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Abstract.
We construct a complete orthomodular lattice with an orthogonality
relation generated by a causal structure on Minkowski space-time.
The properties of this lattice are examined and it is shown that
the covering law is not satisfied.



1.Introduction.

There are many difficulties with causality in quantum mechanics. The problem
can be seen also in algebraic quantum theory 74,9,10,11] . Motivated by these
difficulties,we have investigated the structure of the causal logic of space-
time [5,6]

In the quantum logic approach to relativistic quantum mechanics one is interes-
ted in covariant representations of the proper orthomodular Tattice in the lattice
of projections in Hilbert space.

In this paper we use the causal structure to construct an orthogonality space.
The methods and language we have found most appropriate are those of the empiri-
cal logic of Foulis and Randall [ 8]

We deduce the orthogonality relation from the causal structure of Minkowski
space-time. Then we construct a family of double orthocloced sets which form

a complete orthomodular lattice.

The main result concernig the representation of this lattice in Hilbert space

is negative. This lattice is atomic, with trivial center and does not satisfy
the covering law, therefore cannot be represented as the lattice of projections
of a von Neumann algebra.

2.Causal structure and orthogonality relation.

We shall start with some facts about orthogonality spaces. An orthogonality
space is a pair (\)( ,J_) where X is a nonempty set and L is an orthogonality
relation on X which is symmetric and irreflexive. DX is called
an orthogonal set if and only if, for all x,y < D x#y implies xL1V¥

! 3 i ‘L‘L
For A< X define A" = %"exj <o forall ae A and A b=
. . 2)(___ ‘/x . . - Ll
The mapping 4 ° > /" has the following properties Lgl : ACA .
s Loy ' . N N e - A
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It is well known 3] that the family €.(X L).=5AcX A=A forms
i , b

a complete orthojattice when partially ordered by set theoretic inclusion and
L

equipped with the orthocomplementation A — A

The 1.u.b. and g.l.b. are given respectively by

VA =AY ANAL= DAL AcetX ) @)

In general € (X L) need not be orthomodular. This has been discussed in 71,
where conditions equivalent to orthomodularity were given.



(3.2)

We now introduce a causal structure on X which will be used to define
the orthogonality space. This structure has a simple physical meaning in the
case of Minkowski space-time.

Let (X, S) be a pair where X is a nonempty set and S is a distin-
guished covering of X by nonempty subsets. The pair (X,6) will be called
a causal space, the family S a causal structure and an element (&G
a causal path. Let x& X we denote by (<) =%{€9; xé-Q%the set of all
causal path containing x
In the causal space (X.3)one can introduce a natural orthogonality relation:

%y e X XLy iff RO A By =¢ (2.2)

Observe that

X Ly iff Y N yr=p iff Y Labx) =g (2.3)
e 300 18
AL= i\,-‘/&?:/ﬁ\":\'/" Jﬁf\:(b}
' ’ -{—-é’[?ﬂ’_.\j n
If we understand a causal path as a possible physical signal then A
denotes the set of points which are not causally related to any point in the

set A

and

3.Causal structure and orthomodularity.

We are interested in a causal structure which generates,by (2.2) an ortho-
gonality relation under which the lattice Ti ()<,LJ is orthomodular.
The following condition is equivalent to orthomodularity L7] and appropriate

for our discussion:

if D is an orthogonal set of X , if x4 D", x¢ D" then
A L
DA (xTADY) #76 (3.1)
We are now able to formulate the conditions on the family S fora quite
general space X = RxZ where K is a real line and Z s any nonempty set.
The family % consists of graphs of functions (we will identify the function

with its graph) L S —=2 5 S K such that

1. G acJ VE:S—>2Z | S comected subset of R Y

5¢IR

2. For any ty ¢ t, & tg and for any z],zz,z3€i21 if FS(t],zl) ~ P (tps25) F O

and B (ty.2,)n [B(tg3:23) £ P then 2 (ty27)n R (ty.z)) =
3. For any &Le S and for any % e R xZ the set

Cgixx}j ::\}vehl; (v, L)) # &ﬂgL} is mmnian N dmmin%



Theorem 3.1.
. ™ 7 o . .
Let {(X,5) be a causal space where X =K » L and = satisfies

condition (3.2). If /A 1is an orthogonal set for 5 and (t,z) € R<Z
is such that (t,z)#A" , (t,z) #A°"  then o ,

AT~ (£ 2) A AR =4 (3.3)
The proof needs some technical lemmata and can be found with details in 6 }
We only point out that from the assumption (t,z)ﬁﬁ%\LLit follows that there
exists + & [B(t,z) such that ;Mf\%XL?<ﬁ . The proof shows the existence

\ . 3 N\ L

of a point (o i) & Atm ((g,2) o A) +

4.Causal structure in Minkowski space-time.

We shall specify more precisely the causal structure in Minkowski space-time
M= Rx R® with the scalar product Xy = Xy, = XY -
Let &, be the family of functions f : R —R> such that the following
Lipschitz condition is satisfied

Nf(xo) - f(yo)l\ o A ixo -y, | L >0 (4.1)

We denote the orthogonality relation generated by 35\ as Ly . The family

satisfies conditions (3.2) ; by theorem 3.1 v (M, Ly) s an orthomodular

lattice.

Automatically we have that two points x, y € M are orthogonal if and only if
[x, = vl s X dlx - ¢l (4.2)

This means that x 1is space- or light-like to y with velocity of Tight

equal to & . One can see that the second assumption for éfx (3.2) s a causal

transitivity condition, the third one is a kind of continuity (signals are pro-

pagated inside the light cone only). A special case for the family Six given

by time-like straight lines has be considered in L5] . The lattice fi,(M,_Li)

is called the causal Tlogic and has connections with the family of closed double

cones in Minkowski space. As was shown in C51 the group of automorphisms of

this logic consists of Poincare transformations and dilations.

5.Realization of the causal logic in Hilbert space.

A natural question arises: can we represent € (M, L, ) by projections in
a Hilbert space? The general problem of vector-space coordinatization of a lattice
was consider by many authors [12,13] ; in particular, the case of a Hilbert
space coordinatization {1,14,15] . One of the necessary condition for such
a coordinatization is the covering law. In this section we will examine this



property in the nm:mmégoménmwﬁz.pJ»VOﬁ 3A:rozmximumnmnwéam.zmzéaauxo<m
that . (M, Ly ) does not satisfy the covering law.

There are many equivalent conditions for the covering property in atomic, ortho-
modular lattices [ 2,13,153 . The one most useful in our investigations is con-
nected with the so called Sasaki projection. For an element a in the lattice L

define the Sasaki projection f,(b) = an(bwva ) where be L

Theorem 5.1.
An atomic orthomodular lattice L has the covering property if and only if

for every ae€ L and each atom p not orthogonal to a, .ﬂmAnv is an

atom of L.
For the proof see 13,151 .

Let us examine the properties of ¥.(M, L,).

Lemma 5.7.
¥, (M,L.) 1is an atomic lattice. The points are the atoms.

Proof.

Because the order is given by set theoretic inclusion it is enough to prove
that each point is an atom. Clearly a m_fm.wrw_mﬁ us take a = Adm,xmv and
assume that there exists b = Aﬁc.xov e mwyr. such that ﬁm <ty ( in the
opposite case ﬁwhw ﬁm the proof vﬁonmmﬁm analogously). If dm = ﬁu then
by 4.2 a L b . By assumption b # ~a '~  so there exists fe WAUV such
that f~ ba: e and by condition 1 for =« f is defined for any t < (t
We shall prove that (t,f(t)) < Yay™" for any t e (t,,ty).
let us fix t and assume that (t,f(t)) ¢ * ay"" then there exists h = [2(t,f(t
such that h 7wm mwrﬂuﬂv and using condition 2 for hwf there exists 9y, = wﬁ
from wvmWP. to b or @mm”mf, from xwwrﬁo a which contradicts our assump-
tion that b & YaY™" or a e%al" ' respectively. So that if there exists

bta, b € bal "" then there exists f € B(a) — [>(b) such that for any
¢ Lkt

t & (tt) s (t,f(t)) € Yal .

In Minkowski space-time *a} R VAN mmw vy

cone with vertex in the point a . But } ay =)

w,ﬁ

-

I where <m is an open
S " .
a} so the time interval

Aﬁw,ﬁuv should reduce to zero.
|

Lemma 5.2.
The center of T (M, L) is trivial.

Proof.
let a, b be atoms in ¥ (M, L) such that a# b, a ¥ b. We shall
prove that a and b do not commute. By orthomodularity C2] a and b



commute if and only if a ~ b = a ~( Db~ a“ ). So from2.1 and lTemma 5.1
we have V

a b =F . ans(bval) = a
Because 4, covers M then for a<= M, a # there exists f = = (a) and no
point from this path f s orthogonal to a , therefore the center contains
only ¢ and M. -

Combaing the Sasaki projection with theorem 3.1 and lemma 5.1 we have the fol-

lTowing result.

Lemma 5.3.
< (M, ~, ) does not satisfy the covering law.

Proof.
Observe that by the lattice operation (2.1) the condition (3.3) means that

AT A ( xT A AT ) o= AT A ( x vA ) . Takingas A a point A = (tA,xA)

by lemma 5.1 we have [N A and we are in the case of the Sasaki projection
~?A;_(p) associated with A”
Let us take an atom p = (tp,xp) such that p= A~ , p¢ A“" then by theorem 3.

( a point is an orthogonal set ) there exists (a,f(a)) such that (a,f(a)) < Tp-

and tp«; a <ty . We shall prove the existance of another atom in - . different
from (a,f(a)) . From p# A~ there exists g« gﬁ(tp,xp) such that g~ A =2
and t < a <ty . Connectness of g (3.2) gave us that a & dom g and so
(a,f(a)) L (a,g(a)) . But (a,g(a)) ¢ A" and (a,g(a)) ¥ A** we can repeat
the arguments of the theorem 3.1 starting from the point (a,g(a)) and as a result
we have (a],h(a])) “ "fAL which is different from (a,f(a)) .
|

Corollary.

fﬁ(M,Jﬂk) cannot be represented faithfully by a lattice of projections

in the Hilbert space.

Proof.

Assuming such a representation exists and using lemma 5.1 and 5.2 we obtain
a contradiction with lemma 5.3 (the lattice of all projections in Hilbert space
satisfies the covering law) .
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