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Abstract

We discuss the progran of deriving the string field theory

equations of motion for all (massless and massive) string modes

as the renormalization group fixed point ecuations for the most

general sigma model containing all possible (“non—rencrmalizable”)

interactions. We review the approach based on the Wilson RG equa

tion and point out the problem of cutoff dependence of the inte

raction term in the corresponding “quadratic” beta function. The

relation between the sigma model path integral and the string

scattering iplitudes is clarified. We suggest a new approach to

derivation of the generalized sigma model beta ft.ctions in which

the central role is played by the condition of completeness of

the set of interaction terms (“vertex operators”) present in the

sigma model action. The use of the completeness relation makes it

possible to obtain closed expressions for the sigma model parti

tion function and the beta functions. The resulting beta functions

contain all higher powers of the couplings (fields).
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1. Introduction

One of the remarkable properties of string theory is its con

nection with 2—d -models. First estaol..she4 at the level of per-.

turbatively renormalizable
ED_nlodels /1—4/, corresponding to low

energy dynamics of the massless string modes /5/, this connection

played important role in search for vacuum configurations in string

theory /6/. Since conformal or Weyl invariance is a central con-.

sistency requirement at the string tree level, it is natural to

expect that a version of conformal invariance condition imposed

on a most general 2—d -model (containing all possible “non—re—

normalizable” interactions corresponding to all higher order mas

sive string modes) may be equivalent to the exact tree—level strin

equations of motion for all the infinite system of string local

fields.

Eelow we shall review and elaborate on a number of sugges

tions concerning the program of deriving the complete system of

string field equations from the —model (see in this connection

refs./7—21/). We shall consider the tvio approaches. The first

/10,17—19/ uses the Wilson RG equation /2223/. The second is

based on the partition function for the i—model and on the “coin

pleteness” relation for the interaction terms in the —model ac

tion. The “completenes&’ relation is simply the expression of the

fact that all possible local interactions are included in the ac

tion.

We start with general remarks on the Wilson’s RG approach

(sect.2) and then consider its application to string theory (sect

3). Attempts to establish correspondence with string S—matrix

are reviewed in sect.4. We clarify the issue of subtraction of th

Mobius infinities and point out the existence of two different



procedures for identifying string scattering amplitudes with some

model objects. One is based on the interpretation of te

model partition function as a generating functional for string 3—

matrix and the other starts with the —function for an effective

renormaliz able —model and considers the solution of the =0

equation.

I

In sect.5 we develop an alternative approach in which the cen

tral role is played by the completeness condition. 71e obtain the

closed expressions for the —functions which, in contrast to the

—functions in the wilson’s approach, are “less” cutoff dependent

and contain terms of all orders in the fields. Some open problems

are discussed in sect.6.

The present paper can be considered as a complement to our re

cent review of the i—model approach to string theory /24/ where

only the renorrnalizable —models were considered.

2. General remarks on the Vlilson’s renormaiizatiofl

group approach

Below (in sects.2 and 3), vie shall discuss an atteipt to in

terpret the Wilson’s RG equation in a 2—d quant field tneory as

a classical equation of motion of a string field theory. In view

of the tnell—established relation between the renormalizable 2—d

sina models and the effective equations of motion for the massless

string modes it is natural to expect that considering a most gene

ral 2—d sigma model on a curved background and imposing the condi

tion of its Weyl invariance one should get the fundamental equa—

tions for all string modes • It was observed in ref./10/ that ;:e

7EEizations of the RG approach to include the massive stri

modes were considered, e.g., in /1,7—9/.
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‘1bilinear” structure of the Wilson RG equation /2U is reminiscenu

f the ucubic interaction in a string field theory. The ugges—

tion /10/ to consider this RG equation as a classical string field

theory equation of motion was recently elaborated upon in ref g.

/17—19/.

While it is certainly essential to impose the Weyl (or a kind

of BRST) invariance in order to consistently discribe the dynamics

of all string modes, it is sufficient, as a first step, to consi

der the condition of the global scale invariance of a 2—d theory

on a flat background.

We shall discuss and try to clarify some points of the prog

ram of ref./1Q/ and, in particular the relation to the string S—

matrix /18/, Let denote a set of dimensionless fields de

fined on a 2—d plane. Consider the theory

is a regularized propagator depending on a fixed cutoff

A0 , The basic object is the partition function

— x
, (2.2

(- ILX >?
I

where is arbitrary. It is easy to prove that

- (2.3

(2.4

In what follows we shall discuss only the 2—d theories corres

ponding to the closed Bose string theory expanded near a flat D—

0 (2.1

Z[1 = 1J2 xGx



—5—

-

- jj fre’ =e
Suppose now we split G0 into the two pieces, introducing some “in

termediatet’cutoff A. ,0ç41. 1/1_c <

(A
A0, (2.6)

A0

Idzk e cc1k
J_j

A

A:)

(A0,A) =-

Then (2.3) implies that —

—T CxJ

Z[J= e(-i5)e

—

—IC]
Sxe

flence
‘eff

defines the effective theory corresponding to the re—

suit of integration over the modes with momenta it. k A0

Let us consider the dependence of A , Since Z in (2.2)

does not depend on A

o, jxe

Differentiating over .A we find C G)
_1.

xtx>+:I >=O

in fact,

4 r ÷J> = J r] >e

For example,

A

or

,

I’m ‘m

A
4%

12. +A}

e 1b Cx]
I’1*

)
—&x _r4L:-J

e

dA

- xG _2;4J]
0(2.1

F
)
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It is easy to prove (using functional integration by parts) tha;

=

Jdd
fx’() S’x’:)

I,

Since - — ‘S)

0 Içç1
(2.13)

The Wilson’s RG equation is obtained by dropping the expectation

*1
value brackets

Ve can check directly that
‘eff

defined by the functional in

tegral in eq.(2.1O),(2,9) satisfies the functional equation (2.14).

In general, eq.(2.14) is satisfied by any
‘eff

of the form

H , = (K) FUxi,
(2.15

where F is an arbitrary functional independent of A and

0

H fri
— —

___

—

- H

Vie thus replace the functional integral <Fx+J> =0 by te

functional differential equation FcxJ=O. There is, of course, be

freedom of making simultaneous redefinition of the integration v

riable x’=x+ çx e FCxi

___

x’)

we thus get

t÷ G)
4

S2 Sh

___

-

x’)fx’) 1x’) )}“(2.

G(A)

In fact,

‘:

(/)a

C
(2,i6

H”
1-f

c=Q

C

H

—
Cr
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Eq.(2,1O) corresponds to c=G$A0) P=e
-

We see that eq,(2,14) has a little dynical corze:t : kr’rs

nothing about G(j0)
-‘ rt’

i.e. the pareter3 of the 1tf’da—

mental’ theory. The information about the fundental theory should

be introduced by hand thiough the initial condition:

I. (2,13)

In this respect the Wilson RG equation is different from the Ge]J—

Mann-Low equation ,- 8() in which the -function “knows”

about the dynics of the theory.

Additional dynanicai input is provided by the assuiption that

‘eff
can be represented as a combination of a complete set of loca

operatorsH V built out of x and all its derivatives

Here are the corresponding dimensionless couplings and

are the dimensions of the operators ‘e
depends on the

cutoff implicitly tough and explicitly through A’

In view of the completeness of the set f it should be possible

to represent the functional derivative terms in (2.14) as

(2.2C

(2.2

2 )
Substituting (2.19), (2,20), into (2.14) we get an equation of the

form or, in view of the completeness of V,

Explicitly, we find

B— rP ÷
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Given a theory with the corresponding set of V we can n princpe

compute the basic matrices and and hence determine the

“9—fu.nction” (2.21). Recalling the derivation of eq.(2.14) we con

clude that eq.(2.21) is essentially equivalent to the condition of

A —independence of Z (2.9),

A 0 (2 22)

/
The important difference of the “8—function” (2.21) from the

ordinary Gell—Mann—Low function in renormalizable models is that

(as it is clear from (2.20)) the coefficients f in (2.21) in ge

neral depend on.4he cutoff • Hence it is not possible to repre

sent the solution of (2.21) in the usual form

+ Z T (2.23)

where T do not explicitly depend on A or • Eq.(2.23) gives

the relation between the bare and. renormalized couplings in the re—

normalizable thories in which we take the limit A— — i.e.

drop the inverse powers of It). In contrast, in the Wilson ap

proach we keep the cutoff it fixed. If (2.23) were true, we would

get

_

< cp’ + T (e) (2.24)

This is clearly inconsistent with (2.21) f are_depen—

dent • It is only in the “continuum limit” that we can eliminate the

nom’enormalizable ( ‘ 4 0 ) couplings from (2.21) obtaining

non—linear but A —independent -functions for the renormali

zable ones-
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3. Application of the Wilson RG equation to string hecry

Let us try to apply the above considerations to the case of

the closed Bose string theory. In a string theory context the cou—

ling constants in (2.19) correspond to the components of a

string field and the interaction vertices V (“vertex operators”)

are given by the 2—d integrals of all possible combinations of de

rivatives of coordinates ). The product

can be represented either in the coordinate or in the momentum

space as

J4 L() () fdk ) 1f(k)
, (3.1

() f 2
f h, ,k,

() e . ( x) . = -

s 5

The index “1” is thus a shorthand notation for a set of D—dimensio

nal indices. We assurne that a non—trivial 7 contains at least vic

X —factors. me dimension of V. s tus =2—2, 2i.=

total nber of derivatives in

.
. is alvays even since the

2-d indices in are contracted either by or by

Note that there can be several operators with the se • It is

convenient to include the integration over or in the con

vention of suiination over i. Thus the interaction term in the strir

action ‘mt or eff
(2.19) ta.kes the form

*

We choose 2=1 and cx=cm0,rA3 =cm CJ=cm, so that all

the space—time fields “f’ are dimensionless,
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The basic djnamical principle of the RG apprcaon s 0 ent_

fy the scale invariance or RG “fixed point” conditions 3o

the equations of motion far string fields (f’, Using eq.(2,21) for

the “p_functions” #e thus get

÷ J yO ,
6, (3.)

(we shall always imply summation over the repeated indices i, ,

except in the case when is present).

Eq.(3.4) looks like an equation o± motion in a field theory

with a cubic interaction, The problem with this equation (which was

not sufficiently appreciated in the previous discussions) is that

while (3.4) expresses the condition of the jj —independence of
(ftC

the “coupling matrix” in (3.4) deends non—trivially on

the cutoff A . Hence it appears that the solution of (3.4) should

also depend on A , in contradiction with the original assution

=0 • A possible clue to a resolution of this paradox is pro

vided ‘cy the observation that being dimensionless may de

pend on

J1

only through the dimensionless combination 4R of A

and an IR cutoff R, 16’1 R. Hence it may be that eq.(3.4) is con

—L

sistent only i±’ AR has some fixed value, i.e • if R A so

that is A—independent. In any case,the role of the IR cutoff

needs to be clarified,

The above mentioned difficulty may be suggesting that while

the “initial” in (2.2) may be given by the local expression

(3.3) we should not try to solve the Wilson equation (2.14) using

the local ansatz (3.3) for
‘eff’

In fact, we know already that

(2.14) solved by the path integral (2.10), which produces a ccm
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licated non—local expression for
‘eff Cx3 paretrized y A

independent ceuplings P appearing in
‘int’

The problem is then

what is the scale invariance condition for non—local
‘eff’

Should

it be Ieff=O? But this is then contradicting our previous sugges

tion cf’ =0 in the case of
‘eff

since are supposed to

depend on A in order for p’ to be dimensionless, Note also that

in view of the completeness property of any non—local
‘eff

can be formally rewritten as a local one (2,19), at the expense of

introducing the explicit dependence on an IR cutoff. A possible re

solution of this puzzle is to formilate the scale invariance con—

1 4 fI
dition as fd ‘ X” • In fact, if

1÷ _5a (x), we get:

A f?Xr
- A T’ 22

Hence

• ía

___

JcI6 6’ X (3’S)

is a natural scale invariance condition which applies in the gene—

ral case of a non—local 1eff
and reduces to = (O =0 in the case

of the local ansatz (2,19). Eq.(3.5) expresses the vanishing of the

“anomalous dimensions” of the interaction terms in
‘eff’

generali

zing the condition =0, The term in the r,h,s. of (3.5) iinplj

counts the niber of derivatives in a given term in
‘ef’

Vie shall

use a non—local ansatz for
1eff

discussing the correspondence

with the string S—matrix.

Let us now proceed to the analysis of the scale invariance

equation (3.4) in the case of the local ansatz for 1eff’
0i.r first

task is to compute the matrices and
dk

defined in eq.

(2.20). Let us choose the regularized propagator as in eq.(2.8)

Then
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We thus see that fields of different masses (levels) mix in the

“kinetic term” in (3.4). The additional “non—diagonal” terms in

C

(3.10) are absent if we assume that all
(f are traceles and

transverse. Then the linearized equations (3.4) are simply

1z) (24’.-2
(3.11)

(m2=—8 corresponds to the tachyon, m2=0 — to the massless modes,

etc.).

Turning to the analysis of the interaction term in (2.21) let

Ckx

us first consider the case when both —
in (2.20b) act on e

in the vertex operators. Then

ça d Lj66
ddQC62)(1kz)

e1x)c)

fd1d 1z)
5dd ()

(3.12)

e ‘)() (e )()

In order to apply the completeness property o± the operators

( ix), let us first formally expand the integrand near

and then integrate over Cl . et

$d C- K)

÷ 2 itfa’ Z- (ax) € J
fd (Q) Q

may contain powers of k1 k2, and we have formally used the

translation invariance on the infinite plane to rei
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C 2. i2

as jda q . While we have thus succeeded to reoresent the

product X

____

as a linear combination of this was

&x cx
achieved at the expense of introducing the IR divergent coeffici

ents . Assuming that we have already integrated over the phase

of (V.4 we have (see (3.6))

_

0 +jt. (3.15)

= (‘) e1R2i) ÷z()L(Ae÷1) -1]

We have introduced the explicit IR cutoff R in the integral over L.4

Alternatively, we could assume that an IR cutoff is present in the

Green function G. Thus — f (i1s) and so the opera

tors in (3.13) in which contains 2Nk derivatives are naturally

multiplied by 2—2 . This, of course, is clear

from the dimensional considerations only. That is important is that

the coefficients in (3.13) are dimensionless functions of AR

The case when one or ‘ooth — act on or is treated

similarly. We again use
—

a,)’ S)and in

tegrate by parts to put the derivatives on G. This operation redu

ces the level number of the resulting operator by n units, Expandi:

in 4 and integrating over it we again get an expression

similar to (3.13). It is easy to understand that appearing in

the r.h.g, of (2.20b) may iave any k’2’
For example, Vk with

Nk=2 may appear in the “product” (2.20b) for arbitrary N. and N
2

‘a ‘
‘ax, , etc. Thus, e.g., tne

“ p—function” (2.21) for the graviton may contain in its interac

tion term fields from arbitrarily high levels.

Let us now consider more explicitly the interaction term in

the —function or eq.(3.4) for the tachyon field (N=O). The li

near term was already found in eq. (3.10)
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+ (traces 2—nd ra tensor f_elds (31

from all higher levels)

The structure of the quadratic term is clear from (3.12), (3,13):

to obtain the tachyonic (Nk=O) operator in the “product” (2.2ob) i

possible only if we take both and to have N=N=Q and leave

only the first term in the sui (3.13) (i.e. the first terra in the

expansion in powers of ). Ve get

= — k’ (k’ k’)
(3.17)

A1 cd2()
(A2z) AR

(3.18)

If we formally ignore the non—tachyonic terms in (3.16) the equa

tion of motion for the tachyon takes the following form in. the co

ordinate representation (2 Wo
/

1)

Q(AR (3.19)

The interaction term in (3.19) looks strange in several respects.

As we have already mentioned above, the JL —dependence of the co

efficient q implies an inconsistency since (3.4) and hence (3.19)

is simply the condition of the it —independence of (differen

tiating (3.19) over and using =0 we get

i.e. =const and hence, from (3.19), =0). Also, the interac

tion term is different from the standar& —inte—

raction one expects to find from a string field theory action. It

easy to check that eq.(3.19) carot be derived from a local cubic

action which is second order in derivatives of . Moreover, sol

ving (3.19) we do not get the usual 3—tachyon anplitude as the co

efficient of the ()2term n the classical solution,
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All this seems to suggest that eq.(3.19) and hence the whole

approach based on combining the Wilson equation ‘Jjth the local an—

satz for ‘eff
in terms of the complete set of local operators (2.19

and. imposing the scale invariance condition (3.5) may have nothing

*7
to do with string theory. A possible resolution of this puzzle may

be that the above approach corresponds to eu unusual choice o± the

parametrization of the string field variables. In fact, eq.(3.16)

implies that the tachyon mixes with the traces of the 2—nd. rank

(b,) i•))

tensors ‘-i’ ,
. Redefinifl to eliminate this mixing we

(i,) c.’)

get the c and interaction terms in (3.19).

1?
In order to compare with the tachyonic string S—matrix we are then

C”)

first to solve the equations for 9 • To check the correspon

dence with the string S-matrix in a straightforward way thus ap

pears to be quite difficult in the approach based on the local rep

resentation for
‘eff’

3elow we are going to show (following the

idea of ref./1B/) that this check can be carried cut easily if we

start with a non—local ansatz for the effective 2—d string action.

/ 4, Correspondence with string S—matrix

Suppose we were given a classical string field theory action

S for a string functional . Vie could, in principle, solv

the corresponding equations of motion for the local component fi—

elds, expressing them in terms of tl:eir “in” vues,

In principle, the —dependence of the interaction term in

(3.19) may not by itself imply a otradiction with the string

theory since, e.g. the 1are 3—tachyon amplitude is known

to contain the Ocln(AR term /25,26/.



— 17 —

In general, it is easy to prove that the coefficients

sical solution (( are propor,tional to the oaierir:g JD

litudes with N+1 legs — 4- (‘ (see, e.g.,

/18,27/). This follows, e.g., from the expression for the genera

ting functional for the tree S—matrix: —

should compare the powers of n both ex

pressions). Hence in order to compare with the string S—matrix it

is not necessary to know the action:it is sufficient only to look a

coefficients in the expansion of the classical solution in powers

of the ‘jn”—field.

Let us now suppose that only the tachyon has a non—vanishing

“in”—value • Then all the component string fields which solve

the corresponding equations of motion are functions of (and

hence of ). Substituting them into the tachyon equation of

motion we obtain the effective non—linear equation for • We can

also substitute ( directly into the local representa

tion for ‘eff
(eq.(2,19)) C )

1 1

5d d eCw

w.o •

Here we used that Z , viere is pro

portional to the scattering amplitudes with one (‘ -leg and N

tachyonic legs. Vie have noted that ‘eff
in (4.1) should contain

terms of all powers in which can be represented in a non—lo

cal form with being appropriate dimensionless functions, Suca

a representation is suggestive since in string theory we expect

to be given by the integrals over the Koba—Nielsen variables.

Expanding the integrand near one point (6 ) we can rewrite (4.2)

back in the local form (4.1), in which the operators with all
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higher derivatives are present. We thus expect that (4.2) may cor

respond to a string classical solution in which all modes are ex

pressed in terms of We could, in principle, introduce a more

general non—local ansatz for ‘eff’
including dependence on the “in”

values of other string modes and hence with e in (4.2) rep—

laced by ‘‘ e . This would correspond to a general

perturbative classical string field solution, Let us note also that

it is even natural to consider a non—local representation for

since it is an effective action, i.e. a result of integrating out

some 2—d degrees of freedom.

‘eff
in (4.2) first slrnuld satisfy the Wilson’s equation (2.14;

We know already the solution of (2.14) (see (2.1O),(2.15),(2.16))

(we assume that the initial condition is(Ief’) int
for

the scale invariance condition (3.5) it would obviously be satis

fied if were independent of A . However, this does not follow

from (4.3). In fact, to discuss the issue of the scale invariance

we need to specify some procedure of removal of the cutoff. This

point is related to the problem of the cutoff dependence of the

interaction term in the p=O_euation (3.4) we confronted in

sect .2.

Since we consider only the tachyonic “in”—background, let us

choose ‘mt to have the following simple form

2
kXC6)

—
d k e ck)

a

Then the “initial” theory (2.2) corresponds to the partition func

tion

Fv] X€xfr(t) (45)
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and

‘f eXp(x x (4.6)

Expanding (4.6) in powers of we obtain ‘eff
in the form (4.2)

with N
being related to the correlators (leff contains Ofli the

“connected” parts of the correlators)

6’ r

fle >) - je

They are computed using the propagator G, regular both in the ul

traviolet and the infrared see (2.8))

‘o) = --i -4j-
(4,8)

The basic observation is that if we expand the arguments in (4,7)

near one point, integrate over the points and separate the leading

singularity, then the residue will be the regularized expression

for the Virasoro—Shapiro amplitude. The prescription of removing

the cutoff is the following: we take — =— keeping A fixed

Consider, for example, the two leading terms in ‘eff
(4,6)

—
—
(i1>) ps.. (4,G

(kX

= A: () €

= A d6 d’ (k) e” e (4.i

= 4 Jd Pk (A0—vi)

A ça d&
K

x
cC6) -f

(i

4 4 *



Afd d2 d d -
(kr)

€
x

L2:A]
q

Takings —
° with A =fixed, expanding in u and integrating

over u we get the leading sinlarity from the /uI 0 region

- I
(4.12)

(i,.*3)
—

j

ILqo it

This is the tachyonic pole( in the total momentu.m)so that

A ç d L ()

rri 4 ,

For large but fixed A the pole is replaced by the - _4a -term

-
0 A

is indeed just the second order term in the classical solution

of the standard tachyonic equation of motion with the 2—interac—

tion corresponding to the well known 3—tachyon amplitude.

To understand the appearence of the VS amplitudes (in their

standard Mobius gauge fixed form) in the present context, let us

make a digression on the two possible approaches to establishing

the correspondence between the —model path integral (4.5) and

string scattering amplitudes. One. j the tl —function approachH

originally proposed by Lovelace /1/ and discussed, e.g., in /3,7,

11,13,14,28,29/. The other is the “string partition function ap

proach’t /2,30,31,26/. Below we shall review these approaches on the

example of the tachyonic coupling. Let us start with the second

approach. It is based on the observation /2/ that the -model

partition function is the generating functional for the correlator

of the vertex operators
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To cdE
)‘)(‘ v:

In order to relate the UV regularized correlators

to the string scattering amplitudes we should go on the mass shell

taking Lf and also to make some subtraction corresponding to

the eliminatjpof the Mobius infinites in the unregularized string

amplitudes. Since the regularized closed string Mbius volume is

logarithmically divergent /25,26/ it is necessary to subtract the

“overall” —infinity in Vl•••VN> /26/. For example

c1(AR)2c2(A4R +

where it is c3 that is the ordinary Mbius gauge fixed 3—point amp

litude, In general, the correlator cVi...VT> —
Jzdj

contains the overall momentum—independent logarithmic infinity co

ming from the region of integration where N—i points G are cbs

to each other /26/. There are of course logarithmic subdivergences

originating from the regions of integration where point

are close to each other, but they are momentum dependent (and cor

respond to the physical poles in the absence o± the cutoff). This

is easy to understand qualitatively from the ±‘actorization proper

ty of the correlators*/. The limit in which all N points are close

to each other corresponds to the factorization o± the correlator

into the product of the N÷i point amplitude, a zero momentum propa

gator and a tadpole on the sphere and hence gives the overall cuad

ratic (tachyonic) infinity ( LA comes from the massless

state contribution). In the limit when some N—i points are close

we fric dLi o,L / M-foi4/ ‘,i-qa’e i

This property is , in fact, a consequence of the path integral

representation
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piece and hence

(Zv
where AN is the SV amplitude in its standard Koba—Nielsen Mobius

gauge fixed form. This qualitative analysis can be confirmed expli

citly by making the change of the variables { —

z . y 3

4
)
? + uw k in the inteal representation

e.g. for the tachyonic correlator Vl...VN> /26/, Thus

in (4.16) can be interpreted as the Mdbius group volume infinity.

If V correspond to the massless particles and. Vl...VN> are

computed by expanding in powers of momenta (i.e. by expanding near

the mass shell) the correct prescription of subtraction of the Ms-.

bius infinity is to take of the correlator

in which all power infinities are omitted /26/.

Let us now consider te —function approach. To compute the

counterterms we need to introduce some background field X

_r -r. jJ

2’(] - Jx
(4.17)

Above in eq.(4.14) we assumed that =Q (and. hence the integration

over the constant part of x gave the £ -function, implying the

conservation of the total momentum). If xQ we can say that there

is a non—vanishing flow of momenta outside, Suppose ‘mt
in (4.17)

contains only the tachyonic term
(.WX

A fa d () (4.16)

where is the bare field. The resulting theory is renormali—

0
‘r’ tachvonic mass shell. We are thus considering the



— 23 —

effective theory for tachyons only. Then

-

Q () + non-local, (4.19)

FC] () ÷

Assuming that the renormalized field is on—shell (i.e. is equal to

we get

O(2A) (4.20)

In order to find the expression for theft —function coefficients

we are to consider the leading (overall) divergence in
‘eff’

We have

.t__ 17 i

,A)
) (4.21)

—

> (4.22)

To isolate this leading -4-term in (4.21) we may replace

by putting all the momenta on shell, Ve are thus to analyze

the integral

XN= A (4.23)

<fle

The overall divergence comes from the region where all N points

are close to each other (other limits correspond to sublead.ing di

vergences that are subtracted in the renormalization process and do

not influence the 9 —function). Changing the variables: .1- LI

, k =3, . . . ,N and expanding in powers of /-. Q vie

( A in (4.23) cancell out since are on shell)
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A/i’ 1

(4.24)

Here &t it comes from the integration over A • The integral over

3
A takes the form: fdii 1L41 + We have assumed that

isolated the leading tachyonic pole and replaced

(%i%2_ by LJL . One can chock direetly that is the

standard VS amplitude computed in the Mbius gauge w1=O, w2=1,

wNl= • Thus the coefficient CN in the bare field (4.20) is in

deed proportional to the N÷1—point VS amplitude. Note that in

much similaritj with what we have in (4.16), A in (4.24) can

be interpreted as the Mobius infinity. Computing $ we thus effec—

1 2

tively fix a Mobius gauge by separating one point ( 5’d6 € ‘.‘

and integrating over one point ( ) to produce

(the total momentum corresponds to which is also fixed being

simply absent). Eq.(4.20) (with LA replaced by the tachyonic

propagators) may be considered also as giving the expression for

the classical solution of the f =0 equation,

F (4.25)

Let us now discuss the relation between the two approaches.

Consider the partition fwiction (4.14) or (4,17) with =O. The re—

normalizability implies the relation

More exactly, we need also to subtract all other tachyonic pcI

in in order to identify it with a coefficient in the -func—
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A + — 0 (4.26)

According to the partition function approach (4.14), (4.16) (we

disregard the dependence on powers of it )

A, ‘4

-

- =

(4.27)

- & it —

______

/ ‘4/
‘‘

)
‘4

A.,

Then from eq.(4.26) we get

j = / ‘

. (4.28)

This, in fact, is what we have found in thee_function approach,

The validity of (4.26) depends crucially on the presence of the

finite —term in Z. Note that (4.2) is consistent with the ex

pectation that the equation =0 should be equivalent to the effec

tive equation of motion 0 with =

being the effective action (since we differentiate once over C
)

in (4.26) should be
‘ (AN+1)btr)• We thus have a clear qualita

tive understanding of w a subtraction of the overall A cor

responds to a subtraction of the Mobius iffinity.

Returning to our discussion of
‘eff

in eq.(4.6) it is thus

not too surprizing that representing ‘eff
formally in the local

form (by expanding the integrand. near one point) and isolating the

leading tachyonic pole (or the leading logarithmic singularity) we

indeed get the ordinary VS amplitude AN+l as the coefficient of

the -term. Assuming and defining the amplitudes

by the analytic continuation we satisfy the condition of scale in

variance. This was the argument of ref,/18/ which we recognize as

being simply an application of the,8 —function approach of ref s.

/1,7,11,13,14/. An attempt to relate a solution of the Wilson’s
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renormalization group equation (combined with scale invariance con

dition) was also made in ref./17/. As was already pointed cut in

ref ./18/ this attempt was erroneous. The authors of ref./17/ assu

med that is the generating fctional for string S-matrix

and hence ignored the problem of subtraction of the logarithmic

Mdbius infinity: they considered the zero momentwn tachyonic term

lfl ‘eff’
expanded it in and claimed that the coefficients are

proportional to N—point string amplitudes AN. However, as we have

seen above, these coefficients are, in fact, the N+1—point ampli

tudes AN÷l (times a logarit1xnic divergence).

We conclude our discussion of the approach based on Wilson’s

RG equation with the following remarks. It is not at all obvious

that the basic equation of this approach can be interpreted as an

equation of a string field theory. The basic problem is that of the

cutoff dependence. In general, we might expect that a string field

theory vertex is well-defined only if a cutoff is also introduced

in it. However, to check the correspondence with the standard dual

S—matrix we need to remove a cutoff. The procedure used in /18/ o

demonstrate the correspondence with the string S—matrix was, in

fact, a version of the argunent used to prove that the ,_functions

in the “effective” (near mass—shell) tachyonic sir.a—model are

equivalent to the effective string equations of motion. It would

be desirable to have a more direct arunent/establishiñg a coxmec—

tion with the string S—matrix which is not based on the effective

integrating out all the string modes except the tachyon.

5. Approach based on the completeness property

of “vertex operators”

One of the most characteristic properties of string theory is

that the corresponding signa—model contains all possible local ope
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rators constructed out of X1 and its derivati7es

cients related to the modes of the string spectra. It is a

to stress that the completeness of the system n add.i—

tional input in the Wilson RG approach. We may try to avoid uin

the Wilson RG equation,directly employing the completeness proper

ty of 1,V5in the analysis of the basic partition function

—I - I C’i”J

Z L =
fx e (5.1)

Here 10 is a free action with a cutoff and ‘mt
is given by the stun

of all possible Vi’s multiplied by the “bares’ fields

1

= (5.2)

V obviously satisfy the local completeness relation

r
() ) l )

(X()

(‘>&‘) c c- .

To prove (5.4) we note simply that expanding z’ near z we get a

series of terms which are again proportional to some . q.(5.4

can be rewritten also in a more symmetric form

() (‘) = C (-‘) e C (5.5)

From now on we shall not indicate explicitly the momentum argument

-,

of U , including it in the index i. We shall assume that L
J

a1s contains the -function — e) (and that the

sum over includes the integration over k ). C and Cm (54)

and (5.5) can be related by reexpanding in the r.h.s. of

eq.(5.4) ner1 Integrating (5.4) or (5.5) over and

we get the integrated form of the completeness relation

(5. )
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We use the translational invariance on the plane in order to be

2 ri i

able to rewrite as Jd • Then

çja C () (5.7)

Since is a power series in t , the integral in (5.7) needs

some large distance (IR) cutoff, 14I R. This is a weak point of

this approach: the necessity of introducing R is a price to be paid

for the possibility to use eq.(5.6) in order to rewrite the non

local expressions (like ) in a local form.

It may be useful to stress that the completeness relations

(5.4)—(5.6) are purely “classical” (not operator product) relations.

They are true exactly, irrespective of any averaging procedure. As

in (2.19) we assume that V are made dimensionless with a help of

the appropriate powers of the cutoff , =2_2N, 2N=number

of derivatives in • As is clear from (5.4),

C. C > (5.8)
) d

Let us now formally consider the system of objects V which

form the commutative associative algebra (5.6) with

= =
(5.9)

and use (5.9) to compute the partition function (5.1). Let us de

fine the matrix

1n,
,

ye (5.10)

where the summation over - includes the integration over momentum.

Then

—1 )

(5.11)
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(f( =

i.e. the associativity implies the usual rule of differentiation

of functions of 13. Consider

‘

(5,13)
41 J

Since =const we can easily solve the equation (5.13)

(5.14)

Here B was defined in (5.11) and.

••

‘ r €° ...

j (5.15)

is the free expectation value. Eq.(5.14) gives the explicit depen

dence of the “tadpole on cp . Now we can solve eq.(5.12

for Z. flternatively, we can find the dependence of Z on ‘f by re:

resenting it as a power series in

‘e T’ (5.1

and using the completeness relation (5.6). The result is

Z= I —
) (5.17;

= B B -

(5.1

Differentiating (5.17) with respect to we get back to eq.

(5.14). Thus the completeness property makes it possible to expres

all the correlators in terms of , and

The basic object is thus

f2e
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We have

>0
Vc2 d

(5.20)

c i
where a is an IR cutoff in the Green function (e.g.

— L an the finite triangular rnatrixf

may depend only on the momentum but not on the cutoffs. Here

the summation over j. again includes the integration over the mornen—

b,tfrwhich is thus the same in both sides of the equation (5.26).

Since is proportional to we have

V > — / 14 t , , (5.21)

( -
- kj.

Consider now the renormalization group equation for Z, expres

sing its cutoff independence

.,S.. 1< =

r
5.22

)
(10

Iet us solve this equation for ‘ . Substituting the expressions

for Z (5.17) and (5.12), (5.14) we get (see (5.8))

i-ZV> s2- 14 > S2 (5.23
)

where (. •

=- (5.24

c
Hence

(5.25

The cutoff dependent factor in t is not essential: it will

disappear from the final result for the —function.
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= -

Eq.(5.22) thus takes the following form

if (j
EL (5.28)

ç/ k

This equation gives the expression for containing all higher

powers of

(e8)’ Lu Lc1 e- J2’k 1: .cej

±-‘

It is remarkable that the use of the completeness relation makes

it possible to obtain the closed expressions for Z and the —

function, The —function in (5.30) depends on the cutoff only

through (the cutoff dependence of cancels out in

(5.30)). Eq.(5.30) is certainly different from what was found in

the Wilson’s RG approach (cf. eq.(2.21)). The expansion of in

powers of reads

12’
( 1)P

pI

(t)
(5.26)

(.2)

.t. (e_8)Iw
K

Using again the completeness of we finish with E’ =0, i.e.

p = C.6’. tk J2
(5.29)

(5.30)

—
:•

+

(5.31)
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LcJ (5.3’)

( + -

L]

+ O)

(J , in general, is not diagonal and hence “mixes” different fields

let us study the structure of in more detail on the example

of the tachyonic —function. We shall concentrate on the depen—

dence of on the tachyon field itself. According to the defi—

nition of C and t (see (5.8) and (5.20))

(=(AR)z

L

) = Qic

2_
)K’)

(Lk,) .34)

Hence we find

—

I
•

- C14-& 0

+ L ( I -

4
(5.37)

The interaction terms here can be represented graphically as fol

lows A

where ,corresponds to the transition of the two tachyons into

some state which afterwards is transformed again into the tachyon

with the help of the matrix Note the important role of tne

matrix which makes Li) non-diagonal in field space. Since

S
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A

Li) depends only on momenta (and not on the cutoff) depends

on the cutoff through C . determines the interaction terms,

which thus contain factors of powers of the cutoff,

To check the correspondence with the string S—matrix we are

to solve the equation =0, for emple, eliminating all the fi

elds in favour of the tachyon (as we did in the previous section).

ut as in the Wilson approach we need to understand what to do

with the cutoff dependence in the interaction vertices, One possi

bility could be to make a redefinition of the tachyon (

) but this does not help in the case of the second

interaction term in (5.37) (which contains the iffinite number of

possible powers of A. .

Since may depend on the momenta, the second interaction

terra in (5.37) has a complicated form: the interaction vertex de

pends essentially on all powers of moraenta, i.e. is effectively non

local. Similar results are found for other p—functions, e.g. the

graviton one.

The scale invariance condition =0, i.e. =0, can be

represented as follows (cf.(5.25))
I

()

or

A’ 5

‘ _c2 (5,39)

This equation would look like as an equation of motion in .a f
/

field theory if not for the dependence of and on . Obser

ving that Q =i÷O() we have

L.(p’ (Cc 0(2
(:.‘+o)

(-i)] c
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As in the case of the Wilson’s RG approach, the problem with this

equation is that explicitly depends on A ,

‘I

Hence the solution of (5.40) will, in

general, depend on A (in apparent contradiction with

It is of some interest to consider the partition function Z

(5.1) with =O. z( =oj. is the generating functional for the corre—

lators of the vertex operators and hence, in view of our discussion

in sect.4, ZCoJ may have some relation to the string S—matrix

generating functional. When =O (cf.(5.20),(5.21))

= (AR (/Lc) = ‘ C) (5.41)

> t
I —

(5.42)

Then eq.(5.23) implies that
A

=
£2

- . C2’
43)

= -
Q(y3)

This does not look like as a reasonable action functional. For

example, the leading tachyon—dependent terms in S (5.44) are

- (- c/‘ + (5.45)

0
It would be interesting to prove (though we consider this to be un

likely) that the linear in % term in S is always a total deriva

tive and that
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LJ f
(5.46)

where is some non—degenerate matrix. The basic objects of

our approach based on the completeness relation are the partition

function Z and the “structure coefficients” , The latter
ci”

we can formally interpret as a connection (which is flat because

of the associativity property (5.9) and the ( —independence o±

). Since

y>
—

(5.47)

we have

. .
j —

0
( .-8)

— C

Thus the only “natural” “metric” = which trans

forms as a tensor under the redefinitions of c’ is, in fact,

equal to zero.

6. Concluding remarks

As should be clear from the above discussion we are lacking

a clear demonstration of a connection between scale invariance RG

equations for a most general 2—d sia—model and string field the

ory equations of motion. Still there are many indications that some

connection exist so both the aporoach based on the Wilson’s RG

equation and the approach based on the completeness of the system

o± vertex operators are worth further study. The “completeness” ap

proach loOks particularly appealing since it is just a natural ge

neralization of the usual RG approach for the renormalizable sia

model to the case when the —model action includes all possible
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local interactions. Thile the —function of the completeness ap—

proach contains all powers of the fields this may not be a drawback

since the “quadratic” form of the —function in the Wilson’s ap

proach is achieved at the epeflCe of introducing the logaritnic

dependence of the interaction vertex on the cutoff.

The dependence of the f —functions on the cutoff is a problem

in both approaches. It may indicate that it is not quite correct ;o

directly impose the condition of the vanishing of the —function

of a general —model in attempt to interpret the resulting equa

tions as string equations of motion. In any case, trying to solve

(cp,A) Q for with non-trivially depending on A

does not make sense. ihat may be of interest is to try to formulate

the string theory viith a built—in 2—d cutoff A and establish a

connection with the —model for a finite A

Both the “Wilson” and the “completeness” approaches are as*

on separating the free pieee in the —model action. Hence they

both are perturbatiVe in nature, with flat space me metric

playing a distinguished role. We thus :inguish on :articuai’

operator ( XX ) among all other ver;ex operators resent in the

s—model action. This, of course, implies that ve atudy the theo

ry in a “perturbative phase” in which the particles propagate in

the usual way. This seems to be a disadvanae as compared to the

case of the ordinary renormaliz able —model in which vie can deve

lop the generally covariant loop expansion without specifying a

particular Ddimensional metric. To develop a backgroufld—ifldePe*

renormalization group approach for the generalized —model thus

remains an important problem for future.
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4’,s to 5/

Let us finish this section with the following reks. V/e used

the interaction vertices 14 which are not normal ordered with rea

pect to the propagator G (see Eqs.(2.9), (2.19)). This seems natu.

ral within the path integral approach and makes possible to consi

der the products of without worrin€ about norma]. ordering (i,e

simply as classical, not operator, products; see, e.g., qs.(5.4),

(5.5) of Sec.5). Still, assuming that ‘2’ ()

form a complete set of local operators, we are free to trade

for the basis of the norma]. ordered operators (see (2.3)’..(2.9); we

take G(oJt) 6,Ao)

€, -
.)
jx]>

The matrix depends on k (but not on A ) and has triangu

larm structure (note that X’K” - 42J”,et

7 + operators at lower levels ‘N

Comparing (3.21),(3.22) with (5.20),(5.19) we conclude that

= ‘ .

• ,-,,__

.

(3 • 2:

(3.2

(3.2

We can thus rewrite Eqs.(2.19)(2.21) in terms of the norma]. or

dered operators and the correspond.1-rig set of fields

cp” (ç cp L (3.
7

Ii



An advantage of the use of the normal ordered basis is t} the car

responding matrix
4.L.

in (2.20b),(2.21) can be expressed in

2217
terms of the operator product coefficients ‘ . Taking the

derivative of the relation (cf.(2.5))

: () xffdk

J (3.2

weet

(i): 4 (3 • 2

Hence (see (2.20b)) A

‘I Ai_2_—fdl C() (3,3
—

where we have used the OPE relation implied by the completeness

cf ;

165: C’6’) -i): (3.3

are the coefficients in the —function (2.21) expressed in
1, ——1

terms of Q (& (cf.(5.30))

=
,C’ce1 Le

(3,

5. = -

O is equivalent to the equation derived in (up to the non—dia

17 —

gone]. terms in ( absent in ). Iote that C and. f depend non—

trivially onit through their dependence on G (being dimensionles

f depends on AR, where R is an IR cutoff).

It is possible to get rid, of the dependence of f oni& by

using a special prescription (cf. Ref,22) of how to introduce a



cutoff (which, however, can hardly be considered as a ccnsjnt

one in the presentzcontext). Let is assume that (3.31) is defined

so that C is it —independent (this is true e.g. if we aae
Cj

in G before ), inserting instead the UV cut

off q I > A
1

in the mt egra). in (3 • 30). Then on dimensional

grounds

Ak
.—k

(i) C 33.

where is dimensionless and hence (of. Ref,22)

I

A i r “ )
—

C /
=—7T tI

This coincides with the standard expression for the coefficient of

the ..4 erm in the 9 -funct ion computed using the pertizrbation

theory near a conform.]. point22. However, in the latter case the ,fl.

function in general contains terms of all higaer orders in (see

also Sec.5). Vie conclude that the existence of a consistent scheme

in which the —function is quadratic in and does not depend

explicitly on remains an open question.




