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Finite temperature (0 T < co) field (FTF) theory with an

effective spectral Lagrangian density formulation is used to study

quantum noise in an inductively coupled LRC circuits. Analyti

cal solutions and numerical results for the finite second moments

at temperature T which satisfy the uncertainty principle bound

are given. From the numerical results, one can see the presence

of a squeezed quantum state which depends upon the strength of

the mutual inductance between the coupled circuits.
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I. INTRODUCTION

The study of noise in electrical and optical systems plays an

increasingly important role in modern technology. This is the re

suit of the desire to produce systems which operate at low power

with weak signals so as to produce small and sensitive systems.

The laws of quantum physics place constraints on the design and

performance of such systems. A large body of literature is devel

oping which is related to this programme and describes quantum

aspects of various types of physical devices.

In this letter the results of an investigation are presented

which are concerned with the quantum noise and thermal noise

associated with interacting dissipative oscillators where the in

teraction results from the mutual inductance coupling of the two

separate circuits. General expressions are given for the variances

in the charge and current within the separate circuits. In order

to better understand the characteristics of the noise associated

with the interacting circuits, numerical results are given in Ta

ble I. for a special example when both of the dissipative linear
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oscillators are identical and contain the same inductance L, ca

pacitance C, and resistance R. These results are given for vari

ous values of the dimensionless temperature z = kBT/aw0 and

quality factor q0. Here kB and h are respectively Boltzmann’s

constant, 22r times Plank’s constant, and w0 = (LC)/12 is the

natural frequency of the non-dissipative oscillator. As can be

seen from the table, there are values for the variances in charge q

which are below the standard quantum limit. This indicates the

presence of a squeezed quantum state associated with the inter

acting systems which depends upon the strength of the mutual

inductance coupling.

II METHODS AND RESULTS

In this analysis, finite temperature field theory (FTF) meth

ods [1] are employed so as to include temperature dependance

in the expressions for quantum noise. These methods are based

upon the zero temperature quantum field theory methods for a

scalar boson field [2], however, the creation and annihilation op

erators associated with the zero temperature quantum fields are
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transformed so as to include a flute temperature (0 T oo.)

depeudance. This permits the determination of finite tempera

ture ensemble averages of the operators of physical interest using

algebraic methods based on quantum field theory. In order to

obtain results for the variances which are consistent with the

Dirac quantization condition, a regularization method is em

ployed which is based upon the replacement of the dissipative

elements of the circuit with semi-infinite low-pass filters. This

method has been used to study the nature of quantum and ther

mal noise for a dissipative LRC oscillator Ref.[3 and 4]. The

FTF method and the regularization procedure are described in

these references, and the notation and quantization procedure of

these references are followed in the present study.

The regularization method has been introduced so as to

produce a natural cut- off frequency so that the variance in the

current L4 remains finite, It also has the effect of introducing a

frequency dependant damping coefficient. The semi-infinite low-

pass filter consists of basic elements of inductance (L0 = LTz)
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and capacitance (C0 = CT&). The characteristic impedance of

the filter, obtained from Ref.[4],

Z0(a, b) = iwL0/2 + (L0/Co — (2.1)

implies a maximum frequency above which the voltage wave be

comes damped. Below this frequency the voltage in the flth ele

ment of the filter is

V(ri) = ezp(iknz)V(O) (2.2)

where

k/2 = w/2v(w)

relates the phase velocity v(w) = R(W)/LT, the wave number k,

and the real part R(w) of the characteristic impedance (2.1).

The quantum properties of the inductively coupled system

of two LRC circuits are obtained from an effective spectral La

grangian density. At frequency w the effective Lagrangian den-
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sity for the inductively coupled LCR network is

£(Qi, t9Qi, t9Qi, , Q2w,t3xQ2w, t9tQ2,fl) =

[L1(Qi (z, t, 3fl2
— QL (z, t, ,9)/C1J

+ L1r
H(z)

[(!Qi(z t, )
)2

v(w)(—Qi(z, t, ))2]

___

— Q(z,t,,8)/C2]

+ L2T
H(z) [(P-.Q2 (zt ))2

4(w)(-Q2(z, t, )
)2]

+ Ll2Ql1.,Q2

(2.3)

where 6(x) and H(x) are respectively the Dirac and Heaviside

distributions, and Qi (z, t, /3), and Q2 (z, t, j3) with /3 = 1/kB,

are the charge densities at finite temperature of the two separate

oscillator circuits of inductances L1,L2 and capacitances Cj, C2

respectively. The resistances R1 and 1?2 have been replaced with

semi-infhiite low-pass filters of inductance elements LT,(i=1 or

2) which have frequency dependent propagation speeds v(w)

given by

= Rj(w)/LT(i = lor2) (2.4)

6



with

= (Riv/LTAI)/ta,I1((1 ‘‘2)1/2) (2.5)

where R = (L0/C0)1/2, v = w1/w10,A = 2Q10C2/C10,w0 =

(LCj)’/2 and Q10 = L10/Rj. Here w, is the natural fre

quency of the itkLC oscillator, Q0, the quality factor ,and A,w0

the highest frequency passed by the Elter. hi the effective La

grangian density, the strength of the coupling is represented by

the mutual inductance L12.

The postulates of quantization [5] suggest for the spectral

integrals of the charge density and its conjugate momentum

(z, t, /3) the commutation realtion

[Q(z,t,fl),(z’,t,fl)] =hô(z
—

(2.6)

where the spectral integral is defined as

Wn aa

Q(z,t,fl)
= f Q1(z,t,/9)dw. (2.7)

The equations of motion associated with the effective Lagrangian

density (2.3), are found from the Euler-Lagrange equation. The
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action for the effective Lagrangian density is

S
= f

dtf dzf dw(äQ, Q). (2.8)

The Euler-Lagrange equation obtained from this action at fre

quency w is

_______

t9f

____

ôt(o(oQ))+t9x(ô(OQ)) = 0. (2.9)

The field equations for this system are found when (2.3) is sub

stituted into (2.9) and when the resulting equations are inte’

grated with respect to z from —E to +e. The discontinuous dis

tribution H(z) produces a term which depends upon the partial

derivative t92Qj,4z, t, fl) If the interacting field associated with

frequency La? is written in terms of the in-field and out-field as

Qj(z,t,fl) = Q(U,fl) +Qjt(V,,8) (2.10)

where U = t + z/v(w) and V = t — z/t’(w), then this partial

derivative becomes

t9Q1(z,t,fl)
= 1

(ôuQ(U,fl) — OvQt(V,fl))
v,(w)

(2.11)

= (Q1(U,fl) —
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Using the notation Q(t, /3) = Qi (0, t, /3), the operator field

equations resulting form the above method become

L1(1(t,fl)+L12Q2(t,fl)+
Q1(t,i3) +

R1(w) (t, /3) = 2R1 (w)rt (t, ,8)
(2.12)

L2?2(t,/3)+L211(t,/3)+
Q2t,/3) +

R2(w)Q2(t,/3) =2R2(w)Q(t,/3).

When Qj (t, /3) and Q are represented in the form

= Qjwe1t +

QD(t,fl) =
+ teC7t (2.13)

h

= (4wRi(w))
Ar(w,8)

and when Qt(t,fl) is represented in the same form, then (2.12)

and (2.13) can be used to obtain Q. This results in the ex

pression for the operator

gout = (2_i (W)i(W)
—

I) (2.14)

with

2(w)
= (Z1(w) Z12(W)

\Z2(W) Z2(W)
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2
z1(w) = — — w — swR1(w)

z2(w) = — w2L2 — iwR2(w) (2.15)

Zl2(W) = z21(w) = —w2L12

The corresponding operators for the Qj (t, /3) fields given in

(2.12) are found from (2.10) and (2.14) so that the fields Q(z,t)

can be expressed in terms of the finite temperature annihilation

operators A” (w, /3) and their adjoints. These operators satisfy

the spectral commutation relation

= öjjö(w —WI] (2.16)

In these expression, A (w, 6) is obtained from the zero temper

ature boson annihilation operator A” (w) upon using the Bo

goliubov transformation G(O) defined in Ref.[1 and 4], and the

parameter 6 is related to the inverse temperature ,8 through the

expression 8rnhO = ,1/2 ()

The time dependant operators Q(t, /3) and their conjugate

momentaL1Q(t, /3) which are found from the spectral sum of

Qj (t, j3) must satisfy the Dirac bracket relationship

[Q(t, 6), Lt(t)] = ih (2.17i)

10



which. implies for the variances the uncertainty inequality

o(Q17fi)cr(LQ1,fi) h/2 (2.17b)

This requires the fields to be renormalized so that the operators

of physical interest are

qi(t,8) =Q1(t,O)/K2(1,2)

(2.18)

q2(t,0) =Q2(t,9)/K”2(2,1)

where

1(2(1,2) = (L1/r) f dww2
[1z2(w)12R1(w)+(L12w2)21?2(w)1

(2.19)

The variances of these operators q, are defined according to

the formula

o2(qj)o = (80qj018) — (80fqj0fl)2. (2.20)

where IOfl) represents the finite temperature vacuum state de

scribed in Ref[1]. A similar definition is used for the operators

From (2.10), (2.13), (2.14), and (2.15) one finds the results
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for the variances

02(q1,z, 112) =
h 1” hw [1z2(w)12R1(w)+fz12(w)I2R2()1

2rK2(1,2) Jo dwwcoth(2kBT) JDetZ(w)12

cr2(L11,z,1i2) =

h
[

dww3coth(
hW )[1z2(w)IR1(w)+1z12(w)12R2(w)1

2rK2(1,2) J, 2kBT IDetZ(w)12
(2.21)

The analogous results for the second circuit are found from the

above with the replacement (1 -+ 2). Although the results are

not given, the same method can be easily used to obtain expre&

sions for the corrolation functions of the type (flOq1(t)q2(t)O18).

To obtain a better understanding of the nature of the noise

associated with interacting systems, the above model is simpli

fled with the assumption that R1 = R2 = R, L1 = L2 =

C1 = C2 = C, and I = L12/L. For this case, numerical re

susits for the dimensionless variances a(q, z, 1)(Lw0/h)’42 and

a(L, z, l)/(aLw0)1/2 are given in Table I. As a result of the sim

plification, the variances which appear in (2.21) take on the spe
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cial form

o2(q,z,1)(Lw0/h)
= Kj(q0,z,l)

2K2(q0,0,1)

tr2(Lt,z,l)/hLw0=
2K2(q0,0,1)

where

K
— [A dzn.’m[(l v2)2 + (v/q0(z.’))2 + (1v2)2jcoth(v/z)

mfjo,7., )
— Jo rq0(v)D(v,q0,1)

(2.23a)

with

D(v,q0,l) =[((1—i.i2)2—(v/q0(v))2—(1v2)2)2+4(1—v2)2(i.’/q0(v))2]

(2.23b)

and

=(q0A/v)tan’((1
(‘)2)1/2)

(2.23c)

In these expressions, the definitions v = w/w0, A = 2(C/C0)q0,

and q0 = Lw0/R have been introduced. The results for the zero

temperature (z = 2kBT/hWo = 0) vacuum are found with the

replacement cothfr/z) -+ 1. Furthermore, in the large q0(R —+ 0)

limit, one finds the LC oscillator result from (2.22) and (2.23).

Finally, in the limit 1 -+ 0, the expressions (2.22) and (2.23)

reduce to the previously presented results of Ref [4]

13



The numerical results given in TABLE 1. for the variances

(2.22) are particularly interesting for the operators q(t, fi) where

it can be seen for small values of the quality factor that there

are values below the standard quantum limit value 2h/2. This

indicates the presence of a squeezed quantum state [6] that de

pends upon the strength of the mutual inductance. It has al

ready been demonstrated [4 and 7] that a squeezed quantum

state appears in the dissipative linear oscillator; however, here

it can be seen from the present results that an increase in the

strength of the mutual inductance coupling produces a tendency

towards stronger squeezing.

III. CONCLUSIONS

In this letter, I have used the methods of finite tempera

ture field theory to obtain the variances for the charge and cur

rent in a dissipative LRC circuit which interacts with a simi

lar circuit through a mutual inductance coupling. An effective

Lagrangian density has been used and a regularization method

based on a semi-infinite transmission line has been used to pro-

14



duce frequency dependant damping. The dissipative nature of

the problem appears as the result of the discontinuous coupling

associated with the Heaviside distribution which appears in the

Lagrangian density (2.3).

This work was performed in part at Centre de Physique

Nucléaire, Saclay and was supported in part by a French Gov

ernment Scientific Fellowship, and in part by a Dublin Institute

of Technology research award.
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TABLE I.

I (&..)‘/2o.(q,z,I) (hLw)h)

0.1 0.685 0.757

0.2 0.683 0.773

0.3 0.680 0.800

0.4 0.676 0.842

0.5 0.666 0.924

0.6 0.662 1.004

0.7 0.648 1.063

0.8 0.613 1.393

0.9 0.573 1.797

q0 = 5.0; z = 0.1; C/C0 = 100

Table I. Numerical results for the dimensionless seconds moments.
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