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ABSTRACT

Chaos in a two dimensional discrete system is analysed. The usual

description of strange attractors in terms of the Lyapunov

dimension was found to be inadequate to characterize the totality

of chaotic behaviour observed in this system. An examination of

the stability of the periodic orbits embedded in these attractors

provides evidence to support this conclusion.

We consider the following two dimensional mapping described by

Ushiki’
,2

X =(A-X-BY)X
1+1 1 11 1

Y =(A-Y-BX)Y
1+1 1 21 1

We choose B =0.1, B =0.15 and A as the control parameter. For the

range of values considered this map is bounded’ and noninvertible.

Other noninvertible systems3’4 have been found to display chaotic

behaviour similar to that described here and, experimentally, this

chaotià behaviour is observed to be produced by coupled nonlinear

oscillators5’6.

In Figure 1(a) we show a plot of an attractor for the parameter

value A=3.74572. An enlargement of one of the eight pieces is

shown in Figure 1(b) for this period eight strange attractor.

Apart from a slight distortion the other pieces have identical

fractal structure. The Lyapunov exponents are X,=O.015 and

X20.062 and the dimension of the attractor using the Kaplan and

York conjecture7 is D =1.24. The correlation dimension D
L 2

computed from the Grassberger and Procaccia algorithm8 is
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D=1.14±O.01, which as expected is a lower bound on the Lyapunov

dimension

Also shown in Figure 1(b) are three unstable periodic orbits9 of

period 8,16 and 120. The period eight is non-attracting with two

positive Lyapunov exponents. The period 16 orbit is such that it

collides with the attractor as the control parameter A is reduced,

leaving the vicinity of the fractal attractor by shooting out

along its unstable manifold on to the attractor shown in Figure

2(a). The two period 120 orbits are the lowest unstable periodic

orbits on this fractal attractor. The next consecutive orbits on

the attractor are of period 128 and 136. All of these orbits were

located using a Newton-Raphson iteration scheme. Apart from the

period eight it was also possible to locate these orbits by

scanning a time series for pairs of points separated by n time

steps that are within a small preassigned spatial distance. For

the case of this strange attractor it is the unstable and the

stable manifolds of the periodic orbits that are responsible for

the fractal (self-similar) structure.

In contrast, for A=3.745 we obtain the non-fractal attractor shown

in Figure 2(a). In this case the Lyapunov exponents are A10.26

and A2=O.06. Since the sum of Lyapunov exponents is positive the

Kaplan and York conjecture does not apply and hence no Lyapunov

dimension can be defined. The correlation dimension 02 was

computed from the Grasberger and Procaccia algorithm. In Figure

3(a) we plot lflCd(l) vs mi for d=2,4 12. The time series

consisted of 40000 points. The common slope in the scaling region

is D2= 1.55±0.05 as can be seen from Figure 3(b). In spite of the

fact that this is a two dimensional system an extremely long time

series was required because of the lack of spatially correlated

data on the attractor. We note in passing that while we are

unable to obtain a Lyapunov dimension, the correlation dimension

still continues to be a useful measure.

This attractor is dense in periodic orbits, the majority of which

have two positive Lyapunov exponents. It is these orbits that are

responsible for the non-fractal structure. The most attracting
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orbits have the smallest Lyapunov exponents and it was found that

these were the léast difficult to locate when scanning a time

series. Five of the most attracting period 8 orbits are shown in

Figure 2(b) and, in comparison to Figure 2(a), it can be seen that

they occupy the high density regions of the attractor.

In summary, we have studied fractal and non-fractal attractors in

a two dimensional discrete system. The Structure of these

attractors has been shown to be related to the stability of the

periodic orbits. The Lyapunov dimension was unobtainable for a

wide range of parameters. We have reason to believe that the

behaviour of this system is similar to the chaotic behaviour

observed in infinite dimensional systems, both delay- differential

and partial differential systems.
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Figure 2. (a) Son—fractal attractor for A:3.745. (b) Unstable

periodic orbits of period 8 for A3.745.
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