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THE CHARACTERISTIC FUNCTIONS FOR THE
SQUEEZED COHERENT CHAOTIC PHOTON STATE

WITH APPLICATION TO THE JAYNES-CUMMINGS MODEL
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Institidid Ard-Léighinn Bhaile Atha Cliath®
Baile Atha Cliath 4, Eire
The characteristic functions for the operators T,p, and H' are de-
rived for the squeezed coherent chaotic state of a single mode pho-
ton field. The photon probability distribution for this state is obtained
from the characteristic function for ﬁ and it is applied to the Jaynes-
Cummings model for the interaction of a single mode photon field with

a two level system.
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I.INTRODUCTION
The statistical properties of a squeezed coherent state have re-
cently been of interest in quantum optics applications to the Jaynes-
Cummings model [1] and in the study of multiplicity distributions in
high energy interactions [2,and 3]. In this paper, the characteristic func-
tions for the operators, defined in terms of the boson operators @ and
at, 2= (a+a")/vV2,p=(a—a")/iv2 and H = aTa + 1/2 are given.
The last one is used to obtain the probability distribution for the single
mode squeezed coherent chaotic photon quantum state.
These states can be represented in terms of the thermal states
[4.5, and 6]
5(¢)D(2)@"(8)[0) ® 0) (1.1a)
D(a)5(£)G"(9)[0) ® [0) (1.1b)
where S(f),D(a), and G(O) are respectively the squeezing[7, and 8],

coherence[9], and thermal [10] operators defined for complex §, . and

real 0 as

S(g) = 6(5‘02_601’2)/2 (]_.201)

o



faf)

G(9) = flad=ea (1.2¢)

where (a,aﬁ) and (&,&T) form commuting sets of boson operators. The

parameter # is related to temperature T through the expressions

7/2(8) = sinh(8)
a(B) = (ezp(B) — 1)7* (1.3)

ﬁ = hw/KBT.

For a single mode free boson field represented in the form
E = zcos{wt) + psin(wt), (1.4a)
one finds for the two states in {1.1) the matrix elements
(¢ad|E|¢al) = e~ Sz, cos(wt) + €S p. sin(wt), (1.4b)

and

(alO|E|akf) = z. cos(wt) + p, sin{wt) (1.4¢)

with

z, = (@ +a)/V2 and p, = (@ — a)/iV2. (1.4d)

The first state represents the physically interesting state of a squeezed

coherent signal emitted from a thermal source. The second state repre-
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sents the situation where coherence follows squeezing of a thermal sig-

nal. The results of the latter can be obtained from those of the former

upon using the identity

5(€)D(a)§7(§) = D(&) (1.5a)
where
& =a cosh|f| —a e®sinh|| (1.55)
with £ = [§]e‘i¢. The physical interpretation of states related to {1.1)

which result when the operators S(g),D(a), and G(ﬂ) are applied in
different order has been discussed in Refs.[5 and 6].

The mean value of an operator A(a.}ai’) is defined as
Trpea(B) = (Eab|A(a, aT)|Ead)

fatevts v atroey a4y iy AN
(0107 {a)S (&)A{a, a5

)D(a)id)

Ly

P
e
(o}

N

(
=Trp(8)D7(2)S7(£)A(a,a™)$(£)D(a).

This suggests for the state (1.1a) the definition of its density matrix as
pea(B) = S(£)D(a)p(B)D(a)S7(¢) (1.7)
where the density matrix for the Hamiltonian 1’:1 is

p(B)=U(p)]Z(B) (1.8)
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with U(B) = exp(—pBH) and Z(B) = Trp(B).
. CHARACTERISTIC FUNCTIONS

The characteristic function for the operator A(a, a'f") is defined as
; t
C(X & a,B)a =Trpea(B)e* A2 (2.1)

The characteristic functions for the operators &,p, and H can be eval-
uated when (2.1) is expressed in the x-representation. For the state

(1.1a).the characteristic function of the operator }AI is
O(X, & a)u = TrS(£)D(a)p(B)D(2)ST(6)U(-i), (2.20)
and it can be expressed in the x-representation as

C(A € o)y = /'oo /ioo(zlpga(ﬁ)}z’)(z’[U(—i,\){:c)d:cdz’. (2.26)

J oo o — oo

The density matrix in the x-representation,(zlp(ﬁ)lx,), is found

from the identity

| Gw@u el el i =5 Eels) (29

— QO

Since
U(B)2U(—B) = & coshf +1p sinhf, (2.4)
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one finds the differential equation

(coshB © + sinkfB d/dz)(z|p(B)lz) = z (z|p(B)|z ). (2.5)

The solution to this equation satisfying the normalization condition

Trp(B) = 1is
(elp(B)le) = ——ezp— (B2 L 2B yz (a)
V2T o) 802 () 2
where

o(8) =\ Seoth(8/2) (2.7

Representing the operators 5(5) for real &, and D(a) in terms of

Z and P, one finds for L? test functions \Il(:c) = (.’B!‘I’)

5(8)¥(z) = e*/?(e%2| W) (2.8q)
D(a)¥(z) = e~ Pe2e/2eie2 (g — 1) (2.8b)
which implies
57(¢)|z) = e¥/%|ef ) (2.90)
D(a)lz) = /55772 |z — 5, (2.98)



Using these results along with § — —2Ain (1.8) and (2.6), the charac-

teristic function {(2.2b) becomes

ip.e{z— x)
C(A € a)g 27re‘50' ﬁ)a z}\)/ / dz dz e

x eap — (v + 5 — 267 %2.)% /(87202 (8)) + *0%(B) (= — 2')?/2]

x exp — [(z + 2 )2 /(802 (=i})) + (0(~iA)/2)(z — 2 )?]
(2.10)

? /
With a change of variables ¥y =2+ 2 and 2 = T — T , this characteristic

function is expressed in terms of a product of integrals as

Z(=1A) I (¢

G Ga= re~So(f)o(— z)\)

B, A) X Ip(€,8,A) (2.11)
with

Il___/c"’ dy e~ (v/2=e7%2e)?/(2e770%(8)) = (v/2)* /20 (=) (2.12q)

le o}

I, = / T gz eipects o= (1/2)(60?(8) 40 (—iN)) (2.125)

-0

Upon integration, one finds the resuit

za¥a/(ya—1) Lxsys/(ys—1)
_ Y —(ab+Ba)fab 7Y ¢
C(X € a)u — T T (2.13)

with the introduction of the notations



Yo =aw, Yo = bw,
i=(a—1)/a, b=(b—1)/b,
£, = Aja(l —a), zy = B/b(1-1b),
A= (a2/2)e7%, B =(p;/2)e*", (2.14)
a=e2%(n(B)+1/2)+1/2,

and

b=e*(n(B) +1/2) +1/2.

Introducing the generating function for the Laguerrer polynomials[11],

{2.13) may be written as

C(’\a 51 a)H =

—(Ab+Ba) /ab) (2.15)

Z Z me 1/2(za)L—-1/9( b)w(l+m+1/2).

=0 m=0

Fellowing a similar method, one can obtain the characteristic func-

tions for the operators £ and P as follows:

C(/\, é” a):z = [-OO dz(x{pga(/@”z)eim (2 16)

= ezplide™ Sz, — (e70(B))2 A% /2]



i = [_Z /_Z j[_z(plz)(”lﬂ(ﬁ)sa[z')(x';p)eapdpdm»
= f_o; /:: dzdz’(z!pfa(ﬁ)lz')g(z’ PN

= ezplidetp, — (¢f0(8))?A? /2]

(2.17)
where
1 .
zlp) = e'’P®
(alp) = <=
and
7 1 e . i
§(z — 2 +2) = ;/ oip(&'=2+3) gp (2.18)

have been used.
{Il. PROBABILITY DISTRIBUTIONS
The above characteristic functions can be used upon differentia-
tion with respect to A to find the momenis of their associaied opera-
tors, and they can be used to find probability distributions. The photon
number probability distribution for the squeezed coherent chaotic state

(1.1a) is found from the Fourier transform of C(A, £, a) in (2.15) as

27
1

PalBlea= g7 [ e7P0THIOM £ a)ud)
¢—(Ab+Ba)/ab) 7

- S @b L (2a) L (o).
i=0

(3.1)




Various special cases and known results for some of these cases
can be found from (3.1). An approximation to this formula has ap-
peared‘in [12]. The results for the state in (1.1b) are found using the
replacement &t — aef. For the case with no squeezing f = (0, one finds

from (2.1%)

a=b=7()+1; d=b=n(8)/(n(B)+1); (3.2)
—z; —p:

which yields the Glauber-Lachs distribution [13]

2

—la

e (m(A)+1) _1042

P.(Bloo = e~ Alntl/2)p ( . (3.3
oo = B D FEem ) Y
Another special case occurs when ﬁ(ﬁ) = 0 and when @ and & are real
so that
P 6—aze'€/cosh$ L)
(B — 00)eq = " (tanh§)
n s, 22 o (3.4)
LT = L~
®;( )Ll (Sinhzg)l’n—i (0)
Using the identity
HA(y) = niz" 3 (=)L (20" L2 (0), (3.5)
=0
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e—age“e/coshﬁ tcmhf

_ I Y
Pn(f = 00)¢a = cosh§ 2 ) n! Hn(\/sinh2§)' (3.6)

Using a — ae’f. the corresponding case for the state {(1.1b) is found to

be[15]

Po(f — 00)ac =\/1 — tanh?§ (tanhﬁ)n

n! 2

a?(1 + tanhé)? 2 (3.7)
x H2 SiomhE )e=e (1+tanh§)

IV. JAYNES-CUMMINGS MODEL
The probability distribution {3.1) found from the characteristic

function (2.15) has a particularly timely application concerned with the
revival and collapse properties of a two level system as described by the
Jaynes-Cummings model[16]. Using the rotating wave approximation on
resonance, the Hamiitonian for the inter_action of a single mode radi-
ation field of photon state ln) with a two level system of excited state
H—) and ground state ]—) is

H=hQ(afa+1/2) + A (“’g w(f_ ) +V;(0) (4.1)

where the Pauli spin matrices define the projection operators

204 = (o) £ 107) (4.2)
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which have the properties ox|+) = 0, and 0x|F) = |) and where

{] =w4 —w_. The interaction Hamiltonian is
V;(0) = g(oya +o_a’) ' (4.3)

where ¢ denotes the coupling strength of the radiation field with the

two level system. If in the initial state at t = O the two level system is
in the excited pure state H—) and if the photon field is characterized by
the mixed state (1.1a) with density matrix p(ﬁ)fa. then the probability

to observe the two level ststem in the state |+) at time £ is found from
Py () = Trl+)(+[Ur(8)0(B)ea @ |+)(+1U] (1) (4.4)
where the time development operator in the interaction picture is
Ur(t) = e~*tV1(0) (4.5)

An elementary calculation yields the results
= —1tg)
(+HU(B)|+) = Z 9 (aa®)? (4.6a)

p=0

and

i (—itgy/n +1)%

oo (4.6b)

(n+U1(t)[ +n) =
p=0
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so that when the density matrix in (4.4) is expressed as
e o)
p(Blea = Y PulB)ealn)(nl, (4.7)
n=>0

one finds

Pii(t) =) Pu(B)ea cos’(gtv/n +1). (4.8)

rn=_

Numerical results for various special cases of this result have appeared
in the literature [1,17, and 18]. In addition, experimental confirmation of

the special case when £ = a = 0 has been achieved [19].
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