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Abstract

We discugs the program of deriving the string field theory
equations of motion for all (massless and massive) string modes
as the renormalization group fixed point equations for the most
general sigma model containing all possible ("noﬁ—renormalizable")
interactions. We review the approach based on the Wilson RG egua-
tion and point out the problem of cutoff dependence of the inte-
raction term in the corresponding "quadratic" beta function. The
relation between the sigma model path integral and the string
scattering amplitudes is clarified. We suggest a new approach to
derivation of the generalized sigma model bteta functions in which
the central role is played by the condition of completeness of
the set of interaction terms ("vertex operators") present in the
gigme model action. The use of the completeness relation makes 1t
possible to obtain closed expressions for the sigma model parti-
tion function and the beta functions. The resulting beta functions

contain all higher powers of the couplings (fields).



1. Introduction

One of the remarkable properties of string theory is its con-
nection with 5-4 @ -models. First established at the level of per-
turbatively renormalizable G -models /1-4[,corresponding to low
energy dynamics of the magsless string modes /5/, this connection
played important role in search for vacuum configurations in string
theory /6/. Since conformal or Weyl invariance is a central con-
gigtency requirement at the string tree level, 1t is natural to
expect that a version of conformal invariance condition imposed
on a most general 2-d Eg-model (containing all possible "non-re-
normalizable" interactions corresponding to all higher order mas-
sive string modes) may be equivalent to the exact tree-level stirin.
equations of motion for all the infinite system of string local
fields.

Below we shall review and elaborate on a number of sugges-
tions concerning the program of deriving the complete system of
string field equations from the qé -model (see in this connection
refs./7-21/). We shall consider the two approaches. The first
/10,17-19/ uses the Wilson RG eguation /22=23/. The second is
based on the partition function for the G’-model and on the "com-
pleteness" relation for the interaction terms in the Gf—nmdel ac-
tion. The "completeness" relation is simply the expression of the
fact that all possible local interactions are included in the ac-
tion.

We start with general remerks on the Wilson's RG approach
(gect.2) and then consider its application to string theory (sect.
3). Attempts to establish correspondence with string S-matrix
are reviewed in sect.4. We clarify the issue of subtraction of th«

Mobius infinities and point out the existence of two different
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procedures for identifying string gcattering amplitudes with some
Ginmodel objects. One is based on the interpretation of tiie Gf..
model partition function as a generating functional for string S-
matrix and the other starts with the fg ~-function for zn effective
renormalizable Gé’—model and considers the solution of <he fg =0
equation.

In sect.5 we develop an alternative approach in which the cen=-
tral role is played by the completeness condition. e obtain the
closed expressions for the F -functions which, in contrast to the

-functions in the Wilson's approach, are "less" cutoff dependent
and contain terms of all orders in the fields. Some open problems
are discussed in sect.6.

The present paper cen be congidered as a complement to our re-
cent review of the Gf-qnodel approach to string theory /24/ where

only the renormalizable ES)-ﬂodels were considered.

2, General remarks on the Wilson's renornalization

group approach

Below (in sects.2 and 3), we shall discuss 24 atempt to in-
terpret the Wilson's RG equation in a 2-d quentum Tield treory as
a classical equation of motion of a string field theory. In view
of the well-established relation between the renormalizable 2-d
sigme models and the effective equations of motion for the massless
string modes it is natural to expect that considering a most gene-
ral 2-d sigma model on a curved background and imposing the condi-
tion of its Weyl invarience one should get the fundamental equa-

*
tions for all string modes /. It was observed in ref./1C/ that the

*/ Generalizations of the RG approach to include the massive stri:

modes were consgidered, e.g., in /1,7=9/
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fyilinear" structure of the Wilson RG equation /21/ is reminiscent
of the "cubic" interaction in a string field theory. The sugges-
+ion /10/ to consider this RG equation as a classical string field
theory equation of motion was recently elaborated upon in refs.
/17-19/

While it is certainly essential to impose the Weyl (or a kind
of BRST) invariance in order to consistently discribe the dymamics
of all string modes, it is sufficient, as a first step, to consi=-
der the condition of the global scale invariance of a 2-d theory
on a flat background.

We shall discuss and try to clarify scme points of the prog-
ram of ref./10/ and, in particular the relation to the string S-
matrix /18/. Let ,X/A denote a set of dimensionless fields de-

fined on a 2-d plane*/. Consider the theory

I:—.I-&—X'f =%§JSX AX/A A =-0 | (2.1

o
> ° ?

-1
G%::[&o is a regularized propagator depending on a rfixed cutoff

‘f\o . The basic object is the partition functicn

£ [52] = Zaszx QXFG%XG:X ~I5“t[X+;D>(2.2

Z= <onq(- IMK"*’?D>7 <i>= 1,

where X is arbitrary. It 1is eaSJ to prove that

Z[x] = QXFC% G, 577) o (’ T..[¥])
G, __.__. = gd ds’ C4,5> gxﬂ&.) gﬁ‘(q} (2.4

*/ In what follows we shall discuss only the 2-d theories corres-

ponding to the closed Bose gtring theory expanded near a flat D-



-5 -

In fact, CTX CTE

< Flx+x]1> = f:ai Fra] <€ >e =
Jx

- (27 Fr7] exp (-47@T) € o
-_—5-?)J Ers] exp( 3G s;z)e et T

Suppose now we split G into the two pieces, introducing some "in-

termediate" cutoff A ,0<_A. < _A.o < oo

G (A= G(D + G A, A s

For ezanple,

eks’,z Aod‘ c ke
(2 - \
G(A)- 5 T ey G s

or

G.(h) = - & b (B + A
2 -2 (2.8)
G(an - y,%("‘““’ |

Then (2.3) *mpllns that

Z[%]= e"{’( G- g—z QHX (2.2,

AN

— Loy X3 §5-5-_:-1 B P &5 R} ~+xG x ,1-{“5,“;_7
= e = dx € , (2.1C
= faxenp (4xG@xD, T =5%/F

qence I of defines the effectlve theo*y corresponding to the re=-

T
sult of integration over the modes with momenta /L~4 K < 140

Let us consider the dependence of I_s. on _/x . Since Z in (2.2)

does not depend on JAg

- -ixG X - 1. [X+xj
d 2 [x] j ]_ N
—;(—-r" = 5 d/]-[ zx "O.(a.t

Differentiating over A we find ( A = G_i)
-f @ {

® [ ® 9
§}+5<XAX>+<I¢3;;>:O FEA:;Z_F

)
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Tt is easy to prove (using functional integration 35y paris) that
[ ]

LXAX > =

2 2 - S.f]. Sl; 5T, -1
gde, G(,)< 4 £ O S 1t (KA )zl
jd ‘ fx’@);‘x"fg‘) Sx"(.,—) 9 x” (6,_>> Y 2( (2.12)

- @

Since S } - ‘;: '{;q_ (A-’A> we thus get

51 O Lo §Ioyp §1ey
O 4 I [X‘f'/(]‘f’ gdéd; G 12) SX f)SX/MKG') SX’?GQ{X”({) >-(2.‘

X+ X

)

LUN}

The Wilson's RG equation is obtained by dropping the expectation

*/

value brackets

‘ 2];;{ § ey §1opr

“le can check directly that Ieff defined by the functional in-
tegral in eq.(2.10),(2.9) satisfies the functional equation (2.14).

In general, eq.(2.14) is satisfied by any Iorr of the form
_ { L)
Iaf;-:—_g“ H > H[x] - eKF(zK' §x * L] > (2.15
wnere F is an arbitrary functional independent of [ﬁ_ and
[ 4 ®
fay--G@  Kw)y=--6cA-

In fact,
1

/I N
g“(IqJ = — — C \/5——{—( ))(M
. (:{ 4 e H//
t, - -4 --zK ¢

E 3 - .
/ We thus replace the functional integral <F[x+x]> =0 by tie
functional differential equation F[x]=0. There is, of course, tie

freedom of making simultaneous redeflnltlon of the 1nte~ra ion vo-
~ICx I,Cx']
riable, x'=X+ g?fx], g',?)x e [x+x] §2>X e F[" x

l"/r‘Z — T - s TF—I\
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-1,
Eq.(2.10) corresponds to C=G§./1(3), F=e lnt.

We see that eqg.(2.14) has a little dyramical conzernt: 17 knows
nothing about quﬁ.O) and Iipt, i.e. the parameters cf the "funda-
mental" theory. The information about the fundamental theory should

be introduced by hand through the initial condition:

<I€fD/L=A = L. . L2

In this respect the Wilson RG equation is different from the Gell-
Mann-Low equation j =_./5(}) in which the /9 -function "knows"
about the dynamics of the theory.

Additional dynemical input is provided by the assumption that

I can be represented as a combination of a complete set of local

eff
"operators" Vi built out of x and all its derivatives

. Y.
=Z“59L'Vg V. = A ‘ V. (2,13

rd

Here Y (jﬁ) are the corresponding dimensionless couplings and
Bﬂ are the dimensions of the operators J e Iors depends on uhv

cutoff implicitly through ¥ [&1) and explicitly throuzn 14_

}._A
D

In view of the completeness of the set {.Vc‘ﬁlt should e rpossip

to represent the functional derivative terms in (2.14) =2

L) 2 P
Jg%lv N —;A ‘l‘v; (2.20

L

K
jG\ sVo SV S g \J (2.20
= iy ke .
SX SX P4 ¢
Substituting (2.19), (2.20), into (2.14) we get an eguation of the

@
form ;2? %’K ﬁvﬁ :() or, in view of the completeness of Vi’ Hb =C,

D

(@)

Exp1101tly, we find

C—,gf ti + ZA Y —;‘-ZJC “f’*ﬁ"
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Given a theory with the corresponding get of Vi we can in principle
compute the basic matrices zﬁ‘J and 5:;1 and nence determine the
"ﬁ-function" (2.21). Recalling the derivation of eg.(2.14) we con-
clude that eq.(2.21) is essentially equivalent to the condition of

/& -independence of Z (2.9),

;7
Z+/3—————=O _ (2.22)

The important difference of the "f?-function" (2.21) from the
ordinary Gell-Mann-Low function in renormallzable models is theat
(as it is clear from (2.20)) the coefficients ka in (2.21) in ge-
neral depend on $he cutoff J/l . Hence it is not possible to repre-

sent the solution of (2.21) in the usual form

yin) = (4 ey + ZTiceol ) | ao

where T do not explicitly depend on _/x or/M . Eq.(2.23) gives
the relation between the bare and renormalized couplings in the re-
normalizable thories in which we take the limit jq_—€> oo (i.e.
drop the inverse powers of 1@.). In contrast, in the Wilson ap-
proach we keep the cutoff ‘/& fixed. If (2.23) were true, we would
get

° & ‘.

F——- =——}(tp + T (ap) (2.24)

This is clearly inconsistent with (2.21) if §:[K are_z4_-depen-
dent. It is only in the "continuum limit" that we can eliminate the
nonrenormalizable ( ﬁKﬂ < O ) couplings from (2.21) obtaining
non-linear but _/L -independent rg ~-functions for the renormali-

zable ones.
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3. Application of the Wilson RG equation to string theory

Let us try to apply the aovove considerations to tne case of
the closed Bose string theory. In a string theory context tne coug=-
ling constants tfi in (2.19) correspond to the components of a
string field and the interaction vertices Vi ("vertex operators")
are given by the 2-d integrals of all possible combinations of de-
rivatives of coordinates ,Y/‘ S/xe 1,...,D ). The product SPQ’LC

can be represented either in the coordinate or in the momentum

space as ~ ‘

5V, = jd} wiey) Vo ly) = fa/i Py V. (k) G
. (1% SPryrar@) vax

-\/: (?,) = f (? X ) ¢ ) (3.2

W/L. (k) = fdf{ e"““"% (2x) ) U = {?h'x/f._ ’ah‘kf’ﬁ

The index "i" is thus a shorthand notation for a set of D=-dimensioc-
nal indices. We assume that a non=-trivial 1&: contains at least twc
" . . . . . - e ;Z:
~" x -factors. The dimension of V, is tnus U o=2-2N,, 2= P

L - P73
total number of derivatives 1in '5: . AK} is always even since i
2-d indices in Qﬁ are contracted either oy S;( or by Eag .
Note that there can be several operators with the same 3? . It is
. . . . e Ao .
convenient to include the integration over g, or K in the con-
vention of summation over i. Thus the interaction term in the strir

action Ii or I -¢ (2.19) takes the forwm

nt
2 ? Vol v (e

Legg= A [de & (x&) + [d&2%x"2% ///u (x f))w
- a R4 2 g

b+ N AT 22 x T2 K2 B ) 0

V' [&]=cm, so that all

We choose 2;-;,[’:1 and [ x]=cm®, [:/LJ =cm-

the space-time fields 39° are dimensionless.
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The basic dynemical principle of the RG approsch is to identi-
fy the scale invariance or RG "fixed point" conditions J31=o with

the equations of motion for string fields P, Using eqg.(2.21) for

the"F—functions" we thus get

. : ' N4 ¢ o— A .
w‘és“ﬂ#,f;.kc,a’,o =0 | w/’AJ'XaSJ (3.4)
(we shall always imply summation over the repeated indices 1,J,K, s
except in the case when 28 is present).

Eq.(3.4) looks like an equation of motion in a field theory
with a cubic interaction. The problem with this equation (which was
not sufficiently appreciated in the previous discussions) is that
while (3.4) expresses the condition of the 14_ -independence of w*
the "coupling matrix" ‘fL.k in (3.4) depends non-trivially on
the cutoff _/L . Hence it appears that the solution of (3.4) should
also depend on /ﬁ , in contradiction with the original assumption
4?L=O . A possible clue to a resolution of this pa;adox is pro-
vided by the observation that being dimensionless ;;k may de=-
pend on /t only through the dimensionless combination AR of A
and an IR cutoff R, [Aé‘ < R, Hence it may be that eq.(3.4) is con
gistent only if AR has some fixed value, i.e. if RA-/KTL so
that %iis' /&-independent. In any case,the role of the IR cutoff
needs to be clarified.

The sbove mentioned difficulty may be suggesting that while
the "initial" Iint
(3.3) we should not try to solve the ¥ilson equation (2.14) using

in (2.2) may be given by the local expression

the local ensatz (3.3) for I cee In fact, we know elready that

(2.14) ig solved by the path integral (2.10), which produces a com
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licated non-=-local expression for Iefi‘[xl parametrized by /1 -
independent couplings EFL appearing in Iint' The proovlem is then
what 1is the gcale invariance condition for non=-local I off* Snould
it be I fA_C)’? But this is then cont*adlctlng our previous sugges-
tion ﬁ?‘ =0 in the case of Ieff (f -Xﬂ gince V are supposed to
depend on /\ in order for %’ to be dimensionless. Note also that
in view of the completeness property of '1/-5 any non-local Ieff
can be formally rewritten as a local one (2.19), at the expense of

introducing the explicit dependence on an IR cutoff. A possible re-

solution of this puzzle is to formulate the scale invariance con-

dition as I of =— fa/g 5 94 X/‘ j{fg) o In fact, if

Tege= Litan | T,=A*§d%e 800, we get: T =0T , fd’s’e"gax’%
= A [deetax" 2P = A [de 6% & = - 21,

Fence

Siz;ﬁf
$Sx7@)

T = — all . X/' 5
Ief} f & 6 7a (3.3)

ig a natural scale invariance condition which applies in the gene-
. .

ral case of a non-local Ieff and reduces to g 90L=O in the case
of the local ansatz (2.19). Eq.(3.5) expresses the vanisning of the

"anomalous dimensions" of the interaction terms in Ieff’ generali-

zing the condition F‘:@. The term in the r.h.s. of (3.5) simpls

counts the number of derivatives in a given term in I ot We shall

use a non-local ansatz for Ieff discussing the correspondence

with the string S-matrix.

Let us now proceed to the analysis of the scale invariance

equation (3.4) in the case of the local ansatz for I pee Our firse

tagk is to compute the matrices [&J and } defined in eq.

(2.20). Let us choose the regularized propagator as in eq.(2.8).

Then
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We thus see that fields of different masses (levels) mix in the

Vb

101
P2y

ipetic term" in (3.4). The additional "non-diagonal" terms in
;
(3.10) are absent if we assume that all Y " are traceless end

transverse. Then the linearized equations (3.4) are simply
2 2 ¢ 2 <f
m. = = .?/V"Z)
(K+m2)¥'=0 , m = ‘ (3.11)
(m2=-8ﬂ' corresponds to the tachyon, m2=O - to the massless modes,

etce).
Turning to the analysis of the interaction term in (2.21) let
kKx
SS); in (2.20b) act on &€

us first consider the case when both

in the vertex operators. Then

(d2 &2 [dede, 1ud% G (6n) (- k) - |
o ey $9 ael) (&™) @) (e )R

= (d% 4% (ar) fd'ads G (a2 -
C(wme () (e T)E)

In order to apply the completeness property of the operators

(3.12)

’bz(‘ax), let us first formally expand the integrand near éil ,
ér; 6’,_‘“4 , and then integrate over ( . Ve get
XA‘X“Z l‘(/(z"kz)k

(P P (i) [a oz g @

. Z aé,/fefa/zg Z; (9X> e: (k,urz)xj (3.13.
e . ). 24

oo N[0, W= LA GW Y

o
(314
Y, = 2-24, No= M +M + 4, ,
P/
'%f may contain powers of k k’ and we have formally used the
¢ 1, "2

2 P4
translation invariance on the infinite plane to rewrite q/ej 4/62
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as Slfti_c/i( . While we have thus succeeded %o represent the
product j;($' éli EE!; ag a linear combination of Vk this was

achieved at thexgxgigse of introducing the IR divergent coeffici-
ents C]e . Assuming that we have already integrated over the phase

of ({ we have (see (3.6))
T lhe "

~ L ) A e _
e SY 4} g+ A A (3.15)
=_£(—1)h€ {&@1R2+1> +Z€—:;(:‘>[(A1£z+i) -1] ?S Cy=lul

We have introduced the explicit IR cutoff R in the integral over U

Alternatively, we could assume that an IR cutoff is present in the

‘Green function G. Thus al = :Fe (AR) and so the opera-

tors in (3.13) in which.’b; contains 2N, derivatives are naturally
Yy

multiplied by lﬂ_ s XL:'Q_QQAQ . Thig, of course, is clear

from the dimensional considerations only. What is important is that

the coefficients in (3.13) are dimensionless functions of AR ,

The case when one or both JE— act on i&? orizg' is treated
[4

X
similarly. We again use "321 S m(é - Q’) - C_ ?é")h Scz) (5,’ g‘t)a.nd in-
tegrate by parts to put the derivatives on G. This operation redu-
ces the level number of the resulting operator by n units. Expandir:
in U= é:z and integrating over it we again get an expression
gimilar to (3.13). It is easy to understand that-\a appearing in
the r.h.s. of (2.20b) may have any Ny 3 2. For example, V. with

N, =2 may appear in the "product" (2.20b) for arbitrary N, and Hj i

k
2, -1 V-4 ‘ ,
/b’c ~ ¢ x X) ‘b},\, ®, ¢ x 2 X , etc. Thus, e«Z., the

" g -function" (2.21) for the graviton may contain in its interac-
tion term fields from arbitrarily high levels.

Let us now consider more explicitly the interaction term in
the P —function or eq.(3.4) for the tachyon field (Ni=0). The li-

near term was already found 1in eq.(3.10)
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from all higher levels)

k1 -2) f(k) + (traces of 2-nd rank tensor fields (3.15)
FAW. WT .
The structure of the quadratic term is clear Irom (3.12), (3.13):
to obtain the tachyonic (Nk=0) operator in the "product" (2.20b) is
possible only if we take both Vi and Vj to have Ni=Nj=O and leave
only the first term in the sum (3.13) (i.e. the Tirst term in the

expansion in powers of (4 ). We get

Byt T 72 % (dx i (e-) B() & (ks

> (3417)
d, = A fdzu G = %é” (A2P+1)2&AR (3.18)

If we formally ignore the non-tachyonic terms in (3.16) the equa-
tion of motion for the tachyon taekes the following form in the co-

ordinate representation (21roé/ =1)
<_ #D-Qé + a, (AR) ’E/u§ 2'e =0, Gaw

The interaction term in (3.19) looks strange in several respects.
As we have already mentioned above, the /1_ -deperndence of the co-
efficient q, implies an inconsistency since (3.4) and hence (3.19)
is simply the condition of the./L -lndependence of éE (differen-
tiating (3.19) over _/I_ and using é =0 we get ’9/§?”§5=O
i.e. % =const and hence, from (3.19), & =0). Also, the interac-
tion term ’El,i;; ~F § is different from the standarc %z—inte-
vaction one expects to find from a string field theory action. It
casy to check that eq.(3.19) cannot De derived from a lccal cubic
action which is second order in derivatives of §§ . lMloreover, sol-

ving (3.19) we do not get the usual 3-tachyon amplitude as the co-

efficient of the (éﬁjmgz—term :n the classical solution,



- 16 =

A1l this seems to suggest that eq.(3.19) end hence the whole
approach based on combining the Wilson equation with the local an-
satz for 1 off in terms of the complete set of local operators (219
and imposing the scale invariance condition (3.5) may have nothing

+*
to do with string theory. A possible regsolution of this puzzle may

be that the above approach corresponds to an unusual choice of the
parametrization of the string field variables. In fact, eq.(3.16)
implies that the tachyon mixes with the traces of the 2-nd rank
tensors Lf(h) S’mj . Redefining ¢ to eliminate this mixing we
get the é ‘g‘") and ‘f(”) a") interaction terms in (3.19).
In order to compare with the tachyonic string S-matrix we are then
first to solve the equations for ‘9 v . To check the correspon-
dence with the string S-matrix in a straightforward way thus ap-
pears to be guite difficult in the approach based on tne local rep-
resentation for Ieff‘ Below we are going to show (following the
idea of ref./12/) that this check can be cerried cut easily if we

Jdeujwm>  start with a non-local ansatz for the effective 2-d string action.

:;>? 4, Correspondence with string S-matrix

Suppose we were given a class10a1 string field theory action
S [?} for a string functional é . We could, in principle, solwv
the corresponding equations of motion for the local componenu fi-

elds, expressing them in terms of *their "in" values,%? (F
ng : - th

*/

In principle, the f\.—dependence of the interaction term in
(3.19) may not by itself imply a contradiction with the siring

theory since, e.g. the recularized 3-tachyon amplitude is xnown

to contain the O(ln AR)) term /25,26/.
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In general, it 1s easy 10 prove that the coefficientis i 722 2.

<t
)

arirg =md-

N [~ -4
1itudes with N+1 legs : '\fzf— Z A’V“ (‘f) (s2e, e.g.,
N

i

gical solution %le C(Jigv are proportional to the sca’

¢
/18,27/). This follows, €3, from tne expreSSLOn for the generza-

ting functional for the tree S-matrix: S[Lﬂ,‘] = S[SOCQJ —_—

_.S(.P”‘A\fce ZA ‘~5’ (one should compare the powers of L-P( in botn ex-
pressions). Hence in crder to compare with the string S-metrix i°
is not necessary to know the actioniit is gufficient only to look &
coefficients in the expansion of the classical solution in powers
of the "in"-field.

Let us now suppose that only the tachyon has a non-vanishing
"in"-value éﬁhﬂ . Then all the component string fields which solve
the corresponding equations of motion are functions of é? (and
hence of é§Cn)' Substituting them into the tachyon equation of
motion we obtain the effective non-linear equation for é@ . We can
also substitute ¥ ¢ ( %é ) directly into the local representa-

c
tion for Ieff (eq.(2.19)) ( (e*¢ 8W $.=0)

T, @)V - «
Tesg = ZN, n[/\fds’ e‘k"xc ')§£h(kh)]%/(k,,...,k ” /D

o'
”‘;O h’i (z‘f .

—

, ¢ y%: ¢ ) .
Here we used that ‘-?C K"+m (éu) , where AA/+1 is pro-

portional to the scatterlng amplitudes with one @P* -leg and X
tachyonic legs. We have noted that Ieff in (4.1) should contain
terms of all powers in 4§a\which can be represented in a non-lo-
cal form with.'%v teing appropriate dimensionless functions. Suc:
a representation is suggestive since in string theory we expect
A,\I 1 to be given by the integrals over the Koba-ilielsen variables.
Expanding the integrend near one point (Ef ) we can rewrite (4.2)

pack in the local form (4.1), in which the operators with all
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higher derivatives are present. We thus expect that (4.2) may cor-
regpond to & string classical solution in which all modes are ex-
pressed in terms of déin' We could, in principle, introduce a more
general non-local ansatz for I r¢» including de?in%fnce on the "in"
values of other s¥ring modes and hence with & ) in (4.2) rep-
laced by ?“‘Xm’bn';x e“(“ ¥ . This would correspond to a general
perturbative classical string field solution. Let us note also that
it is even naturel to consider a non-local representation for Ieff

gince it is an effective action ’i.e. a result of integrating out

some 2-d degrees of freedom.

I in (4.2) first should satisfy the Wilson's equation (2.14,

eff
We know aslready the solution of (2.14) (see (2.10),(2.15),(2.16))

I e
[ = blenftle®-e@)5) € ™ Jus

Yo As for

(we assume that the initial condition is @eth—;A =IinJC

the scale invariance condition (3.5) it would obviously be satis-
fied if fN were independent of 14_. However, this does not follow
from (4.3). In fact, to discuss the issue of the scale inyariance
we. need to specify some procedure of removal of the cutoff. This
point is related to the problem of the cutoff dependence of the
interaction term in the "F:O"-equation (3.4) we confronted in
gect.2e.

Since we consider only the tachyonic nin"-background, let us

choose I, . to have the following simple form

K x (6)

2 2 D t

I.,=T1,=A ,(C/@C/ke P (&) (4.4)
it A1 = o] th .

Then the "initial" theory (2.2) corresponds to the partition func-

tion

213l = 2 Y.’ij exp ('%XG;-,X-—L[X*;] (4.5)
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and

Q—I“;E;]z j—igzx ex)o —El-xa-ix — [X+X.D (4.9)

Expanding (4.6) in powers of §i we obtain I pp in the form (4.2)
with fy being related to the correlators (Ieff contains only the
n"econnected" parts of the correlators)

Mook, x(e) -—-4 Gx )
M = < H e > ..> zxe s )(4-1)

2
M h=1 <1> =

They are computed using the propagator G, regular both in the ul-
traviolet and the infrared ( see (2.8))

PR 2 e———

1 A
Gl)=-tbds |, G —° - o
Aa 612

The basic observaetion is that if we expand the arguments in (4.7)
near one point, integrate over the points and separate the leading
singularity, then the residue will be the regularized expression
for the Virasoro=-Shepiro amplitude. The prescription of removing

the cutoff is the following: we take de-—4> o keeping /4_fixed

Consider, for example, the two leading terms in I sp (4.,0)

Ie};[;] = < I'> - % (< LZ) - (< 1, >32> T, (4.9)

KX (K x

T VYR NCTRECE

A [de e 30027 e CELY e
N (A Pe B0 = I, (A7)

< I'> = (al., 2 dede & (0) &, OF

x exs:(ﬂ,x(s‘) + G "‘@D exr[i- (l( + Kk )6‘/\." +

-4—-—-—!4 K, {?h e'l"'A‘z
o+ A?

~

i
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:AHJ‘J?’ 426_;. C/€: 5/?{1 é’h (‘(’) i'n (l(z) exf 6‘% ;(G;> MRS }@‘}) !

-~ 2 -2 of
,‘ [M + A, L)' =2 | =g

- 4
ui’+ A : > ’ h

Taklngjq —» oo with 11_-f1xed expanding in u and integrating

over u we get the leading singularity from the [ul-ﬁ> O region

2 2 4
fc/q jul  ~ — (4.12)

.‘(_ (x,+gl)z -

lul=0
This is the tachyonic pole( in the total momentum)so that

21> = A (e ™ [ G+ 000 ]

~ D 2
-g -~ 7’—1‘""_ S‘CI% §£h C%) é.‘u (“'%) s k=&r
2 et 14
I
For large but fixed Jﬁ the pole is replaced by the {i'jgi -term
o

(4.13)

Eé ig indeed just the second order term in the classical solution
of the standard tachyonic equation of motion with the §§'2-interac—
tion corresponding to the well known 3-tachyon amplitude.

To understand the appearence of the VS amplitudes (in their
standard Mobius gauge fixed form) in the present context, let us
make a digression on the two possible approaches to establishing
the correspondence between the G -model path integral (4.5) and
string scattering amplitudes. One 1is the"é-function approacn"
originally proposed by Lovelace /1/ and discussed, e.g., 1in /3,7,
11,13,14,28,29/. The other is the "siring partition function ap-
proach" /2,30,31,26/. Below we shall review these approaches on the
example of the tachyonic coupling. Let us start with the second
approach. It is based on the observation /2/ that the G -model
partition function is the generating functional for the correlator:

of the vertex operators
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= _—‘Z-o[.XJ ",Z:.h [XJ oo A
Z-Jae S 1 R RN
o V! v (4.14)

.4

T,- 4 Meaxran Ty= ¢V V=ATHEn6ae™ 20

In order to relate the UV regularized correlators <:'VC,,,W%;;>

to the string scattering amplitudes we should go on the mass shell
teking LP, 50“‘ and also to make some subtraction corresponding to
the eliminatim of the Mobius infinites in the unregularized string
amplitudes. Since the regularized closed string Mobius volume is
logarithmically divergent /25,26/ it is necessary to subtract the
"overall" &A_ -infinity in € VieeoVy> /26/. For example

LTS = AR R AR + 6 B8
+ <, 2

where it is Cq that is the ordinary Mobius gauge fixed 3-point amp-
. 2 kY
litude. In general, the correlator < V1 .o 'VN > = ﬁ{ 6 ... Jg” MNCé,),,

contains the overall momentum-independent logarithmic infinity co-

ming from the region of integration where N-1 points (32 are clos
to each other /26/. There are of course logarithmic subdivergences
originating from the regions of integration where K < V-1 point
are close to each other, but they are momentum dependent (and cor-
respond to the physical poles in the absence of the cutoff). This
is easy to understand qualitatively from the factorization proper-
ty of the correlators*/. The limit in which all N points are close
to each other corresponds to the factorization of the correlator

into the product of the N+1 point amplitude, a zero momentum propa-
gator and a tadpole on the sphere and hence gives the overall guac-
ratic (tachyonic) infinity ( J4f<{114 comes from the massless

state contribution). In the limit when some ¥-1 points are close

we ck}:(' Hhe rwduq‘ of He WN-poird am;»é-/u/e, He /u/ajqﬁz 74 i

*
/ This property is , in fact, a consequence of the path integral

representation ,



‘?a'z ou - SALZ/ MM‘A{M Qh/-fﬁgzz :?--/0,'”71 ca?;,,/g,]é S e f/‘/{d—-gj Eé
@/7%1 C‘M{ams q f;.,/e

piece and hence

(4V, s >w ~ b/l /IM * o (4.16)

2% T, 2
where Ay is the SV amplltude in its standard Koba-Nielsen Mobius

gauge fixed form. This qualitative analysis can be confirmed expli-
citly by making the change of the variables {2,y —> f?,) 74, W, b
2,= Z,+ U , BT Bt UW, , K= l{)”_,,t/ in the integral representation
e.g. for the tachyonic correlator <V, eeeVy> /26/+ Thus ££44

in (4.16) can be interpreted as the Mobius group volume infinity.
If Vn correspond to the massless particles and ‘:Vﬁ"'TN1> are
computed by expanding in powers of momenta (i.e. by expanding near
the masgs shell) the correct prescription of subtraction of the lo-

. oo . 9
bius infinity is to take ,/;é&;{ of the correlator <'V1...VNE>

in which all power infinities are omitted /26/.

Let us now consider the/& ~function approach. To compute the

counterterms we need to introduce some background field X

A[x] = f,ax & - T bt ¥ A

Above in eqg.(4.14) we assumed that =0 (and hence the integration
over the constant p;art of X gave the S:Efunction, implying the
conservation of the total momentum) . If x40 we can say that there
is a non-venishing flow of momenta outside. Suppose I, in (4.17)

contains only the tachyonic term
Ll()(

1., =T, I,= /L ga(gclzé <f(k> (4.18)

where éé ig the bare field. The resulting theory is renormali-

Voh1e mesr the tachvonic mass shell. We are thus considering the



S 2
effective theory for tachyons only. Then
I, [R=-4z(x - {de {4 FIFT 4

+ O3 B + non-local, (4.19)

Frxl- 3,0 + O (&4

Assuming that the renormalized field is on-shell (i.e. is equal to

@ ), we get
53,020 (04N + 0D v

In order to flnd the expression for the/Q ~-function coefficients Cy

we are to consider the leading (overall) divergence in I off*® We have

Z(” /—][fa/s’c/k e’ "Aéf(z)]
N=0
(4'(/, o >3&t'!¢9?““ R | (4.22)

To isolate this leading 4%(14.-term in (4.21) we may replace éﬁo
by %Ein putting all the momenta on shell. We are thus to analyze

the integral

X < o [d doy, oxp (snR@esin 7@
(4.23)

v ¢ K, C )
<cNe™ ™™y “ = 8w
A=t

3

The overall divergence comes from the region where gll I points

are close to each other (other limits correspond to subleading di-
vergences that are subtracted in the renormalization process and do
not influence the F —function). Changing the variables: 6;=6, + Y

g‘: dg-(-‘ UWwg » K =3, .00, and expanding in powers of >0 we

2
ot ( A —fantora in (4.23) cancell out since K? are on shell)
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X - [4ue 7 fra™ [ dv, exp (- Z e G20

K=12

+ Q) [ ~ Jdie e [4A A Gosid) +
+ O(’a;)] ; 3,; }._j;/(‘- , (4.24)

Here-éh,j& comes from the igﬁegration over U4 .« The integral over
U takes the form: f}hu }q{gF'-B + . We have assumed that
szct 'S 1 , isolated the leading tachyonic pole and replaced
g’({t%z- L\ﬂ by &A . One can check direstly that ANH—is the
standard VS amplitude computed in the Mobius gmuge w1=0, w2=1,

Wy, q= 90 Thus the coefficient Cy in the bare field (4.20) is in-
deed proportional to the N+1-point VS amplitude.*/ Note that in
much similarity with what we have in (4.16),ﬁ£,/1 in (4.24) can
be interpreted as the Mobius infinity. Computing‘F we thus e{fec-
tively fix a Mobius gauge by separating one point (Sdis’, ech(g,))
and integrating over one point ( Sdzk l“l"'-y) to produce 6314
(the total momentum corresponds tO 2.1 which is also fixed beling
simply absent). Eq.(4.20) (with éLJ4 replaced by the tachyonic
propagators) may be considered also as giving the expression for

the classical solution of the =0 equation,
V4

F(é) ~ é (AA“DM&. 2., )

Let us now discuss the relation between the two approaches.
Consider the partition function (4.14) or (4.17) with X=0. The re-

normelizability implies the relation

*/ More exactly, we need also to gubtract all other tachyonic pcle

in AN+1 in order to identify it with a coefficient in the/g -func-
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22 £3 7
2/ 2¢ :
According to the partition function approach (4.14), (4.16) (we

disregard the dependence on powers of 14_ )
[~
NV
Z[@,\“ Jo A, E44

(4.27)
- B, e te e

2

?&A
Then from eq.(4.26) we get

ﬁ(i‘) =2 C, ?f ) C ~ /4””*... (4.28)

.74

This, in fact, is what we have found in the ﬁ -function approachs.
The validity of (4.28) depends crucially on the presence of the
finite %1 -term in Z. Note that (4.28) is consistent with the ex-
pectation that the equation f? =0 should be equivalent to the erfec
tive equation of motion ‘32§ = O with S= ;C"yld‘?' %M
being the effective action (since we differentiate once over § , CA
in (4,26) should be (AN+1)subtr?' We thus have a clear qualita-
tive understanding of why a subtraction of the overall‘1ﬁfj4 cor-
responds to a subtraction of the Mobius infinity.

Returning to our discussion of Iy in eq.(4.6) it is thus
not tego surprizing that representing Ieff formally in the local
form (by expanding the integrand near one point) and isolating the
leading tachyonic pole (or the leading logarithmic singularity) we

indeed get the ordinary VS amplitude AN+1 as the coefficient of
N

the ﬁ%\

VR
by the analytic continuation we satisfy the condition of scale in-

-term. Assuming flo""° and defining the amplitudes

varisnce. This was the argument of ref./18/ which we recognize as
being simply &an application of the -function approach of refs.

/1,7,11,13,14/. An attempt to relate a solution of the Wilson's
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renormalization group equation (combined with scale inverience con-
dition) wes also made in ref./17/. As was already pointed out in
ref./18/ this attempt was erroneous. The authors of ref./17/ assu-
med that é& 2? ig the generating functional for string S-matrix
and hence ignored the problem of subtraction of the logarithmic
Mobius infinity: they considered the zero momentum ftachyonic term
in Topgs expanded it in éE;h and claimed that the coefficients are
proportional to N-point string amplitudes Aye However, as we have
seen above, these coefficients are, in fact, the N+l-point ampli-
tudes AN;1 (times a logarithmic divergence).

wWe conclude our discussion of the approach based on Wilson's
RG equation with the following remarks. It is not at all obvious
that the basic equation of this approach can be interpreted as an
equation of a string field theory. The basic problem is that of the
cutoff dependence. In general, we might expect that a string field
theory vertex is well-defined only if a cutoff is also introduced
in it. However, to check the correspondence with the standard dual
S-matrix we need to remove a cutoff. The procedure used in /18/ to
demonsirate the correspondence with the string S-matrix was, in
fact, a version of the argument used to prove that the'f?-functions
in the "effective" (near mass-shell) tachyonic sigma-model are
equivalent to the effective string equations of motion. It would
be desirable to have a more direct argument/;;tablishing a connec-
tion with the string S-matrix which is not based on the effective

integrating out all the string modes except the tachyon.

5. Approach based on the completeness property

of "vertex operators"

One of the most characterigtic properties of string theory is

that the corresponding sigma-model contains all possible local ope
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L)

rators V, constructed out of X’ and its derivatives wi:ii coefliie-
cients related to the modes of the string gpectra. It 13 imzartant
+o stress that the completeness of the system { L(.j is an addi-
tional input in the Wilson RG approach. We may try to avoid using

the Wilson RG equa‘cion,directly employing the completeness proper-

ty of S‘V‘-Bin the analysis of the basic partition function

__ » ~I, - I, C[x+7]
Z[x] = 5 |2x e ‘

Here IO ig a free action with a cutoff and IinJC is given by the sum

(5.1)

of all possible Vi's multiplied by the "bare" filelds

2

- 4 - = e T :
[=4xGmyx, L.,=*¥ V; (5.2)
’\/'i obviously satisfy the local completeness relation

V. = /Lr" ff’(ze’ v (e,0) | T (¢,6) = Q(ZX’@(a*’)(s.3>

€ ! / (5.4)
It / .
U (¢, NV (2 = C A PIACT

To prove (5.4) we note simply that expanding z' near z we getv 2

series of terms which are again proportional to some Z: . 2g.(5.4

can be rewritten also in a more symmetric form

~ /
T () % (S)) = C : (e-¢") T () | 55

From now on we shall not indicate explicitly the momentum argument
of U, including it in the index i. We shall assume that C g
alwwys oon‘cains the § -function S)(‘(f‘”(j - ke) (and that tihe
sum over ‘e includes the integration over //e ). C and C in (5.4)
and (5.5) can be related by reexpanding ’&k(}f) in the re.fes. oL
eqe(5.4) nearﬁ(‘*él) Integrating (5.4) or (5.5) over ¢ ana G

we get the integrated form of the completeness relation

€ 5.6
-\I-L -V—;’ — C CJ. -\/_‘e (5.2)
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We use the translational invarience on the plane in order to »e

sole o rewrite (d5 d%, as [d«d & , Y= G~ &, . Then

C’ = Cdi 5 G

Since Cj is a power series in Y , the integral in (5.7) needs

J
gome large distance (IR) cutoff,lul & R, This is a weak point of

this approach: the necessity of introducing R is a price to be paid
for the possibility to use eq.(5.6) in order to rewrite the non-
local expressions (like‘WV}‘G ) in a locel form.

It may be ugeful to stress that the completeness relations
(5.4)-(5.6) are purely "classical" (not operator product) relations.
They are true exactly, irrespective of any averaging procedure. As
in (2.19) we assume that Vi are made dimensionless with a help of

3".

the appropriate powers of the cutoff 11_ s 2[:2—2Ni, 2Ni=number
&

of derivatives in./b? . As is clear from (5.4),

14
C‘d' =0 ) V. *Af > WV, ) (5.8)

¢ LA A ]
qj LJ. N CRA) d 4 S\Cb)cw.'+«j‘ €> ‘

Let us now formally consider the system of objects Vi which
form the commutative associative algeora (5.,6) with
h h
(C( _ (]:e Qj( (f:h = sz Ce, (5.9)
| dt ) ‘d
and use (5.9) to compute the partition function (5.1). Let us de-
fine the matrix

B“m - C hf»e @ (5.10)

where the summation over <€ includes the integration over momentum.

Then . N
> E;L‘ C h 13h 2B _ 28 . e
=~ - m€ Y YA « o (Ban)
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2 (Y, - (3%). Sr |

i,e. the associativity 1mplles the usual rule of differentiation

of functions of B. Consider

-I, -1 Lxtx]
g [x+5]1> = - RZLAT _ fdg”faxe o V[.u]

2p°¢ (5.12)
¥
2 Vs e- <ViVi>=-C V> SERNCRE
eX'Z J
¢
Since q: =const we can easily solve the equation (5.13)

j
<V, > =(e” Bé < Vi > (5.14)

Here B was defined in (5.11) and

-T
< .. = - f © <d>, =1 (.13
. >o = }o o?)X e ' es , © >
is the free expectation value. Eq.(5.14) gives the expliciti depen-
dence of the "tadpole" < V.;> on \P"’ . Nlow we can solve eq.(5.12

for Z. Alternatively, we can find the dependence of Z on P Doy re

trt

resenting it as a power series in ¥
<=1 - @“CV;>O+5’<€“F°'<V¢W>O+.., (5,15,

and using the completeness relation (5. b). The result is

Zef- <Ves 025(% @?
! - e’

Z CFH)‘ R , (5.18

3

leferentlatlna (5.17) with respect to ¥ we get opack to eq.

(5.14). Thus the completeness property makes it possible to expres
all the correlators 45\/ -W[ 2> in terms of C 90 ana < V>

The basic object is thus

Ll _ |
Vs = 3 Joxe U VirxeR] (515



*/

We have

i -

1 4 (la) T pe g
S PN /0 R A gt

f’.-o / A/>/V 2

where a is an IR cutoff in the Green functlon (e.ge G =
-3
—;". eu (‘:n. + A )/62 ) end the finite triangular matrix f
-4
may depend only on the momentum but not on the cutoffs. Here
the summation over }again includes the integration over the momen-

ﬁth\vvhlch is thus the same in both sides of the equation (5.28).

Since V is proportional to A we have

5?.- < Vi > =_'\/'[x]66 fhz A=bd | (s5.21)
A = (& &} )9())(1( -£) .

Consider now the renormallzatlon group equatlon for Z, expres-
sing its cutoff independence

37 ¢ RZ

I 4 — =0

A PIV
g = ¢ ) L4 EP)

Let us solve this equation for /F‘ . Substituting the expressions

> (5.22)

A}

for 2 (5.17) and %—é (5.12), (5.14) we get (see (5.8))

R e QG- <Vem Dyt G
where Y |
N ?____.-—ﬂba CB'Q) ‘ (Fg
QJ A 2B ¢ ¢¢ ’ (5.24
C kjg = (XJ + 8 ’XQ C 3 €
Hence i . 2 s

Zx]1= V. (<18 £l .- (5.2

*/ The cutoff dependent factor in td" is not essentials: it will

disappear from the finel result for the ’f-function.



Fi % = - fL(Q—B)i ‘V;[X-J fké . (5.27)

Eq.(5.22) thus takes the following form

V.[;] EC = 0 . (5.28)
Using again the completeness of V_ we finish with E' =0, i.e.
ti e p eyt R
_ Lu(;.__(z/#k C“. ¢'¢° ‘

This equation gives the expregsion for )@ containing ell higher

(5.29)

powers of \P , .
T s
(3 (e ) [UJ «Q- - ﬂ C..ee J | (5.30)

A

(,()-z-.f_iu)f‘-‘-e UJP

It is remarkable that the use of the completeness relation makes
it possible to obtain the clogsed expressions for 2 and theF -
function. The ﬁ —function in (5.30) depends on the cutoff only
through C;x (the cutoff dependence of LL; cancels out in

(5.30)). Eq.(5.30) is certainly different from wnat Wes found in
the Wilson's RG approach (cf. eq.(2.21)). The expansion ofﬁ in

powers of \(’ reads
. A ) ; 1
‘g‘= W' vt + B, w gt - f
C* \f"tf’“ 0

- 3 J K

B w7 -

o
(v) =



A‘: J: Ll AJ: 4 l-. J‘
: _ 1 . C -
e+ [CJ“ L S (5.32)

A
2

(v e 5,-8) C ]9 e’ + 0(¢)

(L , in general, is not diagonal and hence "mixes" different fields

Let us study the structure of f? in more detail on the example
of the tachyonic /2 -function. We shall concentrate on the depen-
dence ofF on the tachyon field § itself. According to the defi-
nition of (:dl and t J (see (5 8) and (5.20))

Cl-cl, s S, b (AR SUOTED

. : KYer (5.33)
t‘ - @,té , t§ --@a) sP(k-k")
- = 7, Y

’ @\ (5.34)
(___ 2} g( ) (‘( k! = w§ g (k’“ ) .
dence we find “ A
« 3% C -

!g (,k—:)% +[C§§w§-‘2— S P 5

+[q: (%§ _ ! %g’b Zcoé @ ]@jj(s.s@

% 43
+ 0o+ &, ) (5.57)

The interaction terms here can be represented graphically as fol-

lows §? A

>——-§ + §>£====<L§”‘§

where Q:§§,corresponds to the transition of the two %¥achyons invo

some state which afterwards is transformed again into the tachyon

A
with the help of the matrix (6 . Note the important role of the

] A
(3
matrix ‘t . which mekes (b non-diagonal in field space. Since
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A ¢

({) depends only on momenta (and not on the cutoff) depends
onn the cutoff through QT . Q:}z determines the interaction terms,
which thus contain factors of powers of the cutoff.

To check the correspondence with the string S-matrix we are
to solve the equation ;=O, for exmmple, eliminating all the fi-
elds in favour of the tachyon (as we did in the previous section) .
But as in the Wilson approach we need to understand what to do
with the cutoff dependence in the interaction vertices. One possi-
bility could be to make a redefinition of the tachyon ( 4? —>
(;Q.E?) %% ) but this does not help in the case of the second
interaction term in (5.37) (which contains the infinite number of
possible powers of A,

Since t% may depend on the momenta, the second interaction
term in (5.37) naes a complicated form: the interaction vertex de=-
pends essentially on all powers of momenta, i.e. is effectively non
local. Similar results are found for other /?—functions, e.5. the
graviton one. ; ‘92?

The scale invariance condition =0, 1l.e. QA =0, can be

represented as follows (c£e(5.25))

- % ry ok s £
$, Q% e’ ?f,/—Q LY , (5.38)

or ‘
N /(.. = I s 'Ll
A 5
W ‘J Q‘S e L2 J ¢ st 1 (5.39)

This equation would look like as an equation of motwon ina Y 3.

field theory if not for the dependence of .SZ and.iz on Y. Obser-
ving that Q —1+O(%’) we have .

¢ A s 2

L&(P 1(u, (E - C )‘-PT—FO[L")/

(5.40)

L a8 (] €, €0 O
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As in the case of the Wilson's RG approach, the problem with this

t

equation is that d? explicitly depends on 44_ ) Q:}, =
X 4%, -%; ¢
(/ng)l C % . Hence the solution of (5.40) will, in
4 .y :
general, depend on (in apparent contradiction with ¢V==f‘=0)

It is of some interest to consider the partition function Z
(5.1) with X=0. Z[ i:@l is the generating functional for the corre-
lators of the vertex operators and hence, in view of our discussion
in sect.4, zéf}t ] may have some relation to the string S-matrix

generating functional. When X=0 (cf. (5.20),(5.21))

< W/: > ‘T/. (o] f:é = f‘g ,
LR (AN T, mem e

n 3 1t o
2 LV > ;_,(,(7§ t w@'?n £ -4 (5.42)

oM
Then eq.(5.23) implies that

1 & ) -
S 5—;2-’* Ly te. “Q (/ LL 'Q f W/(sfm
A ; ' ¢ 2,5 +
= Wg fi@ —%(’(’éf"f“qq | (5.44)
+1£§a é:.s A O(WB)

2
This does not look like as & reasonable action functional. For

)

i

A

exsmple, the leading tachyon-dependent terms in S (5.44) are

S’—‘ C@§ 2§§§ - 5"24@‘- (wé';b Cigé,@@/ t (5.45)
0 (¢+8 3

Tt would be interesting to prove (though we consider thi

likely) that the linear in ¢ term in S is always a total deriva-

tive and that
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25 _ » J _
,Dq“ - (J{S (5040)

bJ

where IBCQJ is gome non-degenerate matrix. The basic objects of

our approach based on the completeness relation are the partition
function 2 and the "structure coefficientg" Qj‘"x « The latter
we can formally interpret as a connection (which is flat because

of the associativity property (5.9) and the Qﬂ -independence of

‘. ). Since
4« € e 9F
’ai———-—z e VIV > o= C <Ve>=-0C, I¥Ts5 .47
eV ARY A
we nave . 2? . E?
VQ V- E? = 2 : D [ﬂf. 9 z =0
; K 1o (5.48)
Y—KCS - — CK"J—
Thus the only "natural" "metric" X.‘J =W Vd' 4 which trans-

3

forms as a tensor under the redefinitions of ¢ is, in fact,

equal to zero.
6. Concluding remarks

As should be clear from the above discussion we are lacking
a clear demonstration of a connection between scale invariance RG
equations for a most general 2-d sigma-model and string field the-
ory equations of motion. Still there are many indicatioms that some
connection - exists}so both the approach based on the Wilson's RG
equation and the approach vased on the completeness of the systen
of vertex operators are worth further study. The "completeness" ac-
proach laoks particularly appealing since it is Jjust a natural ge-
neralization of the usual RG approach for the renormalizable signa-

model to the case when the GJ-model action includes all possible
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1ocal interactions. While the F -function of the completeness ap-
proach contains all powers of the fields this may not te a drawback
since the "quadratic" form of the f -function in the Wilson's ap-
proach is achieved at the expence of introducing the logarithmic
dependence of the interaection vertex on the cutoff.

The dependence of the -functions on the cutoff is a problen
in both approaches. It may indicate that it is not quite correct to
directly impose the conditiocn of the vanishing of the/? -function
of a general Eﬁ -model in attempt to interpret the resulting equa-
tions as string equations of motion. In any case, trying to solve

.

Y = F(‘p, A) =( for ¢ with F non-trivially depending on A
does not meke sense. what may Dbe of interest is to try to formulate
the string theory with = built-in 2-d cutoff /\ and establish a
connection with the Gf -model for a finite_jl o

Both the "Wilson" and the "completeness" approaches are bas=2"
on separating the free pieee in the CS -nmodel action. Hence they
both are perturbative in nature, with - 2 flat space ime metric
playing a d:stinguished role. e shus . stinguish on articular
operator ( JIXIX ) among all other vertex operators present in tiae
E;—model action. This, of course, implies that we 3tudy the theo-
ry in a "perturbative phase" in which the particles propagate in
the usual way. This seems to be a disadvensage as compared to the
case of the ordinary rencormalizable Ef-model in which we can deve-
lop the generally covariant loop expansion witnout specifying =
particular D-dimensional metric. To develop & vackiground-indepenc iz
renormalization group epproach for the generalized G)-model tius

remains an important proolem for future.
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Let us finish this section with the following repmrks. /e usec
ths interaction vertices _VL— which are not normal ordered with rea-
pect to the propagatorG:' (see Eqs.(2.9),(2.19)). This geems natu-
ral within the path integral approach and mekes possible to consi-
der the products of_v:‘ without worring about normal ordering (i.e.
simply as classical, not operator, products; see, e.g., 2q8.(5.4),
(5.5) of Sec.5). Still, assuming that " (6,)2;‘(1«

KL " 2. N S - - .
N AR (4 W) | m@me T00 o

form a complete set of local operators, we are free to trade ‘{ 7/7;

for the basis of the normal ordered operators (see (2.3)=(2.3); we
take G(o|N) = % Ad )
K' W/ ._,_

ol [’ 47 = @&) ’//)(3 .
L (LA = exf ( G' ._..) ,C’ (3.2
2 Ul :> = (f[/l’]/ <FLeT>, (@ ) Gz

X=0

The matrix Q J depends on k (but not on A ) and has ¥triasngu
lar® gtructure (note that o, X 3* = fij/‘Q”Xv; + 7 /7 acfwset

i1

/ -(A_Q} 4 /bz ¢ + operators at lower levels N,j (Ni (3.2

Comparing (3.21),(3.22) with (5.20),(5.19) we conclude that

Q‘ = f-1 . &7; = P-f L-da | (3.2

J d
We can thus rewrite Eqs.(2.19)=(2.21) in terms of the normal or-

dered operators and the corresponding set of fields

qu(:((‘c‘ r:(‘;’;(‘ ‘:- R 'V‘ A fdﬁ' ?T'(G))

4 (302

CoA —_ —
Pl=QVI=(5V ) =t G
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An advantage of the use of the normal ordered basis ig that the cor-
<
responding matrix .}L, in (2.20b),(2.21) can be expressed in

22, 17

g —
terms of the operator product coefficients Taking the A:)’/']‘ .

derivative of the relation (cf.(2.5))

5 &; 6,
B0 AR UJ"»(@).‘ = (0)) @xf[f/"’{ . ¢, )f/rc’() Jx({)]

x F (&)
J( ) (3.2¢

we get ¢ Z ({) Z({ / )
& ; ' ,“ 3 (6) . —_ "__ s 1
§G L x@: 2oy =2 Gz

Hence (see (2.20Db))
- > 2
fk :j_Axﬂ_Q__—fc/ C CORN (3.3
‘j 2 951‘4 —r
Oju = 5 i
where we have used the OPE relation implied by the completeness
f 1%
_ 6~ g
V@) @D C < Ce-) 1L
T4 are the coefficients in the 2 =function (2.21) expressed in
J

terms of Y = 6(’ ¥ (ef.(5.30))

,
”GJ) X (3.3

F(: = a7 Fle @ L (33
el f = CFGC (= A5 -0
U = o (: 7 =X ¥ > )Ty

>
"F‘ =0 is equivalent to the equation derived :Ln/(up to the non-dia-

gonal terms in U  absent in 17y, Note that C and £ depend non-

trivially on -A. through their dependence on G (being dimensionless

T depends on _/\R, where R is an IR cutoff).
It is possible to get rid of the dependence of T on A by
using & special prescription (cf. Ref.22) of how to introduce a



G

cutoff (which, however, can hardly be congidered as o consistent

one in the presen’t;context). Let us assume that (3.31) is defined
A

so that C K‘,. is _A -independent (this is true e.g. if we bake
: /

A—-»oc in G before 6')«) 67/ ), inserting inséead the UV cut.
X -1
oft M\ > A in the integral in (3.30). Then on dimensional

grounds o 4
A k . —_ Kk t'j'l{ - .

C ; (W)= C G (u] ) (3.33)

where 6 k‘,. is dimensionless and hence (cf. Ref.22)
: | _ 3. -1
o Aar:j«( C ¢« = f Al lyl " =
f? cj = T (ij' (th_jl_ A‘“ — v (3.34
= - 77_ C, "/'

This coincides with the standard expression for the coefficilent of
the Cf’z-tem in the [ -function computed using the perturbation
theory near a con:form;.l point‘?‘z. However, in the latter case theﬁ~
function in general contains terms of all higher orders in ‘/ (sée
glso See.5). We conclude that the existence of a consistent scheme
in which the ‘5 -function is quadratic m(-wﬂ and does not depend
explicitly on _A remains an open questione.






