present in our

example is understood.
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1 Introduction

Chern-Simons quantum field theory provides a useful framework for under

standing and generalizing knot and link invariants [1]. One can also show

how certain 2d integrable lattice models arise naturally, together with the

notion of quantum groups [2] In explicit calculations of these invariants

an important role is played by the skein relations Vvitten has shown that

when the gauge field is in the fundamental representation of SU(N) the

Chern-Simons field theory leads to the HOMFLY polynomial [3], which

is a two-variable generalization of the Jones polynomial [4]. Specifically,

the skein relation associated with this polynomial was derived However,

in deriving this relation essential use was made of the intimate connection

between Chern-Simons theory in three dimensions and rational conformal

field theory (RCFT) in two dimensions. In fact recent work [5] has shown

that generalized skein relations for arbitrary groups and representations

can be obtained using results from RCFT, such as the dimensionality of

physical Hubert spaces and the known eigenvalues of the braiding matrix

[6].

Subsequently, Cotta-Ramusino et al [7] derived this skein relation di

rectly from the Chern-Simons theory, without making use of results from

RCFT. The method is based on a variational approach [8] and the exis

tence of a Fierz identity for the generators of SU(N) in the fundamental

representation. However, it should be emphasized that the coefficients in

the skein relation are evaluated to first order in the large k limit, where k

is the integer parameter multiplying the Chern-Simons action. As such the

method can be regarded as a large A. perturhative scheme To this order,

the results agree with those obtained from RCFT

The main motivation for the present work is to point out that when ap

plying this method to more general cases, one encounters a relative framing

phase factor, which is not present in the original calculation. The correct

interpretation of this phase factor us crucial for obtaining results which agree

with those from the RCF’T method. We illustrate this for the case when

the gauge field is in the adjoint. representation of SU(2); indeed it is for this

case that we also have a simple Fierz identity allowing us to proceed. The
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resulting skein relation corresponds to the Akutsu-Wadati polynomial [9].

Hcwever, having understood the origin of this phase in the simple case, the

application of the method to general groups and representations can then,

in principle, proceed.

The plan of this paper is as follows. In the next section we briefly review

the RCFT approach to the derivation of skein relations. Following this we

apply the variational method to the case of the adjoint representation of

SU(2), showing that the two methods coincide, to order . We also present

two simple consistency checks on the procedure. Section 4 contains our

concluding remarks.

2 Skein Relations from RCFT

In this section we quickly review the derivation of skein relations using

knowledge of RCFT [1,5,6]. To make the discussion concrete, and for com

parison with results in the following section, we treat the case of the adjoint

representation of SU(2).

The basic idea is to consider an arbitrary link on S3, and then cut the

link on a two-sphere S2, exposing a two-sphere with a certain number of

marked points. The three-sphere with this two-sphere as boundary corre

sponds to a vector in the physical Hubert space, which we denote by x the

other half of the cut-surface is represented by a vector
‘.

Since we are in

terested in deriving skein relations for the locally four-valent planar graphs

associated with the link projection, the number of marked points will he

four. We thus have a two-sphere with four charges, all in the adjoint rep

resentation of SU(2). One now uses the fact the the physical Hilbert space

with these four charges has dimension three [1]. This can be seen simply

from the fact that for large k, the physical Hilbert space corresponds to the

SU(2)-invariant subspace

7t=Inv(AØAØAA) . (1)

Since 1 0 1 = ‘a O, we see that there are three invariants. The

subscripts s and a correspond to whether the representation occurs sym

metrically or anti-symmetrically in the decomposition. This means that



any four vectors in 7- obey a relation of linear dependence. This relation

is precisely the skein relation. The four vectors which we choose are repre

sented pictorially as follows:

I

L

I

Each configuration differs from the previous one by a diffeomorphism

which braids two of the charges. This is called the ‘half- monodromy’

operation B [1,6]. The term proportional to the identity corresponds to

L+, i.e. a single over-crossing, while the remaining terms proportional to

B, B2,B3 correspond to the diagrams L0, L_, L__, respectively.. One now

glues these manifolds back together giving the inner product relation

(2)

where the inner product corresponds to the natural pairing of vectors in

7-( and its dual. Equation (2) follows simply from the Cayley-Hamilton

theorem, where B has been diagonalized with eigenvalues ,\, i = 1, 2, 3.

These eigenvalues are known [6] in terms of the conformal dimensions of

the various fields which enter in the decomposition:

(3)
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and are given by

= , (4)

where the + sign depends on whether E occurs symmetrically or anti-

symmetrically in the decomposition (3). Using the fact that the conformal

dimension of a spin j field is h3 = j(j + 1)/(k + 2), we find

AE12=+ek+2 ,.E2=1=_C2 ,AE3O=+e2 (5)

Inserting (5) in (2), taking the large k limit and multiplying through by

(1 + 1) we arrive at the relation

27ri 2ri
(l--1-)<W(L)> - (l+—-)<W(L)>

27ri 27ri
= (1— —i—) <W(L0)> — (1 + -_) <W(L__)> , (6)

where < W(L+) > represents, in the notation of [7’], a Wilson line expecta

tion value with a single over-crossing, and so on. Equation (6) is the desired

skein relation, and corresponds to the Akutsu-Wadati polynomial [9].

In the form (6) we have neglected to take into account the relative

framing of diagrams. In the process of cutting, performing a diffeomorphism

Btm, and gluing back together, one shifts the framing of the diagram by

n units, relative to L+. Equation (6) thus represents a regular isoptopy

invariant, which is invariant under Reidemeister moves of type II and III

only. To obtain an ambient isoptopy invariant, which is invariant under

all three Reidemeister moves, ones simply reinserts the relative framing

factors, see [1,5,7].

3 The Variational Method

We now come to the main object of the paper, that is, to derive the skein

relation (6) directly from the Chern-Simons action, without making use of

results from RCFT. Following [7], we begin with the Chern-Simons action

in the form

S = d3x Tr(ADA + . (7)
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Here A,., = ATd1 is the gauge field, and the Hermitian generators T are

noimalized in the fundamental representation as Tr(T”T”) = ab This

ensures that once k is chosen to take integer values, the action S is invariant

under all gauge transformations, both large and small.

The fundamental property of the the action S is that

F — (8
— k 4a x

-p

It should be pointed out that since the Chern-Simons action is gauge in

variant, eqn. (8) will be supplemented with gauge fixing and ghost terms.

However, as shown in [10], and discussed at the end of this section, these

terms do not affect the analysis. If we now consider a Wilson line operator

U(xi,x2)=Pexp iL1dxARa (9)

then an infinitesimal variation of the path produces a F, insertion, i.e.

U(xi,x2) —* U(xj,x)i VFRGU(xx2) , (10)

where = dx’dx” is the area element, and there is no summation over

Ii,’,,.

In order to evaluate the effect of the F,.1, insertion on < W(L) > we

make use of the identity (8). This yields, upon integration by parts, the

following relation

<F(x)O1 •• ON >= Z1JdA eS (0 .. .Ov) . (11)

where O, ..., ON are gauge invariant observables, and Z is the partition

function.

We can now proceed to derive the skein relation [7,8]. Let us consider

the following identity:
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where the circle attachment is to be regarded as a perturbation in the

background of < W(L) >. This allows us to relate < W(L+) > and

<W(L) > by

<W(L+) >=< W(L_) > + < ...U(1,I)iF(x)RaU(x,2)U(3,4)...>

(12)

Using (11) in (12), and noting that the functional derivative acts on both

paths 1 —* 2 and 3 —* 4, we obtain the relation

= <W(L)> (13)

—

where R and R’ are the representations carried by the paths 1 —÷ 2 and

3 —* 4. It is important to point out that when the derivative acts on the

Wilson lines, a differential line element dx” is produced. It is then necessary

to determine whether this belongs to the plane defined by s””, or points

outwards from this plane, see [7].

Equation (13) is the basic relation that we need. In our specific example

we will choose 1? = = A, where A is the adjoint of SU(2). In this case
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we have the explicit representation of the generators

= ZEaij , [Re. R’j = jabcc (14)

Futhermore, in this representation we have the following Fierz identity

= RR1 — 5kl + bjljk (15)

Inserting (15) in (13) we can now interpret the various terms pictorially,

leading to

<W(L+)> = (1+ <W(L) > <W(L0)> (16)

— <...Uci(1,X)RUlm(X,4)Unk(3,X)RjUjb(X,2)...>

where it is important to remember that all terms of O() are defined in the

background of < W(L_)>.

At this point it remains only to interpret the final term in (16). To this

effect we consider the following identity which represents a perturbation

about <W(L__)>:

7

/L4

2

I

H-.
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In this case (13) leads to

<W(L0) > — <W(L__) >= (17)

—
<...uci(1,)R1Uim(,4)LTk(3, x)R%Ub(x, 2)...>

However, it is at this point that we must address the relative framing

phase factor mentioned in the introduction. The final term in (16) is defined

in the background of < W(L_) >, while in (17) we have expressed it in

the background of < W(L__) >. Since these two diagrams differ by a

twist of one unit, or in other words a single application of the braiding

operator B, it is easy to see that the correct interpretation of the final term

in (16) is in fact equation (17) multiplied on the left-hand-side by a factor

of (1 + This value of this framing phase can also be obtained from

the variational method [7], and equals eD2(, where c2(R) = 2 for the

adjoint representation. Inserting (17) with the phase correction into (16)

we get

<W(L+) >= (1+) < W(L) > + < W(L0) > —(1+) < W(L)>

(18)

To O() we can rewrite this as

2iri 97Ti
(1---)<W(L+)> - (1+—)<W(L)>=

27ri 27ri
(1 — —k—) < W(L0) > — (1 + —k--) < W(L_) > , (19)

which agrees with the result obtained from RCFT. This skein relation core

sponds to the Akutsu-Wadati polynomial [9].

We have thus shown, in this simple example, how the method of [7,8] can

indeed be used to derive generalized skein relations directly from the Chern

Simons theory, without using facts from RCFT. The coefficients in the skein

relation are determined in the large k limit, and it is a straightforward

exercise to obtain the O() correction. As we have seen, the basic problem

is to interpret pictorially the various terms that arise in the Fierz identity.

But it is clear that for general groups and representations the only subtle

point will be in interpreting analogues of the relative framing phase which
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we have encountered above. Thus, having understood this point in the

simple example, one can now proceed to derive more general skein relations

with this method

Before ending this section, it is useful to point out two simple consis

tency checks on the above procedure. If we connect the points 3 and 2 in

fig. 1 we find from (19) that

‘rz 97rz 4irz
(1—--) <W(L)> —(1+—) <w(L) >= —-k-- < w(L0) >< W(C0)>

(20)

where the hat notation is used to distinguish these Wilson line operators

from their previous counterparts in fig. 1, and C0 denotes an unknotted

knot. Since the term on the right-hand- side is already of O() we can

replace < W(G0) > by 3. This follows from the fact that [1]

SOA 1
<W(Go)>—q+1+q , (21)

U,o

where is the matrix which generates the modular transformation r —*

— among the characters (r) of the affine Lie algebra G at level k. Equa

tion (20) is then seen to be consistent with the known framing conventions

[7,1]

<W(L) >= (1+) < W(L0)> . (22)

A second interesting check is to use this skein relation to evaluate the ex

pectation value of two linked, but unknotted Wilson lines. This is achieved

by also connecting the points 1 and 4 in fig. 1, leading to the relation

<W(L(R1,R1)) >= (1— ) < W(C) >2 <W(c0)> , (23)

where L(R1,R1) denotes two linked Wilson lines in the adjoint representa

tion. In the large k limit we find its value to be 9, which is in agreement

with the result of Witten [1], namely <W(L(R1R1)) >

It is worth pointing out the basis dependence of the Fierz identity which

we have used, namely (15). Since the generators in the adjoint representa

tion are proportional to the symbol, this identity is well known. However,
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one could just as well choose to derive a Fierz identity in the Cartan basis,

for example. While the two identities will differ, the final results, namely

the skein relations, will coincide.

To close this section we address the important issue of gauge fixing in

the application of the variational method. The basic equation used is (8).

However, beacuse of the gauge invariance of the Chern-Simons action, one

must include the necessary gauge fixing and ghost terms. This means that

eqn (8) gets modified to

F(x)
= T11P( 4a( )

+ f oPeb(x)cc(x) — 8PBa(x)) , (24)

where Sq denotes the complete quantum action, including the gauge fixing

and ghost terms; c, 3, B denote the ghost, antighost, and multiplier fields,

respectively. However, as shown in [7j, these extra terms do not effect the

important relations (11-13). This follows simply from the BRST invariance

of the vacuum and of the observables O, and from the gauge covariant

properties of the Wilson line operators U(x, y).

4 Conclusion

We have shown that the variational method does indeed allow one to derive

generalized skein relations, without using knowledge from RCFT. The prin

cipal object of the present work is to point out that in applying this method

to more general situations, one will encounter relative framing phase fac

tors, which must be accounted for and interpreted in the correct way, in

order to obtain results in agreement with the RCFT method. However, it

should be clear that having understood the interpretation of this phase in

our simple illustrative example, no more complexity will be encountered in

the more general case.

Acknowledgements

S.S would like to thank R. Holman and the Physics Department at

Carnegie-Mellon University for hospitality, where this work was begun.

10



References

[1] E. Witten, Comm. Math. Phys. 121 (1989) 351.

[2] E. Witten, Nuci. Phys. B322 (1989) 629, B330 (1990) 285.

[3] P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish and K. Millet, and A.

Ocneanu, Bull. Amer. Math. Soc. 12 (1985) 239.

[4] V.F.R. Jones, Bull. Amer. Math. Soc. 12 (1985) 103, Ann. Math. 126

(1987) 335.

[5]
\5

Wu and K. Yamagishi, Tnt. J. Mod. Phys. A5 (1990) 1165.

[6] T. Kohno, Ann. Inst. Fourier, Grenoble 37 (1987) 139; G. Moore and

N. Seiberg, Phys. Lett. 212B (1988) 451; N. Yu. Reshetikhin, LOMI

preprints E-4-87, E-17-87; M.Wadati, Y. Yamada and T. Deguchi,

KEK-TH-88- 110.

[7] P. Cotta-Ramusino, E. Guadagnini, M. Martellini and M. Mintchev

Nuci. Phys. B330 (1990) 557.

[8] L. Smolin, Invarians of Links and C’riical Points of the Che’rn-Simon

Path Integral, Syracuse preprint, 1989.

[9] Y. Akutsu and M. Wadati, J. Phys. Soc. Jpn. 56 (1987) 839.

[10] E. Guadagnini, M. Martellini, and M. Mintchev, Phys. Lett. 227B

(1989) 111.

11


