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THE CHARACTERISTIC FUNCTIONS FOR THE

SQUEEZED COHERENT CHAOTIC PHOTON STATE

WITH APPLICATION TO THE JAYNESCUMMINGS MODEL

T. Garavaglia

lnstithiid Ard-Léighinn Bhaile Atha Cliath’

Baile Atha Cliath 4, Eire

The characteristic functions for the operators ,J3. and H are de

rived for the squeezed coherent chaotic state of a single mode pho

ton field. The photon probability distribution for this state is obtained

from the characteristic function for H. and it is applied to the Jaynes

Cum mings model for the interaction of a single mode photon field with

a two level system.

PACS numbers:425O.Ar, 425OBs, 425O.Dv, 328O-t.

* Present address: Superconducting Super Collider Laboratory. 2550

Beckleymeade Avenue, Dallas, TX 75237-3946.
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I. INTRODUCTION

The statistical properties of a squeezed coherent state have re

cently been of interest in quantum optics applications to the Jaynes

C urn m in gs model [1] and in the study of multiplicity distributions in

high energy interactions [2,and 3]. In this paper, the characteristic fu nc

tions for the operators, defined in terms of the boson operators a and

aT, = (a + at)//,j3 = (a at)/i/, and H = ata + 1/2 are given.

The last one is used to obtain the probability distribution for the single

mode squeezed coherent chaotic photon quantum stateS

These states can be represented in terms of the thermal states

[4,5. and 6]

S(E)D(a)Gt(O)IO) 0 Ió) (ida)

D(c)S(e)G(O)IO) ® In) (lab)

where S(E), D(). and G(O) are resp ectively the squeezing[7, and 8].

coherence[9], and thermal [10] operators defined for corn plex ‘, Q, and

real 0 as

(L2a)

= (l.2b)
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G(O) = e(tt) (1 2e)

where (a. a) and (a, aT) form commuting sets of boson operators. The

param eter 8 is related to tern p erature T through the expressions

= sinh(8)

= (exp(9) - 1)’ (1.3)

= hW/KBT.

For a single mode free boson field represented in the form

E = cos(wt) ±jin(wt), (1.4a)

one finds for the two states in (1.1) the matrix elements

(EO1Ej’cO) = ex cos(üt) + epc szn(it), (1 4b)

and

(c6IE18) = z cos(wt) + Pc sin(üt) (lAc)

with

xc = ( + )// and p = ( — )/i/i (1.4d)

The first state represents the physically interesting state of a squeezed

coherent signal emitted from a thermal source The second state repre
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sents the situation where coherence follows squeezing of a thermal sig

n a!. The results of the latter can be obtained from those of the former

upon using the identity

= D(&) (1.5a)

where

=
—
e0sinhj (1 5b)

with = Jje. The physical interpretation of states related to (1.1)

which result when the operators S(t’), D(a), and G(6) are applied in

different order has been discussed in Refs.[5 and 6].

The mean value of an operator A(a at) is defined as

Trp(/3) = (EaO!A(a,aT)IEcO)

( 7+( A’\ A I -T\ C’! A’’ vf ‘ (-q .\

= 1j7JJ iita, a))ucju)

= Trp(/9)Dt(a)St()A(a, at)S()D(c).

This suggests for the state (1 .la) the definition of its density matrix as

= S(E)D(c)p(J3)Dt()ST(E) (17)

where the den sity matrix for the H am iltonian H s

p(/3) = U(fl)/Z8) (1.8)
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with U(/3) = exp(—/3) and Z(fl) = Trp(/3).

II. CHARACTERISTIC FUNCTIONS

The characteristic fu nction for the operator A(a, at) is defined as

E ,fl) = Trp(fl)eiAMt) (2 1)

The characteristic functions for the operators and H can be eval

uated when (2J) is expressed in the x-representation For the state

(1.1a)the characteristic fun ction of the operator H is

C(,
,c = TrS(e)D()p()Dt(c)St(e)U(_i), (2.2a)

and it can be expressed in the x-representation as

C(A, E )H = (2.2b)

The density matrix in the x-representation(zp(9)jx’), is found

from the identity

Ix”)(x” jp(x’ )dx” = z’ (xp(fl)x’) (2.3)

Since

U(J3)U(—j9) = cosh/3 + i3 sinh/3, (2.4)
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ore frds the differential equation

(cosh x + sinh d/dz)(zp()x’) = z’(zp())z’). (2.5)

The solution to this equation satisfying the norm alization condition

Trp(f3) = 1 is

1 (x±x’)2
‘ 2(zfp()z)= /exP{

82(/9) + 2
(z—z) j (2.6)

where

= Joth(fl/2) (2.7)

Representing the op erators S(e). for real e. and D(c) in terms of

and j3. one finds for L2 test functions W(x) = (xW)

S(e)W(x) = e/2(eezjl) (2.8a)

D(c)I’(z) = e /2eu1tW(x
— z) (2.8b)

which implies

St(e)fx) = e/2Iez) (2.9a)

=
—

z) (2.9b)
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Using these results along with 8 — —i). in (1.8) and (2.6), the charac

teristic function (2.2b) becomes

= Z(—iA)

f [°
dx dx’

27re J(/3)7(—i\)

x exp — [(x + x — 2e x)2/(8e22(/3)) +e22(j9)(x — z’)2/2j

x exp — [(x + x’)2/(82( iA)) +(2(—i)/2)(x — x’)2]

(2 10)

With a change of variables y = x + x and Z = Z — x. this characteristic

fun ction is expressed in terms of a pro duct of integrals as

= I(fi,A) (2.11)

w ith

I,. 00

= J dy _(y/2_exc)2/(2e2Ecr2(3))_(y/2)2/2u2(iA) (2.12a)

12
=

dz e_(h12)(e22($)2())z2 (2.12b)

Upon integration, one flnds the result

eYa/(Y4) eyb/(y6_1)

& — I— (2 13
Vab

with the in tro du ction of the notations

w =
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Ya’’, yb=bW,

a = (a — 1)/a, b = (b — 1)/b,

= A/a(1 — a), Zb = B/b(1 —

A = (x/2)e2, B = (p/2)e2 (2.14)

a = e-2e((fl) + 1/2) + 1/2,

and

b =e2(fl) + 1/2) + 1/2.

ntroducin g the generating fun ction for the Lagu errer p olynom ials[1 1],

(2.13) may be written as

=

—(Ab+Ba)/ab) (2 15)e
lbmLl/2(X)L_1/2(X)W(1+m+1/2)

a
1=0 rn=O

Following a similar method, one can obtain the characteristic fu nc

tions for the operators and j3 as follows:

e a)
= f dz(xp()jz)e

—cc (2.16)

= P[i\ezc — (e(9))2A2/2]
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00 00 00

= f / [
(pjz)(zjp(fl)Jx )(z Jp)etdpdzdx

00 00” 00

00 00

= [ [ dxdz’(x1p()Ix’)6(z’—x+)
J—0o J—00

= ezp[i\eep — (e(/3))2A2/2j

(2.1)

where

(xl ) —

_____

and

— x + ) = f dp (2.18)
—00

have been used.

IILPROBABILITYDISTRIBUTIONS

The above characteristic functions can be used upon differentia

tion with respect to ,\ to find the moments of their associated opera

tors, and they can be used to find probability distributions. The photon

num ber probability distribution for the squeezed coherent chaotic state

(Lia) is found from the Fourier transform of CLX, e a) in (2J5) as

P(fl) = f2 ei(h/2)C(, , a)Hd
ir
-(Ab+Ba)/ab) n (3.1)

= e
a1b1L/2(xa)L2(Xb).
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Various special cases and known results for some ot th?s cas+s

can be found from (3.1). An dpproximation to this form ula has ap

peared in [12]. The results for the state in (1.lb) are found using the

replacement c — For the case with no squeezing , = 0, one finds

from (2.14)

a=b=ñ(/3)+1; ã=b=(fl)/((fl)+1); (3.2)

— —z

____________

Za
2ñ()(ñ() + 1)’ = 2ñ()(ñ() +1)

which yields the G lauber-Lachs distribution [13]

2

2

p (fi)
= e

e112L ( — ‘ (3 3n ‘fl)()+i)’ .

Another special case occurs when i(/3) = 0 and when and ‘ are real

so that

e2
E/co8h

P(/9 —+ oo)
= coshE

(tanh

2
(3.4)

0 (_)1Ll/2(2)L-1/2(O)

Using the identity

H(y) = &2()1Ll/2(2y2)L’2(o), (35)
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oe fds[141

—& /CO8h tanh 1
P(/9 — co)

= coshE 2 YL /sinh2E
(3.6)

U sing c —÷ the corresponding case for the state (1.lb) is found to

be[15j

p (i9 )
= — tanh (tanhE )fl

(&7)

x H2 (
/2(1 + tanh)2

)e2(1+ta).
n

2tanhE

IV. JAYN ES-CUMMINGS MODEL

The probability distribution (3.1) found from the characteristic

function (2.15) has a particularly timely application concerned with the

revival and collapse properties of a two level system as described by the

Jaynes-Cumm ings m odet[16j. U sing the rotating wave approxim ation on

resonance, the H amiltonian for the interaction of a single mode radi

ation field of photon state I) with a two level system of excited state

1+) and ground state —) is

H = M(ata+ 1/2)+ h( ) +V1(O) (4.1)

where the Pauli spin matrices define the projection operators

2a = (i ± ia2) (4.2)
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which have the properties a__±) = 0, and 7±JF) = 1±) and where

= — W_. The interaction H amiltonian is

V1(0) = g(÷a + j_at) (4.3)

where g den otes the coupling strength of the radiation field with the

two level system. If in the initial state at t = 0 the two level system is

in the excited pure state j+) and if the photon field is characterized by

the mixed state (1.la) with density matrix p(fl)0. then the probability

to observe the two level ststem in the state j+) at time t is found from

P÷(t) = Tr+)(+U1(t)p(/3) +)(+Uj(t) (4.4)

where the time developm ent operator in the interaction picture is

U1(t) = e_it) (4.5)

An elem entary calculation yields the results

2

(+Ui(t)l±) =
(U) (aat)2P (4.6a)

p=o

and

2

(n + Ui(t)I ± n) =

( ztgn+ 1)
(4.6b)

p=o
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so that when the density matrix in (4.4) is expressed as

p() = (4.7)

one finds

P(t) = P() cos2 (gW+ 1). (4.8)

N urn erical results for various special cases of this result have appeared

n the literature [1 17 and 18] ‘n addition experim ental confirmation of

the special case when = = 0 has been achieved [19].
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