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ABSTRACT

The second order structure functions for the gauge algebra
of Ashtekar's chiral canonical gravity are evaluated. The third order
structure functions vanish. This allows the construction of the
classical BRST field. The BRST extended Hamiltonian is also explicitly
evaluated.
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A tidy formulation of the canonical Hamiltonian approach to quantum
gravity has recently been formulated which casts the constraints into
the form of quadratic polynomials [1]. The construction involves
identifying chiral connection one forms’*'UJ"“"‘,Un,n =0,1,2,3), with
SU(2) connection one forms A% ( i=1,2,3), and extending the usual four
constraints of canonical gravity (associated with general co-ordinate
invariance) by an extra three constraints (associated with local,
space-1ike, SO(3) rotations of an orthonormal basis).

We have explicitly evaluated the full constraint algebra and
shown that all third order structure functions vanish. This involves an
explicit evaluation of the classical BRST field, N [2,3] . The BRST
extended Hamiltonian is also calculated.

First we briefly review Ashtekar's formalism [1} , as
pkesented in [47, with the slight modification that all reference to
spinor indices is eliminated. Then the full expressions for £1 and the
extended Hamiltonian are presented.

As usual in canonical gravity, space-time is foliated into
®kx , where 2 is a space-Tike surface and R represents a time
variable, t ( & s assumed compact to avoid surface terms).

The components of the four d1mens1ona] metric ’c’}mv , are
replaced by lapse and shift functions N and N , defined by
(See e.g. [5))

‘&N¢3& %chc

%NV = cz_“ch %ub

where % ab is a three dimensional space-like metric on X4
(a,b, ... = 1,2,3 label co-ordinates on & ),
In the tetrad formalism, we may take

Nt oV NE



(2)

where m,n, =0,1,2,3 are four dimensional orthonormal frame indices
and i,J,k, = 1,2,3 are three dimensional orthonormal frame indices
Then & 4% is a triad forgrgpon X2

The inverse tetrad matrix is

-\ N*
LI /Nt /it
- e (1)
Q 2
(The signature of g is (- + + + )),

Defining (anti) self-dual conection one forms

+ . g™ %

2™ - ig_ Kiwm“.. L € ‘P%w!’ )

P’

Ce™ = +1),

the curvature two forms split naturally
RAW)™™ = P\V'“Dmm _Rk'w)’"\m

RAW™™ | throwing away R(~wW)™

The philosophy of Ashtekar's formalism is to use only one of these, say
modified to

Then the Einstein-Hilbert action is

SLetw] = Qabx e ™

where

VN

L -R)Av'm'v\. L“'W)
Vel = dak (e, ™).

Now define SU(2) connection one-forms



Then
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are the curvature two forms of a (four dimensional) SU(2) gauge field.
Using (1) and (3) in (2), the action S reduces to

S [ u]s Qo § 2= {2 AL + Acsp-m st | o
¢

where the following definitions have been used

=2 ) Yo PO 4 _ 1 i
e =% = € "z daki]y?) = .
A, = F;bl‘b” (5)

I, = iR, perthent
%

~ o\
(Do T*)
with the SU(2) co-variant derivative

1}

Vo L3 . ’L%L) h
Des PN ETAL,
In arriving at (4), an integration by parts has been carried out on the

F:‘ term of (2). ~ 3
S o 4 *
Thus, treating € ‘, N , N Tand F\P~ as canonical

variables, (4) gives the constraints
Haxo, Yiyno , WU, a0 (6)

together with the canonical equations

- L \t
Adw = MW W=~ %ﬁ‘-—tl
1Y € 8] A, W)
where the Hamiltonian is
s Q i 3
Hkt):")gx{N W+ N, - 9‘031;73. (7)
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It is shown in [3] that this implies
)

Se . Y
:D“P\‘ (% 4,2 S U'\()? (* 9.z w,v) ?E(V) CRY
Ty
where \)'197 are the second order structure functions,
completely anti-symmetric onldp¥] and L[§e] . ()

Straightforward, but tedious, calculation shows that only two of the V]
are non-zero.

W C
Ung_"i’ (RY4,25w,¥v) = - %:' t\'&t F:b Qv S(.\.a-\;) z-v) JLw-v)
1 \ [ f\.b'
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The third order structure functions vanish identically. The BRST field,
HoN ,for the gauge algebra of the classical theory is obtained, [13]
by introducing anti-commuting ghost fields M* &), %) and j\tca\),
one for each of the constraints (6), together with conjugate momenta
L), Pa) and MWy () satisfying
anti=-commutator Poisson brackets,
{Pa, P}, = [bed, Putif, = - 50 S0y
etc.
Then

nw =S, &’9“ by -2 S d.ané.'*clzmp(‘n'f(")C,{(,*(st,\uz) P (2)
{5
Sv\‘u-&\*clzd.ud» " "\?u)"l_ (‘6}"1 P Uq(“' (%4,2] u)v):p W) ,398 ()

where ”ﬁ* are the seven ghosts and ng* the seven ghost momenta. This
construction ensures that {.ﬂ, .ﬂ."hf ¢© automatically f3] . The
BRST field is explicitly

) ) )
A= 0 + 0 + _0
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where
= S&sii )\'(.Dn.tu) + "leFub.’Q\-b)+ %l Fub ({.ax}:b)}

m -4 S& 2§ m® (Op7*) D +imtm® Foc.(2°xM)

+"\.b"\ (Fup.T) - Ob”\.b)"ll 0 bhb"\f)?_\_
AL 3t (T2T) P + A LR T (8)
5 LR ~e
1. = ,ﬁ Qa'ad ant P FapoTa®) + Qo) W ¥ (07
+ Qe 'L) " 'yo» (tc’T)} .
A1l dot and cross products refer to SU(2) indices, v,¥,%,--.

With these results, the BRST extended Hamiltonian is not
difficult to compute. It is a ghost number zero field which satisfies

)
31,
{ Horst (t’),ﬂu)} =0
and has an expansion
(9) 3 Q) 9
\':msr = S‘*"‘“& Hy o (3 y)\ (")‘?P“”*
(o
where H is the Hamiltonian, (7).
It is given by
3 - 2
Haaqr (= Ca?x§ vl L) bl
B8R ST St't §N ama N s Rs anIL . (9)

(q)
This clearly has the correct form for H, so we need only prove that it

commutegsyith.fl . This is 1mmed1ate since
° = Hain,0f, = n*")"ﬂi o, % iz }‘ 3’
Hence (9) is the required Hamiltonian. 5*?“’
In conclusion, we have shown that the third order structure
functions of Ashtekar's canonical gravity vanish, and we have evaluated
the classical BRST field, (8), and the BRST extended Hamiltonian, (9),
explicitly.



REFERENCES

A. Ashtekar, Phys.Rev.Lett,57, 2244 (1986);
Phys.Rev. D36, 1587, (1987)

E.S. Fradkin and M.A. Vasiliev, Phys.lLett. 72B, (1977), 70
E.S. Fradkin and T.E. Fradkina, Phys.Lett. 72B, (1978),343.

M. Henneaux, Phys.Rep. 126, (1985), 1.
T. Jacobson and L. Smolin, Class.Quantum grav. 5 (1988) 583

C.W. Misner, K.S. Thorne and J.A. Wheeler, "Gravitation",
Freeman (1973).

P.A.M. Dirac "Lectures on Quantum Mechanics" Academic Press
(1987).



