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ABSTRACT

We propose 37 new constructions of the Moonshine Module V of Frenkel, Lepowsky

and Meurman, the bosonic CFT whose automorphism group is the Fischer-Griess

Monster M. We consider the Leech lattice compactified bosonic string and con

struct a family of orbifolds based on 38 Leech lattice automorphisms of a specific

type (including the original Z2 reflection automorphism considered by FLM). All of

these theories are shown to have no massless states and to share the same partition

function as V. For orbifolds based on a prime ordered lattice automorphism we

identify the orbifold automorphism group (where untwisted and twisted sectors are

not mixed) with an appropriate centraliser of M. This explains the form observed for

this centraliser by Conway and Norton. We also provide a new explicit formula for

the orbifold Thompson series for elements of this centraJ.iser generalising the formula

found by FLM. Finally, the Thompson series is calculated for a distinguished orbifold

automorphism which can be identified in each case with an element of M.





Introduction

The Moonshine Module constructed by Frenkel, Lepowsky and Meurman (FLM) [1,2]

is historically the first example of an orbifold theory [3,4]. This meromorphic bosonic

CFT [5] is constructed by means of a Z2 reflection automorphism of the Eucidean

bosonic string toroidally compactified [6] by the Leech lattice [7]. The automorphism

group of the resulting orbifold Hubert space V is then the Fischer-Griess Monster

group M, the largest sporadic finite simple group [8]. An essential feature of V is

the absence of any massless states so that a symmetrised form of the commutator of

level two operators forms a closed algebra. This algebra is an affine version of the

Griess algebra whose automorphism group is M [8].

The purpose of this paper is to investigate a suggestion we made in ref.[9] that

there are a number of alternative constructions of the Moonshine Module. We con

sider a family of 38 Leech lattice automorphisms g (including the original Z2 auto-

morphism) which can be employed to construct a new meromorphic orbifold theory

with Hubert space ?(orb which contains no inassless states. The partition function for

7orb is shown to equal to that of V in each case. It has been conjectured by FLM [2]

that V is the unique meromorphic bosonic theory without any massless states so that

florb E V. We provide evidence to support this conjecture by analysing the auto-

morphism group of1orb where no mixing between the various twisted and untwisted

sectors occurs. In particular we find the general form for the automorphism group

C for the Hubert space of untwisted states and states twisted by g with no mixing

between the two sectors. In the case of an orbifold constructed from g of prime order

p, we find that C, can be identified as the centraliser in M of a particular Monster

element p—. This centraliser was observed by Conway and Norton [10] to be related

to the centraliser of g in .0, the Conway group of Leech lattice automorphisms. Our

orbifold construction provides the first explanation for this relationship generalising

the result of FLM for p = 2.

We also provide an explicit formula for the Thompson series for elements of C,,.

If orb V, this gives a new way of calculating the Thompson series for these

Monster group elements. We also calculate the Thompson series for a distinguished

automorphism i,, of 7(orb for which C,, is the centraliser and show that i,, has the

same Thompson series in ?(orb as p— has in V. Thus i can be identified with p—.

Lastly, we generalise this result for all of the 38 Leech lattice automorphisms to show

that the corresponding distinguished automorphism i of ?iorb can be identified with

an appropriate element of M.
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The outline of the paper is as follows. Section 2 describes the orbifolding proce

dure for any Leech lattice automorphism g where g leaves no lattice vectors invariant.

We discuss the structure of the g twisted vacuum sector in some detail and calcu

late the partition function for the resulting modular invariant theory. In section 3

we place a further constraint on g to ensure that the resulting orbifold theory Norb

contains no massless states. The partition function is shown to be that of V in each

case. A table of all 38 Leech lattice automorphisms which give rise to this partition

function is provided. We then discuss the automorphism group of ?orb and find

that the automorphism group C, is isomorphic to the centraliser of p— M for an

automorphism of prime order p. In section 4 we discuss the explicit calculation of

the Thompson series for elements of C, in terms of Siegel modular functions. We

calculate the Thompson series for the distinguished automorphism i, and show that

the result is the Thompson series for p— in M. This last property is generalised

using the Moonshine properties for certain Thompson series [10] to establish that the

Thompson series for the distinguished orbifold automorphism i is the same as that

of an appropriate element of M. Section 5 concludes with a few remarks concerning

further results required to conclusively prove that florb V.

2. Orbifolds from Leech Lattice Automorphisms

In this section we will review the construction of a meromorphic orbifold [3,4] CFT

based on an automorphism group of a Eudidean bosonic closed string compactified to

a 24 dimensional torus T24 [6]. The torus T24 we choose is defined by quotienting R24

with the Leech lattice A, the unique even self-dual lattice in 24 dimensions without

roots (vectors of length squared 2) [7,11]. The automorphism group we consider is

the cyclic group generated by an automorphism of the Leech lattice which fixes no

lattice elements. A further condition on the lattice automorphism will be imposed

in section 3 to ensure that the resulting orbifold theory has no massless states as is

the case for the FLM Moonshine Module [1,2]. We will discuss in this section the

construction of the corresponding twisted Hilbert space with particular emphasis on

the nature of the vacuum structure.

We begin with the usual left-moving bosonic string variables x’(z) which obey

the closed string boundary condition x(e21z) = x(z) + 2ir$ for J3 E A. The mode

expansion for x’(z) is then

&
x’(z) = — zp’lnz + z —-zm (2.1)

mO
m
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with
[q,p2] = i62

(99)

[c,c] =m5Sm÷fl,o

A similiar expression holds for the right-moving part of the string x(). Since A is

even self-dual [11], the i-loop partition function takes the factorised modular invariant

form Z(r)Z() where

Z(r) = Tr(qL0)
= 24

(2.3a)

e1(r) =
qi32/2 (2.3b)

I3EA

with q = e2’ and where L0 is the normal ordered Virasoro Hamiltonian operator

+ — i (2.4)
m=1

= q ]J(1 — qfl) is the Dedekind eta function arising from the oscillator modes.

9A is the theta function associated with the Leech lattice A and is a modular form
of weight 12 [12]. The normal ordering constant gives the usual bosonic tachyonic
vacuum energy — i.

The Hubert space of states for this theory also factorises into meromorphic/anti
meromorphic (in z) pieces. We may therefore consistently regard the left-moving
string as a meromorphic CFT [13,5]. The Hubert space ?-ro for this meromorphic
CFT is generated as a Fock space by the action of the operators {a} on the highest

weight states {I,8 >} (which are annihilated for m > 0) where p1(B > i3’Ii > [11].

The trace in (2.3a) is over N0 which is graded by L0 with integer levels.
The partition function Z(r) for ?t is a meromorphic and modular invariant

function of r with a unique simple pole at q = 0 due to the tachyonic vacuum energy.
Z(T) may therefore be found in terms of the modular invariant function J(T) as

follows

Z(r)=J(r)+24 (2.5a)

E3 1
J(r) = —- —744 =

— + 0 + 196884q + . (2.5b)
24 q

where E2(r) is the Eisenstein modular form of weight 4 [12]. The constant 24 reflects

the existence of only 24 level 1 massless states {cL1 0 >} since the Leech lattice

contains no roots.
Let us consider next the construction of a meromorphic orbifold CFT based

on an abelian automorphism group of ?-t. Let g be an automorphism of A i.e.

g : A .‘ A with (g).(g3) = a3 for all c, 3 A. The full set of such automorphisms
is .0, the Conway group. Let n be the order of g and define the projection operator
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Pg = (1 +g +g2 +... +g’)/n. We will consider here a lattice automorphism g which

leaves no lattice vector fixed so that PgA = 0. g generates an abelian cyclic group of

order n (isomorphic to Z) which we denote by <g >. We may now construct the

bosonic string theory with coordinates xz(z) on the orbifold T24/ <g>. The states

of this theory consist of P projections of the ‘untwisted’ Hubert space (o together

with new ‘twisted’ Hubert spaces defined below. Together these states then form a

modular invariant theory [3,4].

The automorphism g induces an automorphism on flo by g: /3 >—* /g49> with

an obvious generalisation to the other Fock states. (As will be briefly explained in

section 3, the Z2 cocycles associated with the vertex construction of these states

actually allow each g to be centrally extended by Z4 as an automorphism on H0 [1].

Here we will consider the trivial extension for which a twisted sector construction

is explicitly known). With this induced automorphism on we can consider the

projected Hubert space = Pgflo which has partition function Tr,(o)(q’.0) which

we also denote by
Pg

where the boundary conditions on the world-sheet torus

are specified in the standard way. Note that the assumed absence of any fixed lattice

vectors under g implies that i4) contains no level 1 states i.e. the 24 states {a 10 >}

are projected away. To compute the corresponding trace it is useful to parameterise

g according to its characteristic equation as follows

det(x — g) = JJ(sc — 1)k

(2.6)
kin

where kfn denotes that k divides n and where each g is a not necessarily positive

integer with

kg=24 (2.7a)

kin

> gk=O

kin

(2.7b) follows from the assumption that g has no unit eigenvalues. Since the char

acteristic equation is invariant under conjugation by h E .0 with g —+ h1gh, the

parameters {gk} depend only on the conjugacy class of g. For n = p prime, these

parameters are particularly simple with gp = —g = 2d where (p 1)2d = 24 which

impliesp= 2,3,5,7,13 for d= 12,6,3,2, 1.

One can perform the trace over 7-ta to obtain the following result

Tr(gqL0) = g
— 77g(T)

(2.Sa)

77g(T) = fl7(kr) (2.8b)

kin
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In general one finds for the other traces that
h

= eh/h where

Eha—a
qa2/2

for h gk The resulting partition function for

not modular invariant requiring us to introduce twisted Hubert spaces. Thus under

5: r — —1/r the boundary conditions in (2.Sa) are interchanged to obtain

1 = D2 [I 17(T/k) (2.9)

g kin

where
Dg = fJkk

= det(1 g) (2.10)

For n = p prime, we find Dg = 2d. In general we therefore expect the sector twisted

by g to have a vacuum degeneracy of D2 and vacuum energy

g 1r-gk
(2.11)

kin

given by expanding the 17 functions in q. This formula is generally valid even if (2.7h)

is not satisfied.

We now discuss the construction of the g twisted sector {14,1ö,3,16,1iJ. The

starting point is a mode expansion for rz(z) satisfying the twisted boundary condition

x(z) = gx(e2z)+ 31 for 3 A. It is convenient to choose a diagonal basis for

g so that g = diag(e2’/, .C27r2r24/n) for 0 < r1 < rz. The mode expansion is then

given by

x1(z) = + I rn-m
(2.12)

mEZ+r,/n

where {&} obey the usual commutation relations (2.1). The vector denotes any

fixed point of T24 under g i.e. j (1 — g)’A. The set of inequivalent fixed points is

determined by the coset Lg = A/(1 — g )A which is a finite abelian group of dimension

Dg = det(1 — g) by (2.10).

Each fixed point E Lg corresponds to a vacuum state of the full left and right

moving theory (a similar expansion to (2.12) exists for xz() involving the same fixed

point set Lg). We expect from (2.9) that we may associate D2 of these states

{l >}, r = 1, ...D2 with the left-moving meromorphic sector. To understand this

in more detail let us consider the construction of this twisted vacuum sector as a

representation space for the cocycle factors appearing in the vertex construction of

twisted states [14,15,2}. To ensure the associativity of the algebra of vertex operators

for twisted states it is necessary, as in the untwisted case, to introduce into every

vertex operator acocycle factor (c) for each E A where (Q) is an element of a

central extension A of the lattice A. A is defined in the following way. Let e2/1z

0



where n is the order of g. The commutator for elements a, b E A of the central

extension of A by <(—1)> (the cyclic group generated by (—1)w) is defined as
follows

aba’b’ = S(a,8) (2.13)

where a and b are extensions of a and $ and where S: A x A —< (—lYw> is the
bilinear commutator map given in general by [14]

= (2.14)

This reduces to the familiar commutator (1) both for the untwisted case and for
the Z2 reflection twist r : a — —a. In the more general case where g has no unit
eigenvalues one finds that (2.14) simplifies to [18]

S(cx,/3) = e_2 (1_g c)./3 e< (2.15)

With A so defined we can then choose a section ë: A —p A which gives the cocycle

factors appearing in the vertex construction i.e. A = {e(a)Icz E A, k E Z}.
Associated with each such section is a 2-cocycle e(a, ,3) given by

E(a)ë(,3) = eë(c + 3) (2.16)

obeying the cocycle conditions

e(a, ,8)e(a + 3, -y) = (a, /3 +
(2 17)

= S(a,/3)

(2.15) similarly defines the commutator for a central extension Lg of dimension
nDg of the finite abelian group L2 by < w>. It is clear from (2.15) that if S(a,j3) = 1

for all /3 A then a E (1— g)A. Therefore the center Cent Lg < W > [Lg, Lg], the

commutator group given by {ab&b Ia, b é .Lg}. In the case where ri = p prime,

= (Z)2” i.e. an elementary abelian p-group which is denoted by 2d [10]. The

central extension is called an ‘extraspecial p-group’ denoted 14+2d since Lg obeys the

defining properties of such a group (see e.g. ref.[2]): (1) Cent Lg < w > [Lg, Lg]

and (2) Lg/ <w> is an elementary abelian p-group.
The vacuum states of the twisted Hubert space 7ig are now provided by an irre

ducible representation of the group Lg. In fact, there is a unique faithful irreducible
- . • .

. 1/2
re esentation ir(L9) which acts on a vector space T of (integer) dimension Dg OIl

which Cent Lg is faithfully represented by elements of < w> [14,2,18]. The vacuum
states {I°’ > } then form a basis for the vector space T. For n = p prime, T is of
dimension p”. In the simplest case of the Z2 reflection twist r : a — —a, one can
construct ir(Lg) from a Clifford algebra basis [19,16].
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The twisted Hubert space ‘Hg can now be constructed as the Fock space generated
by the action of {&} on the vacuum states {o >} which are annihilated for
m r/ri. These states are graded by the Virasoro Hamiltonian L0 = && +
E with (energy) level E E E + Z/n. E is the normal ordering constant given by

g 24 2= —1 + j.... r(n — r)/4n [4]. T.sing the parameterisation (2.6) this can be
shown to give (2.11) as expected [9]. The twisting of an L0 eigenstate E >E ‘Hg iS

then expressed by

(g)e2’’°E >= IE> (2.18)

assuming that no global phase anomaly arises [20] which would spoil the modular
consistency of the theory. Therefore each state IE > is an eigenstate of g with
eigenvalue exp(—2iriE). The explicit action of g on a twisted state is described in
section 3. The absence of any global phase anomaly leading to a modular consistent
theory is guaranteed by the condition [4,20]

nE = nE = 0 mod 1 (2.19)

which follows from (2.18) by applying g n times or, equivalently, from the invariance
of (2.9) under T?z : r — r + n. Therefore the condition (2.19) is equivalent to the

invariance of
g

under ST”S. Assuming that this condition is similarly satisfied

for each twisted Hubert space ‘l(gk (where n is replaced by the order of gk), the
resulting orbifold theory will be a modular invariant and consistent meromorphic

CFT with Hubert space ‘Horb = where = Pgflgk. The
resulting modular invariant partition function is meromorphic with a simple pole at
q = 0 and is therefore given by

Zorb(T)

=

2g
(2.20)

=J(r)+No

where N0 is the number of level 1 massless states. Since g has no unit eigenvalues,

these states can only arise in the twisted sectors ‘H. In the next section we will
impose a further condition on g to ensure that these massless states are avoided in
order to reproduce the properties of the Moonshine Module of FLM.
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3. Constructing the Moonshine Module

The FLM Moonshine Module [1,2] V is the meromorphic orbifold CFT constructed in

the above way from the Z2 reflection automorphism r : o — —cr i.e. V =

The vacuum energy of hf,. is E = . using (2.11) with g = —gi = 24 from (2.6).

Hence the twisted sector introduces no massless states and the full partition func

tion is Zorb(T) = J(r). FLM show that the states of V at each Virasoro level form

a representation of M, the Fischer-Griess Monster group [8], which is the largest

sporadic simple finite group. Their original motivation for studying such a theory

was the observation of MacKay and Thompson [21] that the coefficients of J(r) in

(2.5b) are sums of dimensions of the irreducible representations of M. In particular,

the coefficient 196884 of q is 1 greater than the dimension of the lowest dimensional

representation 196883. FLM go on to show that the corresponding 196883 level 2

operators (together with L0 which corresponds to a singlet of M) form a closed com

mutative non-associative algebra under a symmetrized form of the commutator of

two operators. This algebra is an affine version of the Griess algebra whose auto-

morphism group is M [8]. Since L0 is a singlet, the states at each level of V form

a representation of M with those of level 2 forming the adjoint representation. A

more complete description of this construction in the language of CFT can be found

in ref.[13].

An important part of the FLM construction involves the identification of the

automorphism group C C M where no mixing between untwisted and twisted states

occurs. If we define the ‘fermion number’ involution (order two) element i of M under

which the states of ?o (?r) have eigenvalue +1(—1). Then C is the centraiiser of i in

M i.e. C = C(i) = {g e M(ig = gi}. FLM also identify a second involution o, which

mixes H0 and ?(r according to a triality symmetry inherent in the construction [22].

Then, as was shown by Griess [8], M =< C, o> i.e. M is generated by C and a.

It has been conjectured by FLM [2] that V is the unique bosonic meromorphic

CFT without massless states with light-cone central charge 24. This characterisation

of the theory is analogous to that for the Leech lattice as the unique even self-

dual lattice in 24 dimensions without roots. If this conjecture is correct, then any

bosoaic theory with partition function Z0b(r) = J(r) must be isomorphic to V.

In this section we will describe a number of such theories with the correct partition

function constructed by the orbifold procedure from a Leech lattice autotnorphism

g of a specified type of order rj. We will also consider the automorphism group

of the resulting orbifold theory florb where no mixing between the untwisted and

various twisted sectors occurs. This group is given by the centraliser C(i) = {g E

Mgi,3 = ig} where i, is a distinguished automorphism of 7orb of order n (which

generalises the fermion number involution in the original Z2 construction) under

which all states of ligk are eigenvectors with eigenvalue k e2rtk1n. In the case

of orbifolds constructed from an automorphism of prime order p we will be able to

correctly identify C(i) as an appropriate centraliser in M lending weight to the

assertion that indeed florb V.
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Let us now list the properties of a Leech lattice automorphism g that guarantee

the absence of massless states so that Zorb = J. They are as follows:

(i) g has no unit eigenvalues as given by (2.7b).

(ii) The vacuum energy for each twisted sector obeys the constraint (2.19).

(iii) The vacuum energy E for the sector flg is positive.

As already described in section 2, condition (i) implies that no untwisted massless

states survive the 2g projection whereas condition (ii) ensures modular consistency.

The last condition is equivalent to the absence of massless states in the twisted sector

7g It follows from this that no twisted massless states occur in florb either. Let

10 >E ?gk be some massless state. Then following (2.18) we have

(gk)e2lrzLo 10 >= 0 > (3.1)

so that 0 > is an eigenstate of gk with unit eigenvalue. If 0 > is a unit eigenstate

of g also then it would obey (2.18) for a twisting by g contradicting assumption (iii).

Therefore Pg10 >= 0 and hence 0 >g Thus no twisted massless states exist in

florb and so from (2.20) Zorb(r) = J(T) as claimed.

In Table 1 we give an exhaustive list of 38 automorphisms {g} of the Leech

lattice that obey the conditions (i)-(iii) given above. The notation employed follows

that of ref. [10]. Each conjugacy class of the full group of lattice automorphisms

.0 with representative g can be labelled according to the parameters {g} of (2.6).

A complete list of conjugacy classes can be found in ref.[23] but the restricted set

obeying (i)-(iii) already appears in ref.[10]. The first column of Table 1 gives a short

hand notation (the Frame shape) for Tlg of (2.8b) where we write pPq2 . . ./rr8g, for

where gp,gq, ... > 0 and gr,gs, ... <0. Thus ri2— =

{ri(2r)/ri(r)]24 In the second column we provide an alternative labelling

given in ref.[10] which describes the modular invariance group of g•
This labelling

does not in general uniquely specify the elements of .0 but does do so for g obeying (i)

and (iii) above. If the modular invariance group of is Fo(n) alone then the the order

n conjugacy class is labelled n—. The remaining order ri conjugacy classes labelled

n + e1,e2, ... have a corresponding rig which is invariant under Fo(n) + e1,e2, ..., the

group generated by Fo(ri) and the Atkin Lehner transformations We1,We2, ... [10]

where

det=1 (3.2a)

W{(’ )} det=e, em, (e,)=1 (3.2b)

with a, b, c, d E Z and where (e, n/e) denotes the greatest common divisor of e and

n/e. The Atkin-Lehner transformations close in the following sense : W W =

Ws mod Fo(n) where e3 = eie2/(e1,e2)2 which also implies that W = 1 mod Fo(rz).

W is also in the normaliser of Fo(n) in SL(2, R) i.e. ro(ri) = Wr0(n)W1. Finally,

we note that Table 1 consists of all possible modular group labels in ref.[10] of the

form n +e1,e2,..3. with e x4 rz.

9



We can now confirm that the constraints (i)-(iii) are obeyed by the automor

phisms listed. The first constraint (2.7b) can be seen to be obeyed by inspection.

Constraint (iii) follows from the inversion of g under the Atkin-Lehner transforma

tion W11 : r —1/ni- (the Fricke involution). This can be seen by observing that in

each case the characteristic equation parameters obey the symmetry condition

gk = —ga/k (3.3)

so that from (2.8) and (2.9b) we find that

rg(—l/nr) =D12r’(r) (3.4)

Thus the vacuum energy is Eff = 1/n > 0 from (2.9b). Alternatively, applying (3.3)

to (2.11) and using (2.7a) we obtain the same result. We note from ref.[10] that a

number of different classes of .0 obeying (i) may share the same modular group label

n + e1, e2, ... in some cases. This occurs when the respective i functions are the same

up to an overall additive constant. However, the constraint (iii) singles out a unique

class of .0 in each such case.

Lastly, constraint (ii) requires us to check that (2.19) is obeyed for each g of

order n’ = n/(n, k) or, equivalently, that ‘ is ST11’S invariant. If (n, k) 1 this

is automatically the case since g and g’ then have the same characteristic equation

(2.6). Then applying (3.4), we know that T7g = l?gk is ST11S invariant. For (n, k) 1

we may invoke the ‘Power Law Map’ formula from ref.[10]. This states that the

kt power of a class with modular group label n + e1,e2, ... is a class with modular

group label n’ + e, 4,... where e, 4, ... denotes all elements of e1, e2, ... that divide

n’. Thus, for example, the 10th power of g = 2.6.10.30/1.3.5.15 with modular group

label 30+3,5,15 is g’° = 1636 with modular group label 3+3. Strictly speaking, this

formula applies to Thompson series formed from traces over the Moonshine Module

but may be checked explicitly for the automorphisms given in Table 1 using the

invariance modular group properties listed in refs. [10] and [24]. We therefore find

that
g [j] is Fo(n’) invariant and in particular, is ST’S invariant. The second

constraint is thus satisfied.
Let us now consider the automorphism group M11 of the orbifold theory 7torb

constructed from a lattice automorphism g of order n. We will offer evidence to

suggest that M11 M, the Monster group, as expected from the FLM conjecture

that lrb V. We will concentrate on the automorphism group C11 under which

no mixing between the untwisted and g twisted sector occurs. In the cases where

n = p prime, we will identify C,, as an appropriate centraliser of M. The analysis

below generalises that of FLM for the original Z2 construction. Where possible, we

label the various automorphism groups that arise in an analogous way to the notation

found in ref. [2].
We first consider the untwisted Hubert space flo. The automorphism group of

H0 is a central extension of .0, 224(.0), which is the automorphism group of the Z2

central extension A0 of A with commutator map S(c, 3) = (—1) which. appears
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in the untwisted vertex construction[L2]. Each automorphism g E .0 is centrally

extended to an automorphism of Ao where choosing a section of cocycle factors

{c()} E A0 we have

: c(o) e2c(g) (3.3)

where Pg E A/2 so that the phase is ±1. The associated cocycle conditions (2.17) are

preserved by the map (3.5). The set of inequivalent extensions is then determined

by the coset A/2A of dimension 224. The action of on a highest weight state is

j3 >=e29g/3 > since >= 3)0 > with ê(3) ec(d) [1,2,11]. A general

Fock state similarly transforms under where, in the diagonal basis, each creation

operator -m becomes =

We can similarly describe the automorphism group Cj for the projected un

twisted Hubert space = PgNo where g is one of the automorphisms of Table

1. Here we choose the trivial Z2 trivial extension of g corresponding to Pg 0

above which we denote by o. Define the centraliser subgroup of g in .0 by rz.G =

{h E .0hg = gh}. The notation follows that of ref.[10J where A.B denotes the prop

erty that a group of type A is a normal subgroup of A.B with B = A.B/A and where

n is shorthand for the cyclic group <g>. The group G is then the automorphism

group of A/ <g>.

Consider now a state of 74) as follows

PgIm, >= + ...(g’)]IO> (3.6)

where N = r +...+rlk and m = (rnl....rnk). Clearly Pgm.g3 >=w_NPgm,3>

so that the independent highest weight states for 70) are determined by the elements

of A/ < g > up to a phase factor in < >. Let Ii e n.G and assume that it is

also diagonal in the basis chosen already for g with h = diag(e2U1 21Tzu24). h

then acts on c.m with eigenvalue 62iu, We can define a central extension h of h

such that each cocycle factor transforms according to h : c(c) — exp(2rifh(c))c(hc)

where fh(c + /3) = fh() + fhC3) which guarantees that the cocycle conditions (2.17)

are preserved. Let {e(ui} be a basis for A and {e(r)} a dual basis (e’1.e(3) = 6). Then

define p, = fh(e())e(’) so that fh(c) = /‘h’ implying that each central extension

of h is determined by a vector Ph as in (3.5).

We next describe the set of allowed inequivalent vectors p. By acting on

PgIm, /3 >, we see from (3.6) that the transformation h will he an automorphism of
7.40)

provided c(/3) and c(gf3) transform with the same phase. Thus ph./3—gph.!3 E Z

for all /3 which implies that Ph E (1 — g ) ‘A because A is self-dual. Using the identity

(1 — g)’ = —(g + 2g2 + ...(n — 1 )g1Z_l
)/n we find that (1 — g)’ A C A/n and hence

exp(2lriph./3) E< w >. By the self-duality of A again we also see that two vectors

Ph and ,4 determine equivalent extensions if and only if Ph — i4 e A. Thus the set

of inequivalent choices for Ph S given by the abelia.n group L9 = A/( 1 — g )A already

introduced in section 2. To summa.rise, each h e n. . G is centrally extended to an

automorphism h of where

11



c(a) —e2iac(hc), J’h E (1 — g)1A/A (3.7)

This central extension of n.G by the set of phases exp(27riLh.5)E< ‘‘ > (isomor

phic to Lg) is denoted by Co Lg(ñ.Gn). It is clear from (3.6) that not all such

automorphisms are independent since 8o (the trivial Z2 extension of g used in defi.n

ing Pg) acts on 4) with unit eigenvalue. In general, the action of an extension

of hgk is equivalent to some extension of h for each k. Therefore the independent

automorphisms of ?4° are given by C1 = Lg(Gn). For n = p prime, C1 =p2d(G)

since in this case Lg p2”.

Let us now describe the corresponding automorphism group for the twisted sec

tor
.7.40).

As was discussed in section 2, the vacuum states {I° >} form a basis for

the vector space T which is acted on by the unique irreducible representation 7r(Lg).

We now generalise the arguments given in refs. [1,2] to show that every !z E Co

gives rise to an induced linear transformation hT on T as follows. Recall the general

twisted central extension A of A by <w> defined by (2.13) and (2.15). The auto-

morphism group of A is then given by C0 where choosing some section {ë(a)}, each

(a) tranforms as in(3.7) (noting that S(ha, h3) = S(a, 8) for all h E n.G). Next

choose a section of A such that the subset K = {E((1 — g)cw)a E A} closes under

multiplication. It is easy to show that K is a central subgroup isomorphic to (1— g)A

and that A/K L, the central extension of Lg defined in section 2. In addition,

K is invariant under C0 and therefore each C0 induces an automorphism on L9.

Finally, the representation 7r(Lg) is unique and irreducible and hence the automor

phism induced acts on the elements of ir(Lg) by conjugation with some matrix hT

i.e ir(x) —i h’7r(x)hT for x e Lg. Thus each h E Co induces a linear transformation

hT on T which we, note is only specified up to an overall phase at this stage.

We may again identify a distinguished element 9o E C0 of order n given by the

following extension of g:

9o : e() —+ (1 — g)c)ë(gc) (3.8)

where the section {(a)} is chosen as above in defining K. One can check that 9o E C0

and that 9o acts as the identity on Lg. We may identify 9o with the automorphisin

of the untwisted space fl used in forming 2g The remaining extensions of g are

then equivalent as automorphisms on .Lg to the other nontrivial extensions of the

identity element of rz.G. In general the induced action of an extension on Lg of

hgk E ,z.G is equivalent to that of an extension of h. Thus the set of independent

automorphisms induced by C0 on Lg is again C1 = Lg(Gn).

Let us now consider the set of linear maps {hT: T — T} induced by C1 on

7r(Lg). As noted earlier, each h E C1 induces a map hT which is specified only up

to an overall phase. We will now consider a particular set CT of maps induced from

C1 where these phases are given. The representation space r(Lg) is itself a subset

of {hT} since it may be considered as the set of linear maps induced by the inner

automorphisms of Lg as follows. For x E Lg we may define the inner automorphism

12



y — xyx1 = S(c, 3)y from (2.14) for all y E Lg where c. 3 are representatives

of L2 which are centrally extended to .r, y respectively. (The full group of such inner

automorphisms of Lg. is therefore isomorphic to Lg corresponding to the extensions

of the identity element of C1). We therefore find that w(Lg) C {hT} as claimed.

Recall from section 2 that the representation w(Lg) is faithful [2] where a central

element w(.K) acts as on T. We therefore consider the set of induced represen

tations CT on 7r(Lg) where each Ii E C1 is covered by n elements of {hT} differing

only by phases in < w >. Thus we define C = ‘ > (C1) Lg( G) which is

the group of induced automorphisms on T forming a minimal covering of C1 which

contains the representation w(Lg) itself.

We can now turn to the twisted Hubert space Ng formed as a Fock space from
the vacuum states { >} by acting with the operators {-m} We form a composite

group C from the groups C0 and CT as follows

O= {(Ih) e C0 ØCT} (3.9)

where hT is induced by the action of h Co on w(Lg). The groups C0 and CT are both

cosets of C with C0 = C/ <(1,w) > and C = C/ < (8,1)>. Each (h,hT) E C

is an automorphism of 7tg where iLm “
and o >+ (hT)lo.b >. In

particular, the twisting of a state of ‘Hg by g as expressed by (2.18) can now be

understood as follows. g acts on the creation operators according to &m

in a diagonal basis for g. The action on 0a > is a particular element 9T E CT

induced from the distinguished central extension Oo E C0 of g given in (3.8). &o acts

as the identity on Lg and therefore extends to an element of < > in its induced

action on T. We therefore choose T E CT induced by o such that r acts as

on T which is the appropriate phase for the vacuum energy = 1/n. The

automorphism describing the twisting in (2.18) is therefore given by (so, w’) E C.

We may then define the corresponding projection operator. denoted as before by 2g,

to form j40)
= Pg’Hg.

Consider an element of
740)

as follows

P9jm, >= mc > 0..mt__mkkT> (3.10)

where N = r1 + ... + r 1 mod ii. Notice that this condition implies that the

states of 40) have integral L0 levels as expected. The states of
740) are by definition

unit eigenstates of (8 , w _1) and so the group of independent automorphisms is given

by

= C/ < (8o,w) >L9(G,) (3.11)

The group C clearly also has a natural action on the original untwisted Hubert space
0)

where again 9 acts as the identity. Thus C forms an automorphism group of
740) (which corresponds to ri copies of C1). If we then consider the combined Hubert

space 8 7-°’, we find that automorphism group of this space is C Lg(Gn)

13



where no mixing between the two sectors occurs. For n = p prime, C,, = p+2d(G,,)

since .Lg is then extraspecial.
We can similarly see that C,. is also the automorphism group without mixing for

the Hubert space i.40) where (k, ri) = 1 since then Lg = Lgk and the analysis
given above can be repeated to show that flg and ?1gk are isomorphic. In the cases
where n p prime, all sectors are isomorphic implying that the full automorphism

group C,, has been obtained where no mixing between sectors occurs. For n not
prime and (k, n) 1, the twisted sector is complicated by the appearance of a
different fixed point space Lgk which labels the vacuum states. In addition, there is
the possibility of a further complication due to momentum (highest weight) states
labelled by the elements of Pgk A [16,9].

Let us therefore consider the cases where n = p prime. We have found that the
automorphism group for the full orbifold theory7torb where no mixing between sectors
occurs is C,, = p!2d(G,,). As described earlier, this implies that p+2d(G,,) is the
centraliser of i,, (which acts as on ?(gk) in M,,, the full group of automorphisms of
Horb. It has been observed by Conway and Norton [10] that the centraliser of a prime
ordered element p— of the Monster group is precisely given byp+2d(Gp) (where pGp

is the centraliser of g in .0). Thus the general orbifold construction presented here
explains the structure of this centraliser for the first time. The defining characteristic
of the Monster group element labelled p— is its Thompson series which is defined in
the next section. We will now demonstrate that i,, E M,, has precisely this Thompson
series strengthening the conjecture that indeed ?torb V and M,, M.

4. Calculating the Thompson Series

In this section we will discuss the explicit calculation of the Thompson series for
h E C,, where we perform the trace over florb. We will give a formula for each such
series generalising the expression found by FLM [1,2] for the original Z2 orbifold.
We will then demonstrate that the Thompson series for the distinguished ‘fermion
number’ autotnorphism i, is precisely that for p— E M, the Monster group. We will
also show that the Thompson series for i arising from the orbifold construction for
any g in Table 1, is given by the Thompson series for n + e1,e2, ... E M in general.

Let us begin with the definition of the Thompson series Th(T) for any automor
phism h of the orbifoldtorb built from any of the Leech lattice automorphisms of
Table 1. Th is given by

Th(r)
=Tr0(hqL0) = + 0+ ... (4.1)
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where the leading terms are due to the unique tachyon and the absence of massless

states. For h E C(i), the centraliser of i,, h maps each sector into itself and so we

may expand (4.1) to give

Th(T) = hPg (4.2)

k=1
gk

Here h is a shorthand notation for the appropriate action on each sector.

Let us now consider the explicit computation of these traces. We begin with the

untwisted contribution which is given by

hPg
= l[Ohñ

+
Okg(T)

(43)

1
r Tlh(T) T/hg(T) rihgn_1(T)

where ui acts as a central extension of h E G on according to (3.7) so that the

trace over highest weight states {i3 >} contributes the generalised theta function

Okg1e(T) =
q/32/2e27ri14h43

(4.4)
/3hg3

The trace over the oscillator modes then gives rise to the i function contributions.

We turn next to the g twisted sector. The automorphism h C(i) appearing

in (4.2) is shorthand for the action of (h, hT) on as described in section 3. We

choose a simultaneously diagonal basis for h and g with g = diag(e27h/n) and

h = diag(e2)for i = 1,...24. Acting with (ii,hT) on a state of ?tg we then find

(i,hT)mt....&mkk7’ > (4.5)

Tracing over all such states we find the following result for Tr9 (hqL0)

h = Tr(hT)q fJ fl( e27r:uiqmri/n)_1 (4 6)

g i=1m1

where the remaining trace is over the. finite dimensional representation space T and

E is the twisted vacuum energy which is given by 1/n for all g in Table 1. The

infinite product can be expressed more concisely as follows

h =Tr(hT)fJg0(z1j,i; r)”2 (4.7)

where go(u, v; r) is the (normalised) Siegel modular function {25,20]
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go(u,v; r)
q(V2v+4)/2

11(1
—e2uqm)(1 —e_2qm_l) (48)

Notice that we have absorbed the vacuum energy factor into each Siegel function

using the original formula E = —.2(r(r — ri)/n2 + 1/6). One can also check that

for g = 1, h = g or h = 1 one recovers the expressions given in (2.8) and (2.9). The

usual Siegel modular function is g( u, v; r) = e_ )go(u, v; r) which transforms

f’abN .

under a general modular transformation = d)
E SL(2, Z) according to [2o]

g(u,v; 7(r))=e(/)g(7’(u,u); r) (4.9)

where E(7) is a phase independent of u, u which is a twelfth root of unity. Thus acts

hfl hd I

by changing the boundary conditions with
—+ g

hga as usual [3,20].

The absence of the explicit phase factor for g in (4.8) is compensated for by the

contribution from the representation space T. As explained in section 3, the induced

action 8T of the twisting automorphism o on T is given by w1 corresponding

to the vacuum energy 1/n in (2.18). Thus under the modular transformation T

r — r + 1 we find
h g L_i where Tr( hT8’) = Tr(hT) provides the

appropriate phase. Therefore the total contribution arising from the g twisted sector

The remaining twisted sector traces can similarly be calculated for

(rz, k) = 1 giving exactly the result of (4.7) with g replaced by gk• For (ri, k) 1

the same Siegel function contributions arise. However, the representation space 2’ is

different and there may also be additional contributions from highest weight states

labelled by the elements of Pgk A [16,9]. We will therefore consider the simplest

situation with n = p, prime, for which each trace can be given. We may then provide

the explicit formula for Th with (h, hT) E C p+2d(G) as follows

p—i

Th(T) hPg D+(1+T+...+T’) h (4.10)

1 p k=1
gk

hPD hE
where g and gk are given by (4.3) and (4.7) respectively with n = p. If

7orb V, as is strongly suggested by the evidence given in section 3, then (4.10)

provides a new way of explicitly computing the Thompson series for elements of the

Monster subgroup C,,.
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The simplest example of such a Thompson series is that for the element i, E C,

under which each state of has eigenvalue w. We then find that

T1(r) +(p- 1)[)j2d

(4.11)

[] + 2d ‘(r) + 2d

using the identity (1+5 + TS+ ... + T’S)[ii(r)/r1(pij]2’ = J(r) — 2d which follows

from T1 (r) = J(i-). We therefore find, as was claimed earlier, that i, has the same

Thompson series as the elements of class p— in M [10] where the constant 2d ensures

that the massless contribution is zero as given in (4.1).

We may also check that this particular property generalises for any g in Table 1

where
T2(r) = i’(r) —

(4.12)

with g the parameter of (2.6) corresponding to k = 1 so that T,, obeys (4.1). Thus

i has precisely the same Thompson series as n + e1,e2, ... E M in the notation of

ref.[10]. In fact all elements n + e1,e2, ... M with e rz have a Thompson series

of this form corresponding to g = n + e1, e2, ... in Table 1.

To prove (4.12) we will make use of the ‘hauptmodul’ property of the modular

function iç’(r) [10,9]. This is an example of the basic Monstrous Moonshine property

for Thompson series. The hauptmodul property states that
g

= iç’(r) = 1/q +

gi + ... is the unique (up to an additive constant) meromorphic function with a simple

pole at q = 0 which is invariant under the modular group r9 = Fo(n) + e1,e2,

This uniqueness is equivalent to the statement that the compactification of the

fundamental region H/F9 is the Riemann sphere of genus zero where H is the upper

half plane, the domain of T. Such a unique modular invariant function is referred to

as a hauptmodul. Thus the basic function J(r) of (2.5) is the hauptmodul for the

full modular group.

Let us now quote from the analysis of ref.[9] where we showed that
g

is a

hauptmodul for Fo(n) + e1, e2, ... if and only if:

(i) All gk twisted sectors have non-negative vacuum energy unless k = cf where

f = n/e and (c, e) = 1 where e E {ei, e2, ...} in which case there is a unique

tachyonic vacuum state with. energy —1/e.

(ii) If the sectors twisted by gft and gf2 are tachyonic (with energies —1/ei, —1/e2)

then the gh sector is tachyonic with energy —1/e3 where e3 =e1e2/(ei,e2)2.

The condition (i) ensures that
g

has the correct singularity structure whereas

condition (ii) ensures closure under the composition of two Atkin-Lehner trans

formations (3.2b). We will now apply these conditions to the present case where
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g D to show that is also a hauptmodul for r0 (n) + e1,e2, ... and hence

(4.12) follows.

We begin by showing that T(r) is Fo(ri) invariant. (From ref.[9j we expect this

to be the case anyway, once T2 is itself identified as a contribution to the partition

function for a new orbifold created from 1orb by means of the automorphism is).

Let us express T1 in the following form

= wkPg
= ‘( ‘)Pg (4.13)

k=1 gk k (k’,n)=(k,n) g

where denotes a sum over the distinct elements of {(j, n), j = 1, ...n}. We have

also used the isomorphism of gk and for any k’ with (k’, rz) = (k, n) to give a

representative trace for each k. We can next consider the action of
= ( e

I ii dl—bk i

Fo(n) on (4.13). Under y each trace contribution
g becomes

g
‘-. How

ever, since det -y = 1 we have (a, n) = 1 and so (ak, n) = (k, n). Therefore the

representative traces in (4.13) are individually preserved by and hence T1, is

Fo(n) invariant.
Let us next demonstrate that T1,, is also We invariant for e E {e1,e2, ...}. Em

f’ae b (a b’\(e O’
ploying the decomposition of W

= ç cn de) = cf de) i4O 1)
with n = ef,

we find the following action for W [9]

W : gt j(r) gdel_bk (er) (4.14)
gk gcfl+ak

Thus for 1 = 1, k = 0, invariance under W gives the unique twisted sector tachyonic

vacuum energy —1/e for the gCf sector, where det W = e implies that (c, e) = 1. This

is the origin of condition (i) above. Let us choose, for simplicity, the representative

W with c = d = 1. This we can always do since e n for any of the automorphisms

of Table 1 we are considering. The action of W on T1 in (4.13) is then given by

T1(W(r)) = I > jLf+kegI
D(er) (4.15)

I,k=1
gk

Let us consider the singularities of this expression due to the tachyonic poles in

the sector twisted by g with k = cf, (c, e) = 1. The contribution to (4.15) from this

sector is

1-pg (er) (4.16)
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where p = w which is the phase appropriate for the order e twisting
gC)r

The vacuum

state for this sector is unique by (1) and therefore the corresponding representation

space T is one dimensional (where T is a generalised version of the vector space for

7(Lg), discussed in section 2, where now A has an invariant sublattice under gCf

[14]). The induced action g’ on T then acts as some phase in <p > which we note is

consistent with the W invariance of
g Lj1. The uniqueness of the vacuum also tells us

that
1

(T) = q’ + ... and by applying T: r r + 1 we obtn g = p. Let us

now consider c as the unique solution to cf = —1 mod e with (c, e) = 1 and 0 < c < e.

We therefore find that g = p1 and
g (r) = pq_h/C + ... . The leading

behaviour of (4.16) is therefore given by the the singular term 1/q because the phases

appearing in (4.16) are exactly compensated for. On the other hand, it is easy to see

that for any other choice of c, complete cancellation takes place between the phases

in the leading term so that (4.16) is not singular at q = 0. Likewise, one can show

that similar cancellations occur for the other tachyonic contributions including the

untwisted sector. Therefore (4.15) has the leading behaviour T1 (W(r)) = 1/q +

and hence r = W() is a (cusp) singularity for T, (r).

We may similarly identify all of the remaining independent cusp singularities

of T2(r) as the set {,W1(cx), We2(cc), ...} (up to Fo(n) transformations). We

may next repeat the arguments of ref. [9] to prove (4.12). We form the modular

function (T) = T,n(’r)—Tjn(We(r)) which is invariant underr0(n) since WFo(n) =

r0(n)W. From our discussion above, (r) is non-singular at r = . However

by condition (ii) above we see that (r) is also non-singular at r = We(cx) for

any e’ {e1,e2, ...}. Thus (r) is a holomorphic function on the Riemann surface

given by the compactification of the fundamental region H/Fo(n) and therefore

must be constant (since all holomorphic functions on a compact Riemann surface are

constant). But from the definition of we have = — which implies that = 0

and so T1 is W invariant. Therefore applying this argument for all e E {e,

we find that T,(r) is invariant under F9 = To(n) + e1,e2, ... and has a unique simple

pole at q = 0 (r = oo) on the fundamental region H/rg and is therefore a hauptmodul

for this group. Therefore T1 is equal to i’ up to a constant which is fixed by (4.1)

to give the result (4.12).

5. Concluding remarks

Let us now summarise our results and consider some of the questions that still remain
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open. We have considered an element g of a special list of 38 Leech lattice automor

phisms and have used g to construct an orbifold theory with partition function J(r).

FLM have conjectured that the bosonic theory with this partition function is unique

and SO florb Vwith M M where the automorphism group of 7orb is

For g of prime order p we have shown that the centraliser group Cp of p in M

is isomorphic to the centraliser p+2d(G) of p— in M. In addition, we have shown

that the Thompson series for ii,, in horb is precisely that of p— in VD. These results

support the conjecture that ?1orb V and M M, at least in these cases. To

complete the proof of this, it is necessary to identify another set of automorphisms

E in M which mix the various twisted and untwisted sectors and then to show that

M =< Ci,, E >. E generalises the triality symmetry involution o in the original

FLM formulation. The origin of this triality symmetry lies in the relationship between

the construction of both the Leech lattice and the A?4 lattice from the Golay code

1,2,22j. The actual method of construction of E, which relies on some generalisation

of this triality symmetry, remains an open question.

For g of non-prime order n we have only found the automorphisin group C

for the Hubert space e where no mixing between sectors occurs. The full

centraliser C(i) of i has not been calculated because of the complications due to

non-isomorphic twisted sectors. We have however shown that the Thompson series

of i is precisely the Thompson series for n + e1,e2, ... M. We likewise propose

that there exists some generalisation of the triality symmetry, E, which mixes the

various sectors. We then expect that M =< C(i), E > in general.

It is interesting to note that we may perform a further orbifolding on orb

with the automorphism i which then returns us to the original untwisted Leech

theory. Given that 7(orb VD, we have therefore shown that orbifolding V with

n + e1,e2, ... M, where e n, results in the original untwisted Leech theory

7o This proves part of the conjecture stated in ref.[9j wherein we suggested that

orbifolding V with respect to elements of M either reproduces V or returns us to 7o

Given that Table 1 provides an exhaustive list, we therefore expect that orbifolding

V with the remaining elements of M of the form n + e1,e2, ... with e2 = n for some

e, will reproduce V again. These matters will be expanded upon elsewhere [261.

In conclusion, let us point out that we have only provided a complete list of

orbifolds with partition function J(r) based on a cyclic automorphism subgroup

< g >. We can certainly expect that there exists orbifold constructions based on

other subgroups (possibly non-abelian) which also share the same partition function

J(’r).

20



Tig Modular Group

_____Tig

Modular Group

224/124

312/112

48/18

56/16

2.6/13

36/12
2666/1636

2284/1442

9/1

2.10/15
52102/1222

2 10/15
223.123/134.62

42122/1232

23 12/146
132 / 12

214/17
32152/1252

2—
3—
4—

0—

6—

6+2

6+3

7—.

8—

9—

10—

10+2

10 + 5

12—
12 + 3

12+4

13—

14 + 7

15+5

2.162/128

2.3.182/126.9

9.18/1.2
2332183/136293

2252202/1242102

7.21/1.3
22222/12 112

2.324.242/126.8212

4.28/1.7
223.5.302/126.10.152

2.6.10.30/1.3.5.15
3.33/1.11

2.9.36/1.4.18
223272422/1262142212

2.46/1.23
3.4.5.60/1.12.15.20.
2.5.7.70/1.10.14.35
2.3.13.78/1.6.26.39

16—

18—

18 + 2
18 + 9

20 + 4

21 + 3

22 + 11

24 + 8

28 + 7

30+15

30+6,10,15

30+3,5,15

33+11

36+4

42+6,14,21

46+ 23

60+12,15,20

70 + 10, 14,35

78+6,26,39

Table 1
A list of the 38 Leech lattice automorphisms that obey the constraints (i)-(iii).
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