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1. Introduction

One-dimensional hard-rod time-dynamics corresponds to a simple law of motion: particles move on the real

line R’ freely between the epochs of collisions (which are happen when the distance between particles

becomes equal to a , the length of a hard-rod) and at the time of collision they exchange their velocities

(we suppose that the mass of every particle is equal to one). Such a simple character of motion makes the

hard-rod model exactly solvable (in a certain sense) and that is why this model attracts a lot of attention.

Of a particular interest is the case of an infinite hard-rod system: this is a good model to check various

conceptions of non-equilibrium Statistical Mechanics. Among a vast literature devoted to this model we

mention here the following rigorous papers which are related to the theme of the present work: (i) the

papers of Sinai (1972) [12] and of Aizenman, Goldstein and Lebowitz (1975) [1] where ergodic properties

of the hard-rod dynamical system with an equilibrium measure have been established, (ii) the paper of

Boldrighini, Dobrushin and Suhov (1979) [2] where the problem of convergence to an equilibrium state for

hard rods has been studied in a general set-up, (iii) the paper of Boldrighini, Dobrushin and Suhov (1983)

[4] where the hydrodynamical limit for hard-rods was performed and a non-linear “Euler’s equation” has

been derived (earlier, this equation appeared in a paper of Percus (1969) [11]), and finally, (iv) the papers

of Spohn (1982 b) [14] and of Boldrighini and Wick (1988) [5] and (1990) [6] where equilibrium fluctuations

around Euler’s regime were studied ( a starting point here was an earlier result of Lebowitz, Percus and

Sykes (1968) [9]).

This paper is devoted to studying hydrodynamical limit for the hard-rod system. The general problem

is to derive equations oh hydrodynamics (of primary interest are the Euler and Navier-Stokes equations)

from Hamiltonian equations of motion, and the hydrodynamical limit is a kind of procedure to establish

a connection between the “macroscopic” description of a system (hydrodynamics) and its “microscopic”

decription (motion of particles). In a general situation, the hydrodynamical equations are written for

densities of “canonical” first integrals of the motion: mass, momentum (or velocity) and energy (sometimes

angular momentum is considered, too). For details we refer the reader to a review paper by Dobrushin, Sinai

and Suhov (1985) [8].

The hard-rod model is degenerate in the sense that the portion of particles with a prescribed velocity is

preserved in time, and hence, hydrodynamical equations for this model should connect densities of various

species of a “fluid” labeled by the value of velocity v . The hydrodynamical limit is related to scaling

both the (microscopic) time and length by multiplying them by the factor where e — 0 . We arrive

therefore to the idea to consider a family { P } of initial states (probability measures on the phase space

of the infinite hard-rod system, or, in the probabilistic terminology, of random marked point processes with

marks from R’ ) such that a structure of a state P is changed “very little” on distances o(c_1) , but

such a change becomes noticeable on distances O(E_’) or more.

The quantity under investigation is the moment function PT_iP, (c1q, v) (see below) giving the

density of particles with velocity v at a (micro-) point c’q and at a (micro-) time e’t (more precisely,

in the state TE-1tP obtained from P in the course of hard-rod dynamics up to time e’t ). The result

of Boldrighini, Dobrushin and Suhov (1983) [4] is that under certain general conditions on initial states P

there exists the (weak) limit

ft(q, v) = lin PT_ltPf ((‘q, v) (1.1)

which gives a (unique) solution of the equation

f(q,v) = (Aft)(q,v) (1.2)

where A is a non-linear first-order differential operator

(A ft) (q,v) = - [ft(q,v) (v+ a J dw (v -w) ft(q,w) (1-a
fRi

d ft(q,th))’)]. (1.3)

Equation (1.2), (1.3) is interpreted as Euler’s equation for hard-rod fluid.

Relation (1.1) may be strengthened: for any t > 0

urn sup I f(q, v)
— PT,P (e1q, v) I = 0. (1.4)

f—+O
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For a couple of years the problem of derivation of a Navier-Stokes equation for hard-rod fluid is actively

discussed. A popular approach is to treat a Navier-Stoles equation as giving a “correction” to Euler’s

equation, either up to the terms of order in the WITS of (1.1), or up to convergence for (macro-) times

t in (1.4) (it is not clear, whether the first version will be appropriate for the second purpose, or

vice versa). Some controversial variants of a possible Navier-Stokes equation were proposed by Boidrighini,

Dobrushin and Suhov (1980) [3], by Spohn (1982 a) [13] and in Dobrushin (1989) [7]. Those equations were

written, basing on different assumptions (explicit or implicit) on an initial family { P } , which reflected

various features of” local equilibrium”, a notion which is widely exploited in the physical literature. However,

so far there was no rigorous derivation of any of those equations. One of difficulties was to give a reasonable

definition of locally-equilibrium initial states P (it may be hardly believed that a Navier-Stokes equation

can be derived without some kind of locally-equilibrium assumptions).

In this paper we give a derivation of a hard-cod Navier-Stokes equation treated as a correction to Euler’s

equation (1.2) up to the 0(e)— terms in the RHS of (1.1). The equation is established in a local sense: we

prove that for appropriately defined locally-equilibrium initial states P there exists (in a weak sense) the

quantity

—ir i—i \ fI \1 _fD\f

a I. PT_1,P. e q, V)
—

jq, vj j =o — DJQ) q, V

Here ft is the solution of Euler’s equation (1.2) and B is a non-linear second-order differential operator

(Bf0) (q, v) = [J dw Iv - wf fo(q, w) (1- a’ f0(q, v) -

- fo(q,v) f dw v-wi fo(q,w) (1-pa)’]. (1.6)

A value 5 [0, a—’) is the particle density in the initial state P (one of the conditions onto the family

{ P } is that 5 is constant ).
This result suggests the following version of a “short-time” Navier-Stokes equation which “corrects”

Euler’s equation for hard-rod fluid with locally-equilibrium states PE

f = A f + e B f. (1.7)

a form predicted by Spohn (1982 a) [13].

Equation (1.7) gives the following expression for the “viscosity” of a hard-rod fluid which is determined

as the coefficient in front of fo(q, v)

k(q, v) = e f dw Iv — wI fo(q, w) (1 — pa)’. (1.8)

In fact, all the variants of a Navier-Stokes equation which we mentioned before give the same viscosity

term. Our result in this paper does not mean that (1.7) is the only one possible version of a correction to

Euler’s equation (1.2). It is clear that the situation depends crucially on what is taken as a local equilibrium

at time zero. We suppose to return to this question in one of forthcoming papers.

We should notice that we do not prove in this paper any theorem on existence or uniqueness of a solution

to equation (1.7) ( such a solution should be related to a non-linear infinity-dimensional diffusion process),

although we establish a formula for the limit

lirn e [PTP (C’q, v)
— ft(q, v)]

for any t é R’ which provides some information about this limit. One of the difficulties in dealing with

(1.7) is that local equilibrium in our definition is not preserved in time. On the other hand, however, this

fact may be a base for explanation for appearence of irreversibility in equation (1.7).

The paper is organized as follows. In Section 2 we introduce basic notions related to an infinite hard-

rod particle system. Section 3 deals with Euler’s equation for hard-rod fluid, and in Section 4 we formulate

and prove our result on the Navier-Stokes correction. Throughout the paper we use mainly the physical

terminology for probabilistic notions (state, moment measure, moment function, fugacity, etc), but the paper

is self-contained and does not require any use of physical literature. On the other hand, the probabilistic

background may be provided, e.g., by the book of Matthes, Kerstan and Mecke (1978) [10].
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2. Dynamics of hard-rod particles

The configuration space X(a) of a system of hard-rod particles of length a > 0 is defined as the

collection of subsets X C R’ such that (a) Ix — r’I a for any pair x, z’ E X of distinct points and (b)

E(r,x’) (+)(jx_xII_a) = ()(x—x’j—a) = o where (x,x’) denotes a pair of”neighbour” points

from X and the sum Ew ( E) is taken over positive (respectively, negative) x, .r’ X (if a point

x E X does not have a neighbour from one side, we make the agreement that the neighbouring point is

so that the corresponding sum becomes infinite). The phase space of a hard-rod particle system

is the collection of subsets Y R1 x R1 such that Jx — > a for any pair (.r, v), (x’, v’) Y with

x x’ and v < v’ for any pair (x, v), (x’, v’) E Y with x’ = .r+a and the condition (b) above is fulfilled

(meaning that neighbours are considered in the sense of particle positions x ). Both and are

equipped with standard vague topologies; the corresponding Borel o— algebras are denoted by and

respectively. A configuration state of a hard-rod particle system (briefly, a configuration hard-rod

state) is a probability measure (PM) on ( X(a), (a) ). A full hard-rod state is a PM on ( M(a), (a) )•
Given a full state P, we can construct a configuration state Q as the image of P under the projection

M(a) x(’) which is induced by the map (x, v) i—p x (we shall call the state Q the configuration

projection of a full state P). Conversely, given a configuration state Q , we can build up a full state P

by indicating a family of conditional PM’s which we denote as P ( X ) , X E X(a) ; formally, one

deals with the conditional distribution wrt the o— subalgebra R(a){X(3)J C which is generated by

the foregoing projection and is isomorphic to (a) Physically speaking, a PM P ( I X ) describes

the conditional distribution of velocities of particles provided that their positions form a configuration X

Besides hard-rods, we shall deal with point particles. The configuration space X (phase space M ) of a

system of point particles is defined as the collection of non-negative integer-valued Borel measures on

(rpectively, on x R’ ) which are o-— finite (respectively, are projected to o— finite measures by the

map (x, v) — x). As before, both spaces X and M are provided with vague topologies and we denote

their Borel o—algebras by and R , respectively. A configuration state Q and a full state P of a

point-particle system are PM’s on (X, ) and (M, R) , respectively; they are related to each other in the

same way as before.

We shall deal mostly with so-called simple states which are supported on the set of integer-valued

measures X or Y whish assign a value at most one to any one-point set { x } or { (.r, v) } . Those

measures are identified with their supports which are subsets of R’ (respectively, of ft1 x ft1 ) with a

finite number of points in any compact C C R’ (respectively, in any set C x ft1 where C C ft1 is

a compact). It will be convenient for us to use both measure-theoretical and set-theoretical notions and

notations: f X(dx), y X , etc. For example, the spaces X(a) and M(a) may be regarded as Borel

subsets of X and M , respectively, and hard-rod states may be treated merely as pont-particle states

concentrated on those subsets.

To write down formulas for hard-rod dynamics we need to define dilation and contraction transformations

acting on X and M . For definiteness, we consider the case of the phase space .M ; to pass to the

configuration space X it is enough to use the projection. Given Y E M and (x, v) E Y , we denote by

D(,) Y the element of M(a) obtained as follows. Let us label points (., i) E Y by integers n E

according to the lexicographic order on ft’ x ft1 , and giving the number zero to (x, v) . Then D(,) Y

is formed by the points (x ± na, va), n Z1. Conversely, given Y e and (x, v) e Y , we denote

by C(rv) Y the element of M which is formed by the points — na, va), n Z1, with the same

rule of labeling points (, i3) E Y as before.

The free dynamics of a point (x, v) is defined by (x, v) (x + rv, v), T ft1 being the time

variable. Given Y M and (z, v) Y , we denote by M(x, v; T, Y) the algebraic number of intersections

for the trajectory {(x + v, v) } of a point (x, v) during the time between zero and T

M(x,v;T,Y) = Card {(,i3)eY :>x, +r x+rv}—

—Card{(,i3)EY :<x, +Ti3x+TV}. (2.1)

Given Y E , we now define the hard-rod dynamics by

T7 Y = { (x+rv+aM(x,v;r,C(V) Y),v) : (x,v) E Y }, T eR’. (2.2)
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Our aim is to study the evolution of a (full) hard-rod state P under the hard-rod dynamics:

T P = P(
-T),

T E R1. (2.3)

The rest of this section is devoted to introducing basic tools to be used in the sequel.

The action of the space-translation group { S, y R’ } on each spase introduced is defined in the

standard way; a given configuration or full state G is called translation-invariant if G(SA) = G(A)

for any y e R’ and any event A . The moment measure (MM) RQ (Rp) of a configuration state Q
(respectively, of a full state P ) is a Borel measure on R1 (respectively, on x R’ ) given by

RQ(B) = EQ NB , B C R’ (respectively, Rp(B) = Ep NB , B C R1 x R’).

Here (and below) EG denotes the expectation wrt a PM G and

NB(X)
= J X(dx) XB (x) (respectively, NB(Y)

= f Y(dx x dv) XB (xv));

NB(X) (respectively, VB(Y) ) is merely the number of points .r X (respectively, (x, v) é Y ) which

are in B . The Radon-Nicodym derivative pQ(x)
= -A- (x), x E R1, (respectively, pp(x, v) =

d(Axii) (x, v), x, v e , where A is the Lebesgue measure on R1 and v is a o— finite non-negative

Borel measure on R’ , is called the moment function (MF) of a configuration state Q (respectively, the

v— moment function ( ii— MF) of a full state P (in the case where v is fixed, simply the MF of P). For

atranslation-invariant configuration state Q the MF pQ(x) is a constant, fi , interpreted as the particle

density in the state Q . For a translation-invariant full state P the MM is of the form Rp = jip (A x

where p is a PM on ; a constant j5p gives the particle density in the state P

We shall need the notion of the Palm distribution associated with a configuration state Q or with a

full state P . For the sake of brevity, let us restrict ourselves to the case where our state is simple (see

above). We shall give the definition for the case of a full state; the reader can easily cover the configuration

case by taking the projection M —* X . Consider a non-negative measure ir on (R’ x R’) x M (more

precisely, on the set M = { ((x, v), Y) : (x, v) Y } ) given by

f w((dx x dv) x dY) g((x, v), Y) = Ep

where

N(g) (Y)
= f Y (dx x dv) g((x, v), Y)

and g is a (non-negative) measurable function on M . The image of the measure ir under the projection

((x, v), Y) (x, v) is precisely the moment measure Rp . Hence, by Fubini’s Theorem,

f ((dx x dv) x dY) g((x, v), Y) f Rp(dx x dv) f P(,v) (dY) g((x, v), Y)

where { , (x, v) E x R’ } is a family of PM’s on M (more precisely, on = { Y ; Y

(x, v) } ) which are defined for Rp—. aa (x, v) x . This family is called the Palm family of the state

P, and a single PM P(v) is called the Palm distribution (state) associated with P at a point (x, v).

We shall not give here the definitions of a configuration Poissonian state and of full Possonian state

with lID velocities: they are well-known and of a common use. We notice that a configuration Poissonian

state is determined by its fugacity (or particle density) and a full Poissonian state by fugacity o and

velocity distribution p . We notice also that the Palm state P(v) associated with a full Poissonian state

P at a point (x, v) is defined by

P(r,v)(A) = P(A@v)), A ç M(v),

0



where A(r) is the image of the event A under the map M(r,v) — M given by Y e d&4(S,V)

Y \ {(x, v)} . The similar assertion is valid for configuration Poissonian states, too.

A configuration state Q is called a hard-rod iibbs state with fugacity 5o if its Palm state Qr is the

image, under the dilation Dr , of the configuration Poissonian state Q associated with the configuration

Poissonian state Q° of fugacity i5o

= Dr Q, or = C Qr, X E R’. (2.4)

This condition determines the state Q uniquely; Q is translation-invariant and has the density 5 =

,So(l — poa)’ e [0,a1) (we can call the state Q a hard-rod Gibbs state with particle density 5)

A full state P is called an equilibrium hard-rod state with fugacity /5° (or particle density ,5 =

,5o(1 + ,öoa)1 ) and velocity distribution i if its Palm state P(r,v) is the image, under the dilation

D(r,v) , of the Palm state P associated with the full Poissonian state P° of fugacity j5o and velocity

distribution it

Pr = D(r,v) (r)’ or = C(r,v) P(r,v), (x, v) E R’ x R’. (2.5)

The equivalent condition is that the configuration projection of P is the hard-rod Gibbs state and the

conditional PM P ( I X ) corresponds to lID velocities with the marginal distribution p

A similar construction relating translation-invariant hard-rod and point-particle states may be performed

in a general situation as well. The point-particle state is called contracted and the hard-rod state dilated; their

densities /5o and j5 are connected, as before, by the pair of equalities jso = /5(1—/5a)’ , /5 =

We conclude this section with a summary of some known results which are related to hard-rod dynamics

and provide an insight into concepts and arguments which follow. For details and proofs see Sinai (1972)

[12], Aizenman, Goldstein and Lebowitz (1975) [1) and Boidrighini, Dobrushin and Suhov (1979) [2].

Proposition 2.1. (i) An equilibrium hard-rod state is invariant under hard-rod dynamics:

TPEP, rER’.

(ii) Let P be an equilibrium hard-rod state with velocity distribution p such that Elvl < Do and p

has no atom at v0 = Ev . Then (M, T,., P) is a K— system.

(iii) Let P be as before, and p([vo — 6,v0 + 6]) = 0 for some 6 > 0 . Then (M,T,P) is a

Bernoulli system.

(iv) Let G be a translation-invariant hard-rod state with the MM RG = /5 Ptxp) where E,IvI < Do

and G° be the corresponding contracted state. Let P denote the equilibrium hard-rod state with density /5
and velocity distribution and P° be the corresponding Poissonian state. Then the state T G weakly

converges, as r - , to P if the state T. G° obtained from G° in the course of free dynamics

converges to P°

General conditions ensuring convergence of the state T.° F to a Poissonian state are formulated in the

paper of Boidrighini, Dobrushjn and Suhov (1979) [2]. The main condition is space-mixing:

lim sup sup I F(Aj. U A2) — F(Ai) F(A2) I = 0;
yER’

the internal supremum is taken here over the pairs of events A, E ((—, y)), A2 E J((y + 5, Do)), where

R(I), I C R’ , denotes the o— subalgebra of R generated by the RV’s NB with B ç I x
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3. Dynamics of hard-rod fluid: Euler’s equation

Henceforth, we shall use the term “state” for a full st.te of our system (either of hard rods, or point particles).

Let us suppose that a family of initial hard-rod states PE , > 0 , be given which satisfies the following

conditions I and II.

I. The MM Rp is absolutely continuous wrt a measure .A x p where p is a o— finite measure on

R1 with p(C) < c.\(E(C)) for any compact CC R1 where E(C) = CU {x é CC : dist(x,C) < 1}

and c > 0 is a constant and the p— MF pp (x, v) satisfies the bound

pp (x,v) <(v), x,vER’, (3.1)

where

J p (dv) (v) < a, (3.2)

and

J p(dv) (v)jvI < (3.3)

and the following relation holds

urn pp (e’q,v) = f(q,v) , xv ER1, (3.4)

where f is a function of class C’ for which the bound (3.1) is fulfilled.

To formulate our condition II, we need some definitions. Given q, v and t , we set

v t(v—w)

r(q, v;t, f)
= j p(dw) f ds f(q + sw; f) —

- J p(dw) f ds f(q + s, w; f). (3.5)
v t(v—w)

Here, a function fq°( , ; f) is the image of f under a continuous analog of contraction C(.

f(q + s, w; f) = f(q + s*, w) (1 — a
JR’

p(d) f(q + s, (3.6)

where s = s*(q, s; f) is determined from the equations

r
— a

j
d.i J p.(d) f(., zD) = s, for s > 0, (3.7a)

q

and 1q
s + a d. p(dt) f(i,th) = s, for s < 0. (3.76)

Jq+s JR’

We notice, for the further use, that formula (3.5) becomes particularly simple provided that f is of

the form

f(q,v) = ,oh(q,v)

where E [0, a’) is a constant and J’R’ p(dw) h(q, w) = 1 for any q E R’ . In this case

v t(v—w)

r(q,v;t,f) = o[ p(dw) dsh(q+s(1+,50a),w)—
— 0

— J p(dw) ] ds h(q + s(1 + oa), w) 1’ (3.8)

v t(v—w)

7



where = o(1—pa)’

Condition II reads now as follows:

II. For any 6 > 0 , i R’ and any boundd C C R’ the following relation holds uniformly in

(q,v) ER’ x C

C(1q,v) ((Pt )(tq,v)) ( { Y : M(c’q, v; 1t, Y) —

— r(q,v;t,f) I > 6 }) = 0 (3.9)

(a law of large numbers for M(c’q, v;e1t, )). Here ( P )(e’q,v) is the Palm state associated with Fe

at the point (c’q, v) and C(e_q,v) ( (1’ )(c’q,v)) is its contraction.

Examples of families { P } which obey I and II are given in Sect. 5 of Boidrighini, Dobrushin and

Suhov (1983) [4].

The following assertion was proved by Boidrighini, Dobrushin and Suhov (1983) [4]:

Proposition 3.1. Under the conditions I and II, for any t E R’ the rescaled MM R given by

f R (dq x dv) g(q, v) = c f Rrp (dx x dv) g(x, v),

converges, in the vague topology, as e —+ 0 , to a measure which is absolutely continuous wrt A X jA

with the Radon - Nicodym derivative ft which gives a (unique) solution to the equation (1.2) (with the

measures i(dw) and p(dL) instead of dw and diii ):

ft(q, v) = -v f(q, v) -

_ [f p(dw) (v - w) f(q, w)x

x (1— a f (duii) f(q,uii))’ f(q,v)], q,v,t ER’, (3.10)

with the initial date

fo(q,v) = f(q,v), q,vER1. (3.11)

An important formula for the solution of the Cauchy problem (3.10), (3.11) is

f dq f(q, v) g(q, v)
= J dq f(q, v) g(q + iv + ar(q, v;t, f), v), I E R1, (3.12)

where g is an arbitrary measurable bounded function R1 x —÷ R’ with a compact support and

r(q, v; I, f) is given by (3.5).
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4. Dynamics of hard-rod fluid: Navier-Stokes’ correction

The aim of this section is to establish the first-ord.r correction to equation (1.2) (or (3.10)) in the sense

discussed in Introduction. First of all, we need a notion of a locally-equilibrium hard-rod state, or, more

precisely, of a locally-equilibrium family of hard-rod states.

Let us fix a Borel measure i on R’ which has the properties listed in condition I of the preceding

Section. Furthermore, we fix a non-negative function h = h(q, v), q, v E R1, which is of class C4 in q

for any given v E R’ . Suppose that

(dv) h(q, v) 1, q E R’, (4.1)

and

h(q, v), I - h(q, v) I < (v), q, v E R’, i = 1,2,3,4 (4.2)

where

I (dv)v’ < i = 1,2 (4.3)
JR’

(cf. (3.2), (3.3)). Finally, we choose a value 5 0 such that

‘

(dv)(v) < a. (4.4)

We set then

f(q, v) = ö h(q, v), q, v E R1. (4.5)

Definztzon. A family of hard-rod states { F, e > 0 } is called locally — equilzbrium hard-rod family

with particle density 5 and velocity distributions { h(q, v),u(dv), q e R’ } if the following two conditions

are fulfilled.

A. The configuration projection of the state FE is the hard-rod DLR state Q with fugacity o =

—

B. The conditional PM P( JX) corresponds to independent velocities, and the marginal velocity

distribution for a particle with position at x E X is h(ex, v) p(dv).

We have to make several remarks related to this definition.

1. The p— MF of the state FE is given by

pp(x,v) = f(cx,v), x,vER’. (4.6)

2. The Palm state (])() associated with FE at a point (x, v) may be described as the image, under

the dilation D(rv), of a point particle state FE,(r,v) which is determined by the following two properties.

A’. The configuration projecion of Ft9(rv) is the Palm state Q) associated with the Poissonian

state Q° of density at the point (x, v).

B’. The conditional PM (PE)(ZV) ( IX) corresponds to independent velocities for particles with

positions at X\{x} , and the marginal velocity distribution for a paricle with position at E Xfl(x, oc)

is

h(e( + aN(r)(X) + a),) (d), eR’, (4.7a)

and for a paricle with position at E X fl (—oc, .r)

— aN()(X) — a), ii) 1i(d), E R’. (4.Tb)

In other words,

C(r,v)( (PE)(,v)) = Fzv) (4.8)

where FE9(rv) is determined by A’ and B’. Notice that we do not claim that { F2(rv) } is the Palm

family of a certain (full) state: this is not true in general.

3. It is possible to prove that the locally-equilibrium hard-rod family { F } satisfies both conditions

I and II of the preceding section with f(q, v) given by (4.5). For the proof see Sect. 5 of Boldrighini,

Dobrushin and Suhov (1983) [4].

The aim of this section (and of the whole paper) is to prove the following assertion:
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Theorem. Let { P, > 0} be a locally-equilibrium hard-rod family with particle density ,5 e [0, a’)

and velocity distributions { h(q, v) i(dv), q E R’ } where p and h satisfy the aforementioned conditions.

Then, for any test-function g : x — R’ of class C4 and with a compact support, the following

relation holds:

ii lirn [f dq p(dv) PT1P (‘q, v) g(q, v)
— f dq p(dv) f(q, v) g(q, v) j =

= lim lim c [J dq p(dv) p_p (‘q, v) g(q, v) —

— f dq p(dv) f(q, v) g(q, v)] =

= J dq p(dv) (Bf) (q, v) g(q, v). (4.9)

Here PT 1tP. is the p— MF of the time-shifted hard-rod state Te_itP , f is the solution of the

Cauchy problem (3.5), (3.6) for the hard-rod Euler equation with the initial date f(q, v) given by (4.5) and

B is the non-linear second-order differential operator (cf. (1.5)):

(Bf) (q, v) = ( [f p(dw) v - wj f(q, w) (1-a f(q, v) j -

- [f(q, v) f p(dw) Iv - wI f(q, w) (1- a/5)1 1). (4.10)

Proof. As follows from Remark 1 (see (4.3)) and from the definitions of the Palm state and of hard-rod

tynamics (see (2.2)),

J dq p(dv) PT1P (C1q, v) g(q, v) =

= f dq p(dv) f(q, v) E() g(q + iv + a M(e1q,v; C1t; C(f_lq,v) ), v). (4.11)

By using Remark 2 (see (4.8)), the RHS of(4.11) may be written as

J dq p(dv) f(q, v) EC(_lq,v)((A)(_lq,)) g(q + iv + ca M(q, v; C_li; ), v); (4.12)

this is the basic expression we shall work with.

First of all, we put the expectation into the argument of our function g . To simplify the notations

we write henceforth E instead of E . The derivatives g’, g” , etc, (and also
(1 q,)’.\ )(1q,v)1

h’, h” , etc, below) are understood as the partial derivatives wrt the first argument. Finally, given a RV ,

we denote by its centered version: = — E7. Using Taylor’s expansion yields

RHS of (4.12)
= J dq p(dv) f(q, v) [g(q + iv + a E M(C1q, v; C1t; ‘), v) =

+ CU g’(q + iv + CU E M(C’q, v;e1t; ), v) EM(C’q, v; C11; ) +

+
22

g”(q + tv + CU E M(c’q, v; Ct; ), v) E ((C’q, v; C1t;
))2

+

+ + a E M(C’q, v; C11; ), v) E (M(C1q, v; C11;
))3

+

+
—-—

E (gb’ (q + iv + 81, v) (M(C1q,v; C11;
))4)

j. (4.13)

Here 81 is an RV between CU M(C1q,v; C’t; ) and the expectation value CU E M(C1q,v; C1t; )
The term with g’ gives, of course, zero contribution. The terms with g” and g’ may be neglected as

shown by the following Lemma 4.1:
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Lemma 4.1. Under the conditions of the Theorem, for any t E R’

lim f dq (dv) h(q, v) [_ g”(q + tv + eaE M(eq, v; c’t; ), v) E ((e1q, v; )) +

+ E (gIV(q
+ tv + 9, v) ((E’q, v; et;

))4)]
= 0. (4.14)

In order not to interrupt the proof of our Theorem, we postpone the proof of Lemma 4.1 until the end of

this section (the same is about other Lemmas which follow). The next step is to analyze the two remaining

terms in the RHS of (4.13). We start with the equality

v (v—w)

E E M(eq, v; e’t; )
= j p(dw) f ds E h(q + s + Ea (N(Iq,_1(q+s)) + 1), w) —

fco

— J p(dv) J ds E h(q + s — ea (N(E-i(q+s),-lq) + 1), w) (4.15)
v t(v—w)

which follows immediately from properties A’ and B’ of the state C(,—q,v) ((P)(,..tq,v)) and from

(2.1). Using the same sort of ideas as before we write for s > 0

E h(q + s + a (N(1q1(q,)) + 1), w) = h(q + s + (E N(1q,1(q+s)) + 1), w) +

+ a h’(q + s + a (E N(tq,t(qs)) + 1), w) E N(q1(qs)) +

+ h”(q + s + ca (E N(_1q,_1(qs)) + 1), w) E ((‘q,e’(q+s)))2 +

+ h”(q + s + ea (E N1q,e_1q(q+s)) + 1), )) E (N(1q,1(q+s)))3 +

+
4!

E (hIV(q + s +
e+))

((1q1(q+s)))4) (4.16)

where +)
is an RV between and the expectation value ea E N(e_1q,_i(q+3)) . The

similar formula holds for s < 0 . The terms with h’ give, as before, zero contribution. The terms

with h” and hIv will be estimated below and neglected. The non-trivial contribution will come from the

remaining two terms.

Using again property A’ yields for s > 0

— 9 —1—
E = E (N(zq,1(q+s))) = Po s; (4.17)

the similar equalities take place for s < 0 , too. We can write for s > 0

h(q + s + a( E N(_1q’(q+s)) + 1), w) = h(q + s(1 + 15oa), w) +

+ Eah’(q + s(1 + oa), w) + h”(q + s(1 + oa) +
) w); (4.18)

again the similar expansion holds for s < 0 as well. Here is an RV between zero and cci

Combining (4.13) — (4.18) and using once more Taylor’s expansion, we get

v t(v—w)

c E M(c’q, v; ct; ) = p(dw) ds 15o [h(q + s(1 +150a), w) +
— 0

+ o h”(q + s(1 + oa), w) s + cah’(q + s(1 + 0a), w) +

11



I \2Ea)
,, (+)

+—-—h (q+s(1+oa)+i91 ,w)j—

— j t(dw) ] dso[h(q+s(1+oa),w)—
v t(v—w)

ea2
— ——oh”(q + s(1 + oa), w) s — eah’(q + s(1 + i5oa), w) +

+ (4.19)

Taking into account formula (3.8), we rewrite the sum of the zero-order and first-order parts of the RHS

of (4.19) as

r(q, u; t, f) + Eari(q, v; t, f) + Ear1(q, v; t, f) (4.20)

where
1V t(VW)

r1(q,v;t,f) = ( / u(dw) / ds+
J—c JO

+ J (dw) (ds) ) f(q + s(1 + oa), w) (1 — ga)’ (4.21a)

v t(v—w)

and
a

v (v—w)

i(q,v;t,f) = (J p(dw) j ds+

1c pO

+ j
p(dw) J ds ) f”(q + s(1 + oa), w) s (1 — a)2. (4.21b)

v t(v—w)

Now, going back to (4.13), we have

g(q + tv + ea E M(c’q, v;e1t; ),v) = g(q ±tv + ar(q,v;t,f),v) +

+ Eag’(q+tv+ar(q,v;t,f),v) [ri(q,v;t,f) +1(q,v;t,f)] +
2

gi(qv;t,e). (4.22)

The contribution of the E2— term may be neglected: this is the direct corollary of Lemma 4.2:

Lemma 4.2. Under the conditions of the Theorem, for any t E R’

I f dq p(dv) h(q, v) e gi(q, v; i, ) = 0. (4.23)

The assertion of Lemma 4.2 completes the analysis of the first term in the RHS of (4.13).

We pass now to the g”— term in the RHS of (4.13).

Lemma 4.3. Under the conditions of the Theorem, the following relation holds true

lirn e E (M(C1q,v;e’t, ))2
=r2(q,v;t,f) +i2(q,v;t,f) (4.24)

where
cv j4(V_W)

r2(q,v;t,f) = (J p(dw) J ds+
— 0

pO

+ J ii(dw) j
ds) f(q + s(1 + oa), w) (1 — pa)’, (4.25a)

v t(v—w)

and
0 rt(V_Wi)

r2(q,v;t,f) = (/ p(dwi) I ds1
—

IL(dwl) I dsi ) x

J_ Jo Jv Jt(v—wi)
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and

ft(V—W2) fcc fO

p(dw2) / ds2
— / p(dw2) / ds2)x

JO Jv Jt(v—w3)

f”(q + si(1 + oa), w1) Si f(q + 82(1 + oa), w2) +

f(q + si(1 + oa), wi) f”(q +s2(1 + 5o), w2) s2 +

+f’(q+si(1+oa),w1)f’(q+s2(1+oa),w2)x(si .82) (siAs2)] (1—a)2

‘a’

From Lemma 4.3 we derive that

()2

g”(q + iv + ea E M(’q, v; ), v) E ((eq, v; et, ))2

= g”(q+tv+ar(q,v;t,f),v){r2(q,v;i,f) +2(q,v;t,f) j + E2g2(q,v,t,e).

It turns out that the e2 -term is again negligible:

Lemma 4.4. Under the conditions of the Theorem, for any t E R’

f dqp(dv)f(q,v){2(r1(q,v;t,f) +1(q,v;t,f))g’(q+tv+ar(q,v;t,f),v)+

+(r2(q,v;t,f) +2(q,v;t,f) )g”(q+tv+czr(q,v;i,f),v)].

V

where

For

s1 As2 = mill [s1,s2j, if si, s2 0

s1 As2 = max [s1,s2j, if S, 8 < 0

the sake of brevity we make the convention to write henceforth

pjt(v—w)j ,.O çt(v—w) fcc

p(dw) / ds instead of ( / jz(dw) / ds + / p(dw) /
Jo J—cc J0 iv J(v—.w)

t(v—w)

(dw) j ds instead of

0

fcc
t(v—w)

p(dw)

(4.25b)

ds)

ds).

(4.26)

(CO

ds
— /

iv

(dw)

JO

(v-w)

lim j J dqp(dv)h(q,v)Eg2(q,v,t,) 1= 0. (4.27)

Combining the calculations done so far, we can write the “essential” part of the RHS of (4.13) as

J dq p(dv) f(q, v) [g(q + iv + ar(q, v; t,f), v) +

+Ea(ri(q,v;i,f) +f1(q,v;i,f))g’(q+tv+ar(q,v;t,f),v)+

+ (r2(q,v;t,f) +2(q,v;i,f))g”(q+iv+ar(q,v;t,f),v)J. (4.28)

According to (3.12), the first term in parenthesis in (4.28) gives just the integral

f dq (dv) f(q, v) g(q, v),

and after subtracting and dividing by e ,we arrive to the expression

(4.29)
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Now we take the derivative .. (or divide by t ) and pass to the limit t 0 . Reviewing formulas

(3.5), (4.21a), (4.21b), (4.25a) and (4.25b), we conclude that the limiting expression is

JdqP(dv)f(q,v)(2[ri(q,v;t,f) +i(q,v;t,f)] I=o)g’(q,v)+

+ ( [r2(q,v;t,f) +2(q,v;t,f)J Jt=o ) g”(q,v)), (4.30)

and furthermore,

r(q, v; f) I=o
= L1 p(dw) Iv — f(q, w) (1 — pa)’, (4.31a)

v; t, f) It=o = 0, (4.31b)

v; t, f) It=o
= f p(dw) )v

— wI f(q, v) (1 — a)’ (4.31c)

and

r2(q, v; t, f) It=o 0. (4.31d)

After integrating by parts we arrive to the integral

j f dq(dv)g(q,v) [-2 (f(q,v)
fRi

p(dw) Iv-wI f(q,w))(1_a)1 +

+ (f(q, v) f (dw) Iv - w f(q, v) ) (1 - a)1 =

= J dq(dv) g(q, v) [ ( f p(dw) jv - w( f(q, w) (1- pa)’ f(q, v) ) -

- ( (f(q, v) f p(dw) Iv - wi f(q, w) (1- a)1 )]. Q.E.D.

Proof of Lemma 4.1. The two terms which arise in (4.14) are investigated in a similar way, and to avoid

a repetition we proceed with one of them which contains g1” . First of all, we have

I J dq (dv) h(q, v) E (
9IV(q

+ tv + e1, v) ((e’q, v; ext,
))4)

< const e J dq p(dv) h(q, v) E ((e’q, v;e1t, ))4. (4.32)

We write then formulas which are used, in slightly different versions, in various arguments below. For

simplicity, we write M and M instead of M(c1q,v; C1t, ) and M(c1q, v; e’t, ) and N(s) instead

of N(.1q,..t(qs)), S > 0 , or of N(E_1(q+s),.1q), s < 0 . We have

= EM4 — 4EM3EM + 6EM2(EM)2 — 3(EM)4 . (4.33)

Assuming for definiteness that t > 0 , one can write

f flt(V_W)l

E M4 = e’ i(dw) I ds ,oo E h(q + s ± ca (1 + N(s)), w) +

Ja’ Jo

2 t(v...w3) 2

+4c2 p(dw) f ds )
()2 E H h(q+s±ca (1+N(sk)),wk) +

14



+ 6 2 H (J p(dw) j ds )()2 E h(q + 8k ± ca (1 + N(sk)), wk) +

2 t(v—w,) t(ti—w3)I

+ 6 e
JR’

jz(dw) j
ds) f p(dw3) f ()3 x

xE h(q+sk±ea(l+N(s)),wk)+

4 t(v—w,) 4

+ H (f p(dw) j ds )
()4 E H h(q + 8k ± ca (1 + N(Sk)), wk); (4.34)

similar formulas hold for E M3 and E M2 . The choice of sign in front of e depends on whether sj

(more presisely, t(v — wk) ) is positive or negative.

We must worry about the terms of order e and e which arise in the RHS of (4.33). Let us

consider the case of c which is sligtly more complicated. Notice that in the limit e — 0 the coefficient

on this term in the RRS of (4.34) is

4
.

ft(v—wk)

fi j
p(dw) J ds3 h(q+s(1+oa)±ea,w); (4.35)

j=1 ‘ 0

this follows immediately from the law of large numbers and Lebesgue dominated convergence theorem. The

same is true for e - terms which come from the other addends in the RHS of (4.33). The sum of all the

coefficients gives zero.

It remains to study deviation of the E - coefficient in the RHS of (4.34) from the limiting value (4.35):

this may create a term of order e and, after multiplication by , a term of order c . The similar

problem arises with the other e - terms figuring in the RHS of (4.33).

Comparing the quantities

E H h(q+sk±ea(l+N(s)),w) and H h(q+s(1+o)±ea,w),

we use again Taylor’s expansion formula and formulas for moments of the RV s(s) in the configuration

Poissonian state. Then we arrive to the conclusion that the first derivative gives zero contribution and the

second derivative creates e2 in front which is negligible. Similar arguments work for the other e - terms

from the RHS of (4.33). This finishes the proof of Lemma 4.1.

Proof of Lemma .2. In many details the proof of Lemma 4.2 repeats that of Lemma 4.1 (this is also

true for Lemmas 4.3 and 4.4) and we shall proceed in a more concise way. To analyze the term e2 g(q, v, t, e),

we notice that it accumulates various contributions which may be “suspected” of being of order e2 . Those

contributions can be “labeled” by pairs (i, i’), I = 1, 2, i’ 1, 2, 3, and are associated with products

of derivatives g and h . Besides, there are contributions which are suspected to be of higher

order: they correspond to multiple products. Since the arguments in analyzing all these items are similar,

we restrict our attention to one of them, namely, to the term corresponding to the pair (1,3). This term is

given by

3 v t(v—w)

g’(q +tv + ari(q, v;t, f), v) [j (dw) j ds E (h”(q + s + ca 8, w) R(s)3)+

+ f p(dv) ds E (h”(q + s — ca w) (s)3) 1 (4.36)

v (v—w)
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where G is a RV between the value N(s) and its expectation E N(s) . Using our assumption (4.2),

(4.3) and the equality E N(s)3 = e1 IsI Po , we conclude that the “true” order of (4.36) is 2
• Q.E.D.

Proof of Lemma 4.3. We perform the followinstraigtforward calculation (cf. (4.34)):

t(v —w )j

eEM2 = ,u(dw) ds10 Eh(q±s±ea(1+N(s)),w)+
bf Ri 0

2 t(v—w) 2

+ e H L1 p(dw) j ds )
()2 E fi h(q + s ± ca (1 + N(Sk)), wk); (4.37)

as before, the choice of plus or minus is determined by sign (t(v — w)) and sign (t(v — wk)), i = 1, 2 . On

the other hand,

2 t(v—w,)

(EM )2 = H (j (dw) j ds o h(q + s(l + oa) ± ea,w)). (4.38)

We have to look for the limiting non-vanishing terms from thee E (M)2 e ( E M2 — (E M)2 )
By virtue of Taylor’s expansion and formulas for expectations E ( N(s) ), i = 1,2, 3, and E N(si)N(s2)

one finds that those terms are:

I
t(v—w)I

p(dw) ds ,a)o h(q + s(1 + ,Ooa), w)

Ri 0

(this is the limit of the first addend from the RHS of (4.37)) and

2 t(v—w)

fi (J p(dw) J ds )
()3 [h”(q+sl(1+oa),wl)h(q+s2(1+oa),w2) Si +

j=i Ri 0

+ h(q + si(l + ,oa), wi) h”(q + s2(1 +150a), W2) 2 +

+ h’(q + Si(l + oa), Wi) h’(q + 82(1 + ,Ooa), W2) X.(s1 •s2) •rnr sd i

(which is the difference of the second addend from the RHS of (4.37) and the RHS of (4.38)). This completes

the proof of Lemma 4.3.

Proof of Lemma 4.4. After the investigation of the term e E ( M )2 which was done in the proof of

Lemma 4.3, all what remains is to study the difference

g”(q+tv+eaEM,v) — g”(q+tv+ar(q,v;t,f),v).

This is straightforward in view of the formula (4.15).
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