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1 Introduction

In a recent paper [1] we investigated the problem of equivalence of the

canonical and grand canonical ensembles in connection with Bose-Einstein

condensation (BEC) This problem is nontrivial already for the free

boson gas, see e.g. [2-4] . That is why in our paper [1] we proposed a

sequence of exactly soluable models with repulsive interactions

involving an increasing number of particles. We observed the

restoration of the strong equivalence of ensembles only for the model

with the strongest interaction (model III of [1] ) in spite of which the

standard BEC persisits: One gets macroscopic occupation of the

single-particle ground state above the critical density. One of the

proposed models is the almost-ideal boson gas (model I of [1]) with the

interaction in the ground state. As we observed for this model, BEC has

a pecularity: the repulsive interaction forces the condensed particles

to the first excited level. In the thermodynamic limit, this level

coincides with the ground state Therefore, from the naive point of

view, BEC should coincide with that for the free boson gas. But we

shall demonstrate that this is true only if the first excited level is

nondegenerate. In the opposite case, BEC for model I is in fact the

type-I generalized condensation (GC) in accordance with the

classification proposed in [5,6]. For the readers convenience, we

recall the definition:

Type-I GC corresponds to the macroscopic occupation of a finite number

of single-particle levels, type-Il GC corresponds to the macroscopic

occupation of an infinite number of single-particle levels; type-Ill GC

corresponds to nonextensive BEC: no levels are macroscopically occupied

on the scale of the volume



(2)

In this paper, we prove that, in spite of their

thermodynamic equivalence (coincide of their thermodynamic functions)

the almost-ideal and the free boson gases have different Kac densities

Therefore, one can distinguish these two models by their different types

of BEC

2. The Model

Let AJR be a region in )-dimensional Euclidean space with volume

V = IAI , smooth boundary A. Let (T) j ë

be the spectrum of the single-particle Hamiltonian T, corresponding to

a self-adjoint extension of the operator TA=(—z/Zry), D()C(A)

with G-boundary conditions on A Here is the ‘)-dimensional

Laplacian and hi.. is the particle mass. Below we consider ‘nonsticky’

boundary conditions:O [7] , and omit the index S . Then,

E0(A) 0 and E0(A) 0 for A71R. The thermodynamic limit

(t-lim) is implemented by an isotropic dilation of the region A about

the origin 0 which is assumed to lie inside A [8]

To pass to the many-body problem. We introduce the

probability space2 of terminating sequences cL.={c*.kJk>0 Of

non-negative integers:

Q(N)

k’.O N0

where kN . The basic dynamic (random)
k.o

variables will be the occupation numbers tik: , k = ...
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(N)

The Hamiltonian TA of N free bosons in the region A can be written

as

, TAEJ=ZEkAk[J (1)

ko

Then the Hamiltonian HA of the almost-ideal Bose gas (model I [1] ) has

the form

+
j

(2)

It corresponds to the switching on of the mean-field repulsive

interaction between the bosons occupying the single-particle ground

state.

Now we can define on the space c the grand canonical

finite-volume Gibbs states and <>H
for the

temperature 0 and the chemical potentialO. It is clear

that they correspond to the product measures. For the model (2) this

measure has the form

exp
P [ce] (3)

[v
(?A) -

p0(,))] A, 0

where is the finite-volume free boson gas Gibbs measure:

exp (L]-NL])]
P [C*]= (4)

A,0
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Here N [J = is the total number of particles in the

kO

configuration c) , and

°

,)= (?v) fZ exp [-([]- N

PA() = (v)ft f eocp (A[wJN []]}

are the grand canonical pressures for the models (1) and (2) The

thermodynamics potentials in the canonical ensemble (free-energy

density) have the form

e

A
(,f) =-(v { Z

N)
(6)

e

They correspond to the finite-volume Gibbs measures in the canonical

ensemble:

(N) (N) (N) (N)

A ‘A
t’S2 (7)

Theorem 1. Let ‘)?1 and . Then, the model (2) is

thermodynamically equivalent to the free boson gas (1):

(a) -& A’9 =

(b)
0
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(0)
Proof. (a) Let and PA be the finite-volume thermodynamic

potentials of the free boson gas with the single-particle spectrum

Then, one gets that

))
0 and the

inequalities

L A’f

[2cA (?(-))] , (8)

where = and p = . Now, taking into account the

(0) (0)

monotonicity of the function c-.4? (,x) b-tLrrVA (j,cc) and the

(0)

inequalities (8) we obtain that , which provides the

proof of (a)

(b) Using the explicit form of the Hamiltonian (2) one gets

CO)() +

-

(A)ft-

Then, from the inequality (j...& 0)

2 (V
ecp ri0—a0(A)

-

f_J(O) (0)

and the limit E_€LflL?A_PA ) 0 we get the proof of (b).

Corollary 1 The free-energy density and the

pressure for the model (2) with 0 are related

by the Legandre transform, i.e. for this model the canonical and the

grand canonical ensembles are weekly equivalent.
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3. Condensation and the Kac Density

The relation between thermodynamics and statistical mechanics for Bose

systems has recently been scrutinized in several aspects [9-12] In

this section we show that in spite of the thermodynamic equivalence the

models (1) and (2) are different.

Theorem 2. Let .>Oand A be a rectangular box with the equal edges

(cuboid) and with the center at 0 . Then, we get for the model (2) with

+oo (Dirichlet boundary condition) that

(a) -t 6-tLrriK)(j&)O ; (10)

a
(b) (lOb)

for k=,2, ,‘) and “>2. Here and are the

finite-volume canonical and grand canonical Gibbs states corresponding

to the model (2);
p0)

and j.°k 0) are the critical parameters for the

free boson gas.

Proof. (a). These two limits are the consequence of the estimate (J..U)

= o) =

= z ft0P4 []
rt ep(-r/zv)

. (11)

0

(b) For the cuboid A the first excited level is 2) -fold degenerate.

Now, we can repeat the standard arguments about BEC to get
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f ÷
(12)

+ <v)(A()),
A

wherefA=A(?)is the solution of equation (11) for a fixed densityf

Hence, taking into account (lOa) we derive from (11) that asymptotically

?) o(v1)
(13)

L ek
ovj p

>

where °L=O= ?=0) is equal to

áeE’1(e )
(14)

Collecting (12)-(14) one gets (lob).

Remark 1. The thermodynamic properties of the model (2) (including the

values of the critical parameters) coincide with those for the free

boson gas. If the first single-particle excited level is degenerate,

then the interaction generates the type-I BEC instead of the BEC in the

ground state alone. But if not (e.g. for A a rectangular box with

different edges) the model (2) is identical to the free boson gas.

Remark 2 (A Generalized Almost-Ideal Bose Gas) From above it is clear

that up to minor technical corrections the same properties are exhibited

by the model

M

TA+k , {k>0}k=o . (15)
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Let be the distribution function (the

N()
finite-volume Kac density) for the random variable XA(cJ)= —v- ; it

relates the Gibbs states of different ensembles:

= S0 <(1) <>A

= -t <XA>A(A(2))

The limit distribution K-&m. k’ (as the weak limit) plays

an important role in analysing the ensemble equivalence [1-4] and BEC

[5, 6, 8, 13] . The canonical and grand canonical ensembles are strongly

(or statistically) equivalent if the limit distribution is degenerate

KxI)=()concentrated at(jk)=p(,jA) [1].

Theorem 3. For the almost-ideal boson gas (2) with>O and isotropic

dilationA/lR’ of the cuboid A , the limit Kac density has the form

() =?(?)
(0)

=

0) (0)

______

9 (s—p ) ex F ‘

(cc—jD (o)( 16)

(i) p-p°L J P[ p(o)J’?

Proof. By definition, the Kac density K(xI,p)is related to the-&inof

the characteristic function of the random variable XA(u))

-L<ep (L+XA)() doe €DC (17)

To calculate the limit in the left-hand side of (17), we use the

product-measure
A
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<Q-9 (+XA) (J2,frL) =

= P )ep(°)H{- - ep [- (Ek(A)-)]

}
ftO

ki - ecep - L/v)]

Then, from the estimate (11) and the asymptotics (13) one gets

-E-trL <ex? (XA)>A(J)

eocp () =p() <0)
, (is)

- [ -°)/]xp (Lp), ?= <X(A(p))
> p3)(=

0)

Expression (16) is the result of the Fourier-transform of the right-hand

side of (19).

Corollary 2. As for the free boson gas, the strong equivalence of

ensembles for the model (2) is broken.

Remark 3. The dependence of the Kac density kcip) on the parameter

is strongly nonanalytic. The deviation of X(JD) from the

free boson gas Kac density

(0) (0) (o)
2 i? (f (j<fr0)

is heavily dependent on the structure of the single-particle spectrum

near the bottom. If the region A has a shape such that the first

(0)

excited level is nondegenerate then K (= cIp).In this case there

is no difference between the almost-ideal and the free boson gases.

(18)

(0))

exp [— r
-

(0)
0

(0)

J -

? >?° ( (0))



(10)

4. Conclusion

First it should be stressed that Theorem 3 and Remark 3 are valid for

the model (15). The knowledge of the spectrumZ() and vector

is sufficient to determine all possible corrections to the Kac density

KA(x1p). As above, the result depends not on the absolute value of the

but on their signs only.
—0,

In this connection it is interesting to consider the model

(2) for .<O. Then, (collapse) and one has to save the

situation by switching on a repulsive interaction as was done in [14]

But the free-energy density for the model (2) with exists and has

the form

[+(,-))] . (20)

Therefore, the weak equivalence is broken in this case.

For .)-j the right-hand side of (20) reaches the infinum at

— c 2P.)

p>pC)
where ,*(?)=naxfC)and () are nontrivial roots of the equation

-1,2.

P +°(z=? (-))= U

The critical densityp( is defined by the relation

, - ()
1 * (0)

<Pc ,in the other cases

where is the solution of the equation

(. ()) (
(*f))

0
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Thus, the properties of the model (2) are very different

for <O(.col1apse) and for (almost-ideal boson gas). Scrutinizing

the models (2) and (15), we demonstrate how subtle BEC is: the

interaction which does not change the thermodynamics can create

generalized BEC.
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