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The Optical Soliton Contents

of some Special Input Pulses*

J. BurzlatP

Dublin Institute for Advanced Studies

10 Burlington Road, Dublin 4, Ireland

Abstract

The optical soliton contents of some special input pulses and their Galilei

transforms will be determined by solving the linear eigenvalue problem associated

with the non-linear Schrödinger equation. The special cases discussed are the

initial envelope function of width a and height 3, the initial envelope function

—i3 exp(—axJ) and the super-Gaussian initial pulse. Throughout, we compare

our problem to the Korteweg-de Vries problem where a good understanding can

be gained through Sturm-Liouville theory.
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The question we are going to address ourselves to is , given an input pulse

u(x, 0), does it contain solitons, and if so, what type of solitons. (Here, u(x, 0) is

the change in time of the initial envelope function at the point where the pulse is

injected into the fiber.) A satisfactory detailed answer to our question should help

to choose or build the laser best suited to injecting solitons into optical fibers at

lowest cost.

In principle, the optical soliton contents of an input pulse is determined by

theL2-integrable solutions of the linear eigenvaiue problem [1]

— )T with A ( id/dx u(x, 0)
1—

— \_u*(x,0) —id/dx

Satsuma and Yajima [2] have started a detailed study of this eigenvalue problem

and have solved it for the special initial envelope function of sech(x) form. To gain

a better understanding we want to add more solvable cases to the one discussed

by Satsuma and Yajima.

To explain what we are trying to achieve finally let us compare the theory

of optical solitons to that of Korteweg-deVries solitons. For Korteweg-deVries

solitons the question analogous ‘to the one addressed here is, given an initial water

wave with amplitude u(x, 0), does it contain KdV solitons. The answer is yes, if

the eigenvalue problem

[_+u(x,O)] =A (2)

hasL2-integrable solutions, i.e. if the Schrdinger equation (2) has bound state

solutions.

It is well-known that in this case theory does not end with this general answer.

Every student of quantum mechanics has a good understanding of the eigenva.lue

problem (2). He or she can certainly solve eq. (2) for a square well potential, and

possibly for a sech2x potential. An advanced student may even be able to use

Sturm-Liouville theory to prove that if a potential is bounded above by a square

well potential and bounded below by a sech2xpotential the same is true for the

number of the corresponding bound states. Sturm-Liouville theory also yields,

among other results, that the ground state has no nodes and that the number of

nodes increases as the eigenvalues increase.
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In the case of optical solitons, we want to achieve an understanding as deep

as in the case of KdV solitons and begin by solving the eigenvalue problem for

special input pulses. For these special pulses we determine the transition matrix,

i.e. find a(A) and b(A) where

€- C)
(vi) —

a(A)e C) +b(A)e () (3)
X+OO

with A = iv + ii1, i > 0. ?ote that if u(x, 0) has eigenvalue A = iv + iq, then

the Galilei transform u(x, 0) exp(—iVx) has eigenvalue iv + V/2 + iii. Therefore,

solving the eigenvalue problem for u(x, 0) yields a solution for the whole family of

Galilei transforms as well.

In our first case, u(x,0) is given by

10 for IxI>a/2
()-fi for IxIa/2 ‘

(In ref. 3, theL2-integrable solutions with pure imaginary eigenvalue have been

found for this case and the next one discussed below.) For this initial envelope

function, a(A) and b(A) read

a(A)=

b(A)=
\/j2+A2\/”+

(5)

To find the eigenvalues, we set a(A) equal to zero. The conditions which follow

are

V/32+A2a ±/3sina, iA=±f3cosVI82 +A2a, (6)

For p +ip := j//32 + A2a, iv 0, p 0, they lead to the equations

Pi 1?
cosp2=± . , cosp2=F

a3sinhp coshp1

which are controdictory for a > 0, , > 0. The elgenvalues are therefore purely

imaginary. (Arguments in ref. 2 go some way towards proving that this is always

the case for even purely imaginary initial envelope functions. We do not think that
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the arguments are conclusive and prove in each special case that the eigenvalues

are purely imaginary.)

______

If we define p =
— ij, the conditions for the eigenvalues A = ii1 are

p2 +a2Jr2 = 282, yl = — cot p. (8)

These conditions imply that

N = (1/2 + F/ir) (9)

holds for the soliton number N, where

+00

F=f I(x,0)Idx, (10)

and (...) denotes the integer smaller than the argument. In terms of F, N is the

same in this case as in the case of an envelope function of sech(x) form [2].

As a second special case we solve the eigenvalue problem (1) for

iu(x,0) = f3exp(—ax) , a,/3> 0, (11)

by solving the second order equations corresponding to (1). For v1, the first

component of, the second order equation reads

‘— +(A2 _iA+IuI2)vi =o. (12)

The transformation 8 = 3e/a, = vj/.J transforms this equation to Bessel’s

equation

(13)

where v = —1/2 — iA/a.

For x < 0, we thus find v1 in terms of Bessel functions. By using eq. (1) we

find v2. An analogous derivation yields v2 for c> 0 and through eq. (1) v1. The

matching conditions at x = 0 lead to

J÷1() —

— Y()J÷1()
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—

(14o(
-

The condition the eigenvalues have to satisfy is therefore

J) = ±J÷1(). (15)

That condition (15) cannot be satisfied for non-real v with Re ii> —1/2 can

be proved as follows [4]: Assume that J1, ± Jj has a real zero 8 for non-real ii.

Then using the Mittag-Leffier expansion [5, p.497]

1 ±
2s

= , (16)

n=1 )Lfl

and therefore,

ç—Rejvn Imj13
2 _822 —

13=1 31/7%

follows, where j are the zeros of s’J1/(s). This equation cannot hold because

Rej1/7%/Imj 0 for ic 0 for all n with Im j 0 [6], and because there are

j with Rej1/nO andlmj1/7%0.

We are left with studying the points of intersection of J1, and ±J,+1, which

we denote ass7%(v), for real order xi = x/ — 1/2 > —1/2. It is easy to prove that

labelling the points of intersection by s7%(v) makes sense because, if ii changes,

the number of points of intersection stays the same, and 8 changes continuously

with xi. Furthermore, s —* oo for n • oo and for z’ — oo, and 8 increases

monotonically with v[4; consequence of Lemmas 2.3 and 2.5 in ref. 7]. This

implies that s(—1/2) = (2n — 1)r/2 determines the soliton number, which, in

terms of F, turns out to be again given by eq. (9).

In all three solvable examples the number ofL2-integrable solutions is given

by the same formula in terms of the pulse area. This is a much simpler result than

one would expect from studying the Schrödinger equation in the Korteweg-deVries

case. In both cases one expects that the “stronger” the potential the easier it is

to “pull down” exponentially increasing solutions at minus infinity and turn them

into exponentially decreasing solutions at plus infinity, i.e. the number of solitons

should increase with the “strength” of the potential. However, for the Schrödinger

equation no formula as simple as eq. (9) exists.
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The input pulses studied so far are not very good models of realistic input

pulses. That is why, as another example, we discuss the super-Gaussian pulse

u(x,0) = A0 exp [(i — ia)()2mj
. (18)

To solve the eigenvalue problem (1), we set

= u(x) , U = 1, (19)

and determine the functions u,3 recursively as

u(x) = 1f e_+(1)(8k)2mf e_(1+j(t/)2mu1(t) dt d8. (20)
00 00

By induction, we can prove that

2mE

0 21
‘ 2’(n— 1)!F(2)I,L(n4nm

holds for x E (—oo, —f), c > 0. Using the Weierstrass M-test we conclude that the

series (19) is convergent on (—oo, —E), f> 0. Then, eq. (1) allows us to calculate

V2 on (—oo, —e). Analogously, we find v2 and v1 in form of convergent series on

(e,oo).

From a physical point of view, all that remains is to match the functions at x =

0 for reaiistic parameters a, o and m, which model pulses from a semiconductor

laser. To solve the mathematical eigenvaiue problem completely, an analysis like

the one we have done for the intersections of f, and J1 has to be added. Only

then can the interesting question, whether eq. (9) holds in this case as well, be

answered rigorously.
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