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Short Recall of Two-Dimensional Conformal
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Dublin Institute for Advanced Studies, 10, Burlington Road, Dublin 4,

Ireland

Abstract: An introduction to two-dimensional conformal field theory is given which
compares it to conformal field theory in higher dimensions and which emphasizes the re
lationship between the Noether theorem and the Virasoro and Kac-Moody algebras. The
standard models, free fermions and bosons, Liouville, Toda, and WZNW, are described.

1. Introduction.

As some of the participants at this conference are not working on two-dimensional

conformal field theories and many of the talks will be in this field I have been

asked to give an introductory lecture on the subject. In order to do this I will

attempt to present the theory in terms which are familiar to all, namely, in terms

of Noether’s theorem [1]. This theorem is well-known and, perhaps surprisingly,

it is sufficiently broad to describe the basic structures. By Noether’s theorem I

mean here, of course, not merely the conservation of the Noether charges, but the

implementation of group transformations by means of those charges, and the fact

that the charges represent the Lie algebra of the symmetry group on the Hilbert

space or phase-space of the theory. It will be seen, for example, that the well

known Virasoro and Kac-Moody algebras [2] [3] [4] of two-dimensional conformal

field are just Noetherian representations of conformal and internal symmetry group

transformations, respectively.
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Accordingly, we start with the general Noether theorem and then specialize to

the case of space-time symmetries, for which the Noether charges are moments

of the energy-momentum tensor. We then consider the restrictions that are intro

duced by adding scale invariance (and hence, for local Lagrangian theories, confor

mal invariance [5]) to the usual Poincare invariance. In order to emphasize the dif

ference that exists between the two cases, we first consider the higher-dimensional

cases d = 3,4 and only afterwards specialize to the two-dimensional case d = 2.

The big difference, of course, is that, in contrast to the higher-dimensional cases,

the conformal group in two dimensions is infinite-dimensional and admits central

extensions.

In order to illustrate the general principles, and because these models will

undoubtedly be widely discussed at the conference we then present the better-

known two-dimensional conformal models, namely the free-field models for both

fermions and bosons [2], the Liouville and Toda models [6], which describe interact

ing scalar fields, and the Wess-Zumino-Novikov-Witten model [2] which describes

group-valued scalar fields, and which have non-trivial interactions and topological

terms if the group is non-abelian.

2. Recall of Noether Theorem.

As mentioned in the Introduction, the Noether theorem actually consists of three

parts and we now recapitulate the three statements. Let L(q(x), 84(x)) be a La

grangian density for any set of fields q(x). Then the Lagrangian field equations

may be written in the form

DL SL
= -;:ç-7, where

1
(1)

cnp OUp

Now suppose that the fields vary with respect to some infinitesimal rigid (x

independent) group transformation 4(a)
—

q(x) + gq.) and define the current

= > çb7CiSgq!. Then, as a consequence of the field equations it is easy to see that

8pjp = SgL. (2)

Accordingly, if the Lagrangian is group-invariant we have

8j = 0, and hence DtQ = 0 where Q = fio(x) (3)
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where the integral is over space only. Thus, if the Lagrangian is group- invariant

the current j, and the charge Q are conserved. This is the first part of Noethers

theorem.

Next let [ir0(x), q(y)] = 8(x
—

y) be the equal-time commutation or Poisson-

bracket relation for the fields. Using these and the definition of Q one finds at once

that

[Q,çb(x)j =6gq5(x). (4)

In other words one finds that the conserved charge Q implements the infinitesimal

group transformation. This is the second part of Noether’s theorem.

Finally, let us suppose that the infinitesimal group transformation is part of a

Lie group of such transfomations i.e.

Sg4(x) = euc/(a), where [ua,cTb] = fbuc, (5)

the fabc being the structure constants. Then from (4) one sees by inspection that

[[Qa, Qb] — fbQc, g(x)j = 0, .(6)

from which it follows that

[Qa, Qb] = fcbQc + Cab, where [Cab, çb(r)] = 0. (7)

Equation (7) shows that the conserved charges Q satisfy the Lie algebra of the orig

inal symmetry group, up to quantities Cai, that commute with the q(x), hence with

everything in sight, and are therefore called cerdral charges. This is the third part

of Noether’s theorem. Note that the Qs are operators on the infinite-dimensional

Hilbert (or phase) space of the field theory, whereas the us are operators on the

space of the Lie algebra, which is often only finite dimensional. For most of the tra

ditional Lie symmetry groups (which are finite-dimensional and either compact or

semi-simple, or both) the structure of the Lie algebra is such that central charges

are not permitted, so up to recently they have not been very familiar objects.

For two-dimensional conformal field theories, however, central charges not only

exist but play a crucial role. To sum up, the three parts of Noether’s theorem are

(I) conservation (3) (II) implementation (4), and (III) commutation up to central

charges (7).
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3. Poincare Symmetries in Higher-Dimensions.

Conformal symmetries are space-time symmetries and hence to put the two-

dimensional ones in perspective it is useful to recall first the space-time symmetries

of Lagrangians in higher dimensions, in particular the Poincare and conformal sym

metries in higher dimensions. In this section we consider the Poincare symmetries.

As with all space-time symmetries the Noether charges are moments of the energy-

momentum tensor T,1 belonging to the Lagrangian in question. We recall that

is defined as
8L c91

8
(Jy1 LI9JV

where çb, =‘91Lq, and a similiar expression with spin corrections added for higher-

spin fields.

The simplest Poincare transformations are, of course, the translations, x

x + where the e’s are constant parameters, whose infinitesimal action on the

fields are q(x) — 4(x) + q(x). Using the rules of section 2 to compute the

corresponding Noether currents one finds that

= T, and hence P Q() = fT0, (9)

where we have used the traditional symbol P for the momentum. Hence the three

parts of Noethers theorem are in this case

(I) = 0 = 8P = 0, (10)

(II) [P,q(x)]=8g5(x), (11)

and

(III) [P,P,] = 0. (12)

The more complicated Poincare transformations are the Lorentz transforma

tions x1 —f a + where the es are constant parameters and the ci the

infinitesimal generators. The Noether rules then give for the currents and charges

= xT — XTa, and Qa = f{aTo — Tao]. (13)

Given that the energy-momentum tensor is divergence-free i.e. satisfies (10) on

account of translational invariance, the first part of Noethers theorem reduces in

this case to

(I) 8,(aT — xT) = T — T = 0, (14)
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and therefore requires that the energy-momentum tensor be symmetric. (It some

times happens that the energy-momentum tensor that is computed by some canon

ical procedure, is not symmetric, but terms (so-called Belinfante terms) can always

be added so that it becomes symmetric and remains divergence-free). The second

part of Noether’s theorem takes the form

(II) [Q, çb(x)j = [x8/3 — X8a + Z]q), (15)

where Z denotes the standard spin part of the transformation, and the third part

of the theorem is just the statement that the Q satisfy the usual commutation

relations for the generators of the lorentz group.

A simpler example, perhaps, is the three-dimensional rotation group in Quan

tum Mechanics, for which the position X and momentum P for i = 1, 2,3 trans

form as vectors i.e. X, —* X + and similiarly for P, and the charges Q
are just the angular momentum operators Qa = 6ajjXjPk. These charges actually

satisfy the commutation relations [Qa, Qb] = Ea,bcQc of the rotation group gener

ators (Part (III) of Noether’s theorem) and implement the infinitesimal rotations

[Qa, X] = and similiarly for the Ps (Part (II) of the theorem), whether

or not they are conserved, but they satisfy the conservation law (Part(I) of the

theorem) if, and only if, the potential is rotationally invariant.

4. Scale and Conformal Invariance in Higher Dimensions.

We now wish to consider the case when the Lagrangian is scale-invariant as well

as Poincare-invariant, that is to say, is invariant with respect to the coordinate

transformations x11 — )x,.1 and the field transformations ç/) _> Asq)), where

A is a rigid (x-independent) scale parameter and s is an exponent depending on

the spin of the field. The Lagrangian is typically scale-invariant when it containsno

dimensional parametrs, in particular contains no mass-terms. In the scale-invariant

case the Noether current and charge turn out to be

j = xT and Q
= fxT0, (16)

respectively, and the Noether conservation law (I) reduces to

= T = 0. (17)

That is to say, Noether’s theorem requires in this case that the energy-momentum

tensor be traceless. Again it sometimes happens that when computed by some
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canonical procedure the energy-momentum tensor does not turn out to be trace-

less, but terms can always be added to make it traceless in such a way that it re

mains divergence free and symmetric. The traceless symmetric energy-momentum

tensor obtained in this way is sometimes called the improved energy-momentum

tensor. (It is worth remarking, perhaps, that if the Lagrangian is written in a

manifestly covariant manner, with metric tensor g,y then the energy-momentum

tensor defined as T, = will be automatically divergence-free, symmetric and

traceless).

Scale-invariance has the remarkable property that for most local, Lagrangian,

field theories in more than two dimensions it implies also conformal invariance

[3] [5][7]. The exact conditions under which this holds are known, but it is known

to hold in almost all cases of interest and hence we will regard it as a folk theorem,

namely: Poincare invariance + locality + scale-invariance = conformal invariance.

Here conformal invariance means invariance with respect to the (non-linear) space-

time transformations x — x,,/x2. The classic example of a conformally-invariant

field theory is the pure Maxwell or Yang-Mills Lagrangian in four dimensions i.e.

fd4trFiwF,. The conformal transformations evidently add n new parameters to

the space-time symmetry group in n dimensions, so in three and four dimensions,

for example, the conformal group, (consisting of the Poincare, scale and pure

conformal transformations) is 6 + 1 + 3 = 10 and 10 + 1 + 4 = 15 dimensional,

respectively. Thus it is a finite-dimensional group. Furthermore, it is not difficult to

see that it is a simple group, namely, SO(n— 1,2) in n dimensions, and thus admits

no central extensions. Although the conformal group is only finite-dimensional

the requirement of conformal invariance places very strong restrictions on local

renormajizable field theories in three and four dimensions. The general structure

of conformally invariant field theories for n = 3,4 is described in the books of

Coleman [5] and Todorov et al. [7].

5. Conformal Invariance in Two Dimensions.

Against this higher-dimensional background let us now consider the case of confor

mal invariance in two dimensions. In this case the energy-momentum tensor

has only four components, (T11,T22,T12,T21), of which, in a Poincare-invariant

theory, only three are independent, since T1, must be symmetric. In a scale

independent theory T must be traceless as well, so that there are actually only

two independent components in this case. In order to express the symmetry and
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tracelessness of in a compact manner it is convenient to introduce the so-called

left- and right-moving coordinates z = x+y, w = x—y or (z = x+iy w = = x—iy

in the Euclidean version). Then can be wriiten as T, T) and the

symmetry and tracelessness consists in the statement that = = 0. Thus

only the components and survive. But then, the Noether conservation

laws corresponding to translational invariance become

+ = = 0, (18)

and

82T + = = o. (19)

Thus they amount to the statement the components and depend only on z

and w respectively. Furthermore the equations (18) (19) are invariant with respect

to the transformations z —* f(z) and w —* g(w) for arbitrary smooth functions

f(z) and g(z) so the theory is invariant with respect to these transformations. But

these are just the transformations of the conformal group in two dimensions, which

is just the conformal group of the theory of one complex variable. Thus the folk-

theorem that scale-invariance implies conformal-invariance is realized explicitly

in two dimensions. two dimensions What distinguishes the two-dimensional case,

however, is the structure of the conformal group. First it is a direct product of two

identical groups, namely, the left- and right-handed groups z — f(z) and w —÷

g(w). Second, each of these two groups is infinite-dimensional since it consists of the

set of all analytic functions f(z) or g(w). Finally, each side of the conformal group

in two dimensions is known to admit one central extensllion. The transformation

law of the energy-momentum tensor with respect to the conformal group tensor is

2f”f’ — 3(f”)2
T(z) -* (f’(z))2T(f(z)) + c

24(f’)2
(20)

where c is a constant (and its coefficient is called the Schwarzian derivative of

f(z)). As long as c is not zero, this transformation is inhomogeneous., but it is

easy to see that the Jacobi identity for succesive conformal transformations does

not require c to be zero. This is why the conformal group admits central extensions.

It can be shown that it actually admits only two central extensions (one for each

side) and so the constant c, which depends on the detailed structure of the theory,

and its partner from the w part of the group, are the parameters that characterize

the central extensions.
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6. Noethers Theorem for the Two-Dimensional Conformal

Group.

Let us now consider Noether’s theorem for the conformal group in two dimensions.

First, in contrast to the higher-dimensional cases, in which the Noether charges

are only lower-order moments of the energy-momentum tensor, in two dimensions

they consist of all the moments of the energy- momentum tensor. That is to say,

the charges that are conserved according to part (I) of Noether’s theorem turn out

to be

Q
= J z : : and Q

= fw : :, (21)

where the colons denote normal ordering in the quantized case. It is evident that

these charges are conserved since they are independent of space and time. In

practice it is usual to deform the space-integrals so that they become integrals

around the unit circles z = 1 and w = 1.

Now, with respect to the conformal group, tensor fields çb(z, w) (which are

called primary fields) have the transformation laws

Z W
g(z,w)—÷(—) (—) çb(.,w) 22

where j and J are called the conformal weights, and, according to Part (II) of

Noether’s theorem, the Q’s and Q’s should implement the infinitesimal version

of these transformations, This they do by means of the commutation (or Poisson

bracket) relations

[Qn, 4(z, w)] = z[nj + Z8j 4(z, w) and [an, q(z, w)] = wn[flj + w8]q(z, w),

(23)

respectively.

Finally, according to Part (III) of Noether’s theorem, the Q’s and Q’s should

satisfy the Lie algebra of the conformal group (up to central extensions) i.e. should

satisfy the well-known Virasoro algebra. By taking the Fourier transform of (20)

one finds that,

[Q, Qrn] = (n
— m)Qm+n +

C(2

— 1)Sm+n,o, (24)

which is indeed the Virasoro algebra, and similiarly for Q. One may also verify

that (24) follows, up to the central term, from the Jacobi relations for (23).
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6. Free-Field Examples.

Let us now consider as examples the case of free fermion and boson fields. Since

free fermion fields in two-dimensions scale like (d), where d is the dimension,

the simplest scale-invariant Lagrangian for free fermion fields is evidently

L() = (25)

and the equal-time canonical commutation relations or Poisson brackets are

{‘Øa(a),’I’b(y)} = SabS(X
—

y), (26)

where x = (z, w). The Lagrangian (25) is, of course, guaranteed to be conformally

invariant as well, and if we define Q,, according to (21), and use the field equations,

which simply state that (a) = ‘&(z) + z/’(w), we find that

51 = 51 b(z)t’Ø(z), (27)

with or without colons according as to whether the theory is quantized or not. On

using (26) we find that, as required by Noether’s theorem, the Q’s implement the

infinitesimal conformal transformations of the fields, ‘b(z) —* b(z’), and satisfy

the Virasoro algebra. However, in the classical case one finds that the central

parameter c = 0 is zero, whereas in the quantized case, due to the normal-ordering,

one finds that c N/2.

Since bosonic fields are scale invariant in two dimensions the simplest scale-

invariant free-field Lagrangian is

L() = Zfd2x(8(x)8(x)), (28)

and the equal-time commutation or Poisson-bracket relations are

[q(x),8tcb(y)j = SabS(X
—

y). (29)

As before, the Lagrangian is guaranteed to be scale-invariant, and if we define the

Noether charges

J4Z_znTzz(z)
=

Ic 8zq5a(x)8zq(x), (30)
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with or without colons according as the theory is quantum or classical, we find

that, as required by Noether’s theorem, the Q’s implement the conformal transfor

mations b(z, w) —* q5(z’, w’) of the fields and satisfy the Virasoro algebra. For the

centre parameter c, one finds that c = 0 and c = N in the classical and quantized

cases respectively. The results for the free-field centres in the quantized cases just

mentioned are actually part of a general [8] free-field formula

(31)

a

where = + for bosons and fermions respectively, ja are the conformal weights

and N is the number of fields.

7. Liouville and Toda Lagrangians.

As mentioned earlier, conformal invariance severely limits the form of the La

grangian in any dimension, and in two dimensions the conditions for a single

scalar field are so strong that the only interacting Lagrangian density is one with

an exponential potential i.e.

L() = 1(3)2
+ (32)

where and k are constants. This Lagrangian density is called the Liouville one,

and it has the propert that not only is it conformally invariant but the field equa

tions derived from it are integrable. It surfaces in many problems in physics, in

particular it is the Lagrangian that describes the two-dimensional gravity theory

that is induced by string theory in less than the critical number of dimensions [9].

For a number of scalar fields the situation is a little more complicated. The most

general conformal-invariant Lagrangian density is still one in which the potential

is exponential, namely,

= Cab8ba8qb + (33)

where the Cab and Kab are constant matrices for a, b = 1.. .N, where N is the num

ber of fields. This Lagrangian is conformally invariant, but for for general choices

of the matrices C and K the field equations are not integrable. The interesting

point is that the field equations become integrable for a special class of C and K

matrices, namely when C and K are the Coxeter and Cartan-Killing matrices of

a simple Lie group G of rank 1 = N, i.e. when
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4(a.Qb) 2(c.ab)
Gab

= 2 2
and Kab = 2

aa.ab c,

where the a,’s and cif,’s are the 1 simple roots of G i.e. the 1 roots from which

all the positive roots can be obtained by addition. In this (integrable) case the

Lagrangian density (33) is called the Toda Lagrangian density [6]. Since the Cox

eter and Cartan-Killing matrices are known [10] to have non-zero elements only

for neighbouring values of i and j for the classical groups (and also next to neigh

bouring values for the exceptional groups) one sees that the Toda interaction is

actually a nearest-neighbour type interaction.

8. WZNW Lagrangians.

The last example which we shall consider (and which will be treated in much

more detail in the next lecture) is the Wess-Zumino-Novikov-Witten (WZNW)

Lagrangian. This is a Lagrangian in which the individual scalar fields q!(x) are

replaced by group-valued scalar fields g(x) i.e. by fields g(x) which take their values

in the defining representation of a simple Lie groupG, i.e. g(x) e G. The Lagrangian

in this case takes the form

L(g) = fd2xtr(jj) + fd3xebtr(jajbjc), (35)

where ,j, g(x)’ 8g(a), and the three-dimensional integral, whose variation is

purely topological, is over a volume whose boundary is the two-dimensional space

of the kinetic term. Since the g’s are conformal scalars this Lagrangian is manifestly

conformafly-invariant, and the topological term is added so that the field equations

reduce to

= 0 and 8J(x) = 0, (36)

where the currents J and J are defined as

J(x) = (8zg(a))g(x)’ and J(a) g(x)’Uwg(x), (37)

respectively i.e. so that they reduce to the statement that J(a) and J(a) depend

only on z and w respectively, J(x) = J(z) and J(x) = J(w). The canonical

commutation relations for these currents, corresponding to the space-derivative

of the free-field bosonic commutation relations (29) take the form

[Ja(z) Jb(z1)] = f:bJcs(z
— z’) +

gab,ç,j•9S(z
— z’), where Ja(z) = troJ(z),

(38)
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the u° being the generators of G and ic the overall factor in the Lagrangian, and

similiarly for J(w). Those familiar with Kac-Moody (KM) algebras will recognize

that (38) is a KM algebra of centre K. Note that that this algebra can be regarded

as the non-abelian version of the free-field commutation algebra (29), to which it

reduces for f = 0. This is not surprising because the WZNW theory with G

replaced by an abelian group is just the free-field bosonic theory. The importance of

this observation, however, is that it means that, just as in the free-field theory, the

canonical commutation relations can be represented on a Fock-space with vacuum

o > defined as J1jo >= 0 for ri. > 0, where the J, are the components in the

Fourier transform of the J(z) (on the unit circle). Such a Fock-space representation

is also called a highest-weight representation.

The energy momentum density for the WZNW Lagrangian (35) is

Ja(z)JcL(z) :, (39)

and similiarly for the J(w), where the normal ordering is with respect to the Fock

space vacuum o >. Hence the Noether charges corresponding to the conformal

symmetry in this case are

= Ja(z)Ja(z): (40)

where again the integral is taken around the unit circle in z-space (and similiarly for

the J(w)). Since the Q do not depend on space-time they are trivially conserved,

as required by Part (I) of Noether’s theorem and, using the KM algebra (37), one

can verify that they implement the conformal transformations of the fields i.e. that

[Q,g(x)j =zmg(x), (41)

as required by Part (II). Finally, by using the KM algebra again, one finds that

the Q’s satisfy a Virasoro, algebra,as required by Part (III) of the theorem, and

that the central parameter c is

c
= K

dimG, (42)
K+g

where g, defined as ig = >a>o(a)2, where 1 is the rank, is the Coxeter number of

the Group G. Note that when G is abelian, (g = 0), this formula agrees with the

free-field formula (31) since for scalar fields the weights j° are zero.



Short Recall of Two-Dimensional Conformal Field Theory * 13

References.

1. E.Noether, Gott. Nachr.(1918) 235.
2. P.Goddard and D.Olive, Tnt. 3. Mod. Phys. Al (1986) 303.
3. W.Nahm, Conformally Invariant Quantum Field Theories in Two Dimensions,

World Scientific (1990).
4. V.Kac, Infinite-Dimensional lie Algebras, Cambridge Univ. Press (1985).

5. S.Coleman, Aspects of Symmetry, Cambridge Univ. Press (1985).

6. A.N. Leznov and M.V.Savaliev, Comm. Math. Phys. 74 (1980) 111.

7. I.Todorov, M.Mintchev and V.Petkova, Conformal Invariance in Quantum Field

Theory, Scuola Normale Superiore Press, Pisa (1978).
8. J.Schwarz, Suppi. Prog. Theor. Phys. 86 (1986) 70; M.Kato and K.Ogawa, Nuci.

Phys. B212 (1983) 433; N.Gorman, W.McGlinn and L.O’Raifeartaigh, Mod. Phys.

Lett. A4 (1989) 1789.
9. M.Green, J.Schwarz and E.Witten, Superstring Theory, Cambridge Univ. Press;

A.Polyakov, Mod. Phys. Lett. A2 (1987) 893.
10. J.Rumphreys, Introduction to Lie Algebras and Representation Theory, Springer

(1972).


