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Abstract

Stgrmer proved a theorem on the integral decomposition of sym-

*
metric states on a C*-algebra ®@B. Motivated by problems in statis-
tical mechanics, we define symmetric states on a composite algebra

*
A ® (®B) and extend Stgrmer’s theorem to this situation. Applica-
tions to spin-boson models are sketched.
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1 Introduction

In [1], Stgrmer proved a theorem characterizing the symmetric states of an
infinite tensor product of C*-algebras. The principal result of this paper is
a generalization, dictated by the requirements of the statistical mechanics of
composite systems, of Stgrmer’s result. In [2], Stgrmer’s Theorem was used
to characterize the KMS and limiting Gibbs states of mean-field models; in
§3, we sketch some results of this nature for composite systems which follow
from the theorem of §2. We adopt, as far as possible , the notation of [1] and

[2].

2 Symmetric States of Composite Systems

Let B,j = 1,2, ... denote copies of a fixed matrix algebra M, for some n > 2;
let A be a finite ordered subset of N and denote by B, the C*-algebra ®;ea ;.
For A C A’, there is an obvious canonical imbedding of By in B} given on
generating elements by

Qjer Tj — Qjenry; (2.1)
where
) wi JEN, 5
y] - { 17 ] 6 A/ \ A; (“2)

*
using the canonical imbedding, we define the C*-algebra @B to be the induc-
tive limit of the family {8 : A C N}. Let § denote the group of one-to-one
mappingts of N onto itself leaving all but a finite number of integers fixed.

*
There is a canonical action of S on @B given by the action of an element 7
of § on each generating element:

7T(l‘)i = Tx(1) (23)

*
A state w of @B is said to be symmetricif w =wo 7 for all 7 in S. A state

*
w of @B is said to be a product state if, for each pair A, A’ of disjoint finite
subsets of N, we have

w(z122) = w(zy)w(zy) for allzyinBa and all 25 in By,

*
A symmetric product state w determines a state p of M, and w = ®@p; we

*
shall find it convenient to denote @p by w,. It follows that, in the present
setting, we have from [1]



ST@RMER’S THEOREM .
Let w be a symmetric state of @B with B = M,; then there exists a unique
probability measure y on D,,, the state space of M,,, such that

w= [ udo)s,. (2.4)

In statistical mechanics, one often meets the situation where a system is
represented by the product of a C*-algebra A and an infinite tensor product

algebra éB . This motivates the following definitions: the action of S on (§)B
extends to an action on A® (éB) leaving A point-wise fixed and a state w of

*
A®(®B) is said to be symmetric if it is invariant under this action: w = wor
for all 7 in S; a state w is said to be a product state if the restriction of w

* *
to ®B is a product state and, on generating elements of A ® (®B ) we have

*
w(zy) = w(z)w(y) for all z in A and all y in ®B. It is clear that a symmetric
product state determines a state p of M, and a state  of A such that

*
w=1Quw, =1®(dp). (2.5)

We are now ready to state the theorem.

THEOREM .
Let A be a separable C*-algebm; let w be a symmetric state of A @ (RB)
with B = M,. Then there exists a unique probability measure 1 on D, and
a p-measurable function p — n, from D, to the state space of A such that

o= [ uldpyn, @ . (2.6)

Proof:
*
For each symmetric state w of A ® (®B) and each positive element a of A,

*
the functional z — w(a®z) is a symmetric positive linear functional on ®B;
by Stgrmer’s Theorem , there exists a unique positive measure p, on D, such
that

w(a®z)= [ paldp)ey(e) (2.7)

*
for all z in ®B. We show that the measure y, is absolutely continuous with
respect to py, which is the probability measure p of the statement of the

*
theorem. For each z in ®B, we define a function # on D, by

z(p) = wy(2); (2.8)

o



we remark that this function is continuous. Now regard p, as a functional

on C(D,); for elements of C(D,) of the form (2.8), we have

ja() = AHMMMﬂM

= /Dn ta(dp)w,(z), by (2.8),
= w(e®z), by (2.7).
For z > 0, we have -
wa®z) <| a |l w(z) (2.9)
so that
#a(®) <[l a |l pa(2). (2.10)

Denote by X theset {#:z € [ JacnBa} and by X+ theset {Z € X : 2 > 0}
to complete the proof of the theorem, we make use of the fact, whose proof
we postpone, that the set X+ is dense in C*(D,). It follows from (2.10) that

pa(f) <[l a [l u(f) (2.11)

for all f in C*(D,). Let E be a Borel subset of D, and let 15 denote the
indicator function of E; by a corollary of Lusin’s Theorem (see [3]) there
is a uniformly bounded sequence {f, : n = 1,2,...} of positive continuous
functions such that f, — 1g almost everywhere with respect to . Hence we
have

pa(le) [l el n(1e) (2.12)

for every Borel subset E of D,,. Tt follows from the Radon-Nikodym Theorem
that there is a unique element n(.,a) of L'(Dx, ) such that

pal) = [ uldpn(p,a)1(p) (213)

n

for all fin C(D,). In particular taking f = I, we have

w(a@a) = [ uldp)n(p, a)en(e). (2.14)

By the uniqueness of the g, and the linearity of a — w(a ® z) for all =,
the map a — [, is linear. By the uniqueness of the element 7(.,a), the map
tta — 7(., @) is well defined, hence the map a — 7(.,a) is linear as a map from
A to LY( Dy, ). Moreover (., a) is positive since p, is positive, n(.,1) =1
and, from (2.12) ,we have n(.,a) <|| a ||. We wish to show that the map
a — 7(p,a) is a state of A for p-almost all p; the properties of linearity,
positivity, normalization and boundedness of 7 as an element of L'(Dy, )
hold almost everywhere, but on sets which may depend on the elements of
the algebra. However, invoking the separability of A , it is possible to show
that there exists a Borel subset I of D,,, with p(f7) = 1, on which the above



properties hold for a countable dense subset of A; on I, we may extend n(p, .)
to a state 7,(.) of A by continuity.

[t remains to prove that the set X+t is dense in C*(D,). Let f be an
element of C*+(D,) and let f/? denote its positive square root; we remark
that the set X is an algebra under pointwise multiplication containing the
constants and separating the points of D, so that, by the Stone-Weierstrass
Theorem, we can approximate f!/2 by elements of X: given € > 0, there is
an z in some By with A = {71,...,7,,} such that

| F12 %< e (2.15)
Let 7 be a right-shift in N such that 7(¢1) > 7,,; then

wy(z77(x)) =] w,(z) [* . (2.16)

It follows that

1 M M
f\/f—+oo j\/[2 (ZZ T l T z _IwP( ) | 7) (217)

k=1¢=1
so that we may choose M such that

M

| f— a3z || < 3ewithap = Sorka /M
k=1
=

3 Comments and Applications

There is a straightforward generalization of the theorem of §2 which is pos-
sible, replacing M, by a type [ factor. For arbitrary A and B, the extremal
symmetric states are product states; it is a challenging problem to find con-
ditions on a symmetric state sufficient to ensure that it has an integral de-
composition analogous to that of the theorem of §2. In Stgrmer’s setting,
Hudson and Moody [4] proved that, when B is a type I factor, local normality
of w is sufficient; it would be interesting to investigate whether this remains
true in our setting with A separable.

As far as the applications to statistical mechanics are concerned, it is nec-
essary to use Hamiltonians which have the correct permutation invariance.
In the case when A is trivial (A4 = C), the requirements of permutation
invariance lead us to the usual mean-field models; as we remarked in the
introduction, Stgrmer’s Theorem and Hudson and Moody’s generalization
have been applied in this case to give a complete characterization of the



equilibrium states. With A non-trivial , the theorem of §2 opens the possi-
bility of carrying out such a programme for composite systems described by
Hamiltonians of the type

I3 14
H=He1+> 1049+ B,gCY, (3.1)

1=1 1=1
where HY and B, are self-adjoint elements of A and
AV =19..0 4@ .01 (3.2)

is an element of By ., with A a self-adjoint element of B; and CW is
similarly defined.

This class of models includes the spin-boson models studied by Hepp and
Lieb [5,6]. In such applications, the restriction that A be separable does not
prove to be an obstacle to the study of equilibrium states. The boson part
of the system is represented by the CCR algebra A which, as a C*-algebra,
is non-separable; one first proves that the equilibrium state is locally normal
so that the GNS representation is on a separable Hilbert space and one can
exploit this separability in the proof of the decomposition into product states.
Defining the equilibrium states by means of the correlation inequalities (see
Fannes and Verbeure [7]), we may repeat the arguments of [2] to obtain a
characterization of the equilibrium states of the spin-boson models.

We sketch the argument: let w? be the unique state of A @ By, .. satis-
fying the correlation inequality

B
ﬁwf(x*[[{g,:v}) > wf(r*:v) In ——%L—, (3.3)

forallzin A® Bg,..g-

Each w} is symmetric because of the permutation-invariance of f; and
the uniqueness of the state satisfying (3.3). Let w” be any limit-point of
the sequence {wf : 0 =1,2,...}, then w? is symmetric and hence has the
decomposition

WP = /D ;L(dp)nf Quwl. (3.4)

Under suitable conditions on the sequence {H, : { = 1,2, ...} we can prove
that, for almost all p, the following gap-equations hold:

Jim By [H7 + €o() Be, y))

B8 *q
> 77 (y"y) In ng(y 9, (3.5)
0 (yy~)
o~ B(A+lime_ o m5(Be)C) ,
) (3.6)

- tr(e—ﬁ(ft«klim(“mng(Bg)C))

Details will appear elsewhere.
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