DIAS Access to
Institutional Repository

Title	The Covering Property in a Causal Logic
Creators	Ceg $■$ a, Wojciech
Date	1987
Citation	Ceg $■$ a, Wojciech (1987) The Covering Property in a Causal Logic. (Preprint)
URL	https://dair.dias.ie/id/eprint/815/
DOI	DIAS-STP-87-11

Wojciech Cegła
Dublin Institute for Advanced Studies
School of Theoretical Physics
10 Burlington Road, Dublin 4, Ireland
On leave from Institute of Theoretical Physics
University of Wrocław, Cybulskiego 36 Wrocław, Poland

Abstract.
We construct a complete orthomodular lattice with an orthogonality relation generated by a causal structure on Minkowski space-time. The properties of this lattice are examined and it is shown that the covering law is not satisfied.

1. Introduction.

There are many difficulties with causality in quantum mechanics. The problem can be seen also in algebraic quantum theory $[4,9,10,11]$. Motivated by these difficulties, we have investigated the structure of the causal logic of spacetime $[5,6]$.
In the quantum logic approach to relativistic quantum mechanics one is intersted in covariant representations of the proper orthomodular lattice in the lattice of projections in Hilbert space.
In this paper we use the causal structure to construct an orthogonality space. The methods and language we have found most appropriate are those of the empirical logic of Fouls and Randall [8].
We deduce the orthogonality relation from the causal structure of Minkowski space-time. Then we construct a family of double orthocloced sets which form a complete orthomodular lattice.
The main result concernig the representation of this lattice in Hilbert space is negative. This lattice is atomic, with trivial center and does not satisfy the covering law, therefore cannot be represented as the lattice of projections of a vo Neumann algebra.
2. Causal structure and orthogonality relation.

We shall start with some facts about orthogonality spaces. An orthogonality space is a pair (X, \perp) where X is a nonempty set and \perp is an orthogonality relation on X which is symmetric and irreflexive. $D=X$ is called an orthogonal set if and only if, for all $x, y \in D \quad x \neq y$ implies $x \perp y$. For $A \subset X$ define $A^{\perp}:=\left\{x \in X ; x+a \text { for all aGA\} ~ a n d ~ } A^{1 \perp}=\mid A^{\perp}\right)^{\perp}$. The mapping $\perp: 2^{x} \rightarrow 2^{x}$ has the following properties $[8]: A \subset A^{1+}$ $A \cap A^{\perp}=\phi, A^{\perp}=A^{\perp 1}$, if $A \subset B$ then $B^{\perp}-A^{\perp},\left(U A_{1}\right)^{\perp}=\Gamma A_{A}^{1}$. It is well known [3] that the family $e(X, 1)=, A C X ; A=A^{1}$ forms
a complete ortholattice when partially ordered by set theoretic inclusion and equipped with the orthocomplementation $A \longrightarrow A^{\perp}$
The 1.u.b. and g.l.b. are given respectively by

$$
V A_{L}=\left(1 I A_{L}\right)^{+1} \quad \wedge A_{i}=\cap A_{i} \quad A_{i} \in E(x, 1)(2.1)
$$

In general $\sum(X, \perp)$ need not be orthomodular. This has been discussed in $[7]$, where conditions equivalent to orthomodularity were given.

We now introduce a causal structure on X which will be used to define the orthogonality space. This structure has a simple physical meaning in the case of Minkowski space-time.

Let (X, Y) be a pair where X is a nonempty set and \mathcal{G} is a distinguished covering of X by nonempty subsets. The pair (X, S) will be called a causal space, the family G a causal structure and an element $f e C_{j}$ a causal path. Let $x \in X$ we denote by $\beta(x):=\{f \in \mathscr{f} ; x \in f\}$ the set of all causal path containing x.
In the causal space (X, \hat{a}) one can introduce a natural orthogonality relation:

$$
\begin{equation*}
x y \in X \quad x \perp y \quad \text { iff } \quad \beta(x) \sim \beta i y j=\phi \tag{2.2}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
x \perp y \quad \text { iff } \underset{f(B(x)}{\forall}+\cap f y:=\phi \quad \text { iff } \underset{f+\beta(y)}{\forall} f \cap\{x\}=\phi \tag{2.3}
\end{equation*}
$$

and

If we understand a causal path as a possible physical signal then A^{\perp} denotes the set of points which are not causally related to any point in the set A.
3. Causal structure and orthomodularity.

We are interested in a causal structure which generates, by (2.2) an orthogonality relation under which the lattice $\ell(X, \perp)$ is orthomodular. The following condition is equivalent to orthomodularity $[7]$ and appropriate for our discussion:
if D is an orthogonal set of X, if $x \neq D^{\dot{+}}, x \neq D^{+1}$ then

$$
\begin{equation*}
D^{\perp} \cap\left(x^{\perp} \cap D^{\perp}\right)^{\perp} \neq \phi \tag{3.1}
\end{equation*}
$$

We are now able to formulate the conditions on the family \mathcal{G} for a quite general space $X=\mathbb{R} \times Z$ where \mathbb{R} is a real line and Z is any nonempty set. The family G consists of graphs of functions (we will identify the function with its graph) $f: S \rightarrow Z ; S \subset \mathbb{R}$ such that

1. $\mathcal{G} \subset \underset{S c \mid \mathbb{R}}{\bigcup}\{f: S \rightarrow Z ; S$ connected subset of $\mathbb{R}\}$
2. For any $t_{1} \leqslant t_{2} \leqslant t_{3}$ and for any $z_{1}, z_{2}, z_{3} \in Z$ if $\beta\left(t_{1}, z_{1}\right) \cap \beta\left(t_{2}, z_{2}\right) \neq \phi$
and $\beta\left(t_{2}, z_{2}\right) \cap \beta\left(t_{3}, z_{3}\right) \neq \phi \quad$ then $\beta\left(t_{1}, z_{1}\right) \cap \beta\left(t_{3}, z_{3}\right) \neq \phi$
3. For any $f \in S$ and for any $x \in \mathbb{R} \times Z$ the set
$[f,\{x\}]:=\left\{v \in \mathbb{R},(v, f(v)) \neq\{x\}^{+}\right\}$is open in $\mathbb{R} \cap$ domain f.

Theorem 3.1.
Let (X, y) be a causal space where $X=\mathbb{R} \times Z$ and satisfies condition (3.2). If A is an orthogonal set for \mathcal{G} and $(t, z)=\mathbb{R} \times Z$ is such that $(t, z) \neq A^{\perp},(t, z) \neq A^{\perp+}$ then $A^{\perp} \cap\left((t, z)-A^{-}\right)^{+} \neq \neq$

The proof needs some technical lemmata and can be found with details in [6]. We only point out that from the assumption $(t, z) \notin A^{11}$ it follows that there exists $f \in F(t, z)$ such that $f \sim A^{\perp} \neq$. The proof shows the existence of a point $\quad(a, f(a)) \leqslant A^{\perp} \cap((t, z) \backsim A)^{\perp \perp}$

4. Causal structure in Minkowski space-time.

We shall specify more precisely the causal structure in Minkowski space-time $M=R \times R^{3}$ with the scalar product $x \cdot y=x_{0} y_{0}-\underline{x} \cdot \underline{y}$.
Let $C_{j_{\alpha}}$ be the family of functions $f: R \longrightarrow R^{3}$ such that the following Lipschitz condition is satisfied

$$
\begin{equation*}
\left\|f\left(x_{0}\right)-f\left(y_{0}\right)\right\|<\alpha\left|x_{0}-y_{0}\right| \quad \alpha>0 \tag{4.1}
\end{equation*}
$$

We denote the orthogonality relation generated by \mathcal{G}_{α} as \mathcal{L}_{α}. The family satisfies conditions (3.2) ; by theorem 3.1 $i\left(M, \perp_{\alpha}\right)$ is an orthomodular lattice.
Automatically we have that two points $x, y \in M$ are orthogonal if and only if

$$
\begin{equation*}
\left|x_{0}-y_{0}\right| \leqslant \frac{1}{x} \quad\|\underline{x}-\underline{y}\| \tag{4.2}
\end{equation*}
$$

This means that x is space- or light-like to y with velocity of light equal to α. One can see that the second assumption for ${\underset{\alpha}{\alpha}}^{\alpha}$ (3.2) is a causal transitivity condition, the third one is a kind of continuity (signals are propagated inside the light cone only). A special case for the family \mathcal{G}_{α} given by time-like straight lines has be considered in $[5]$. The lattice $E\left(M, \perp_{\alpha}\right)$ is called the causal logic and has connections with the family of closed double cones in Minkowski space. As was shown in [5] the group of automorphisms of this logic consists of Poincaré transformations and dilations.
5. Realization of the causal logic in Hilbert space.

A natural question arises: can we represent $l\left(M, \perp_{\chi}\right)$ by projections in a Hilbert space? The general problem of vector-space coordinatization of a lattice was consider by many authors $[12,13]$; in particular, the case of a Hilbert space coordinatization $[1,14,15]$. One of the necessary condition for such a coordinatization is the covering law. In this section we will examine this

Let a, b be atoms in $e\left(M, \perp_{\chi}\right)$ such that $a \neq b, a \neq b$. We shall
prove that a and b do not commute. By orthomodularity $[2]$ a and b
foold
The center of $\mathcal{E}\left(M, \perp_{\alpha}\right)$ is trivial.

Lemma 5.2.

$$
\left(t_{a}, t_{b}\right) \text { should reduce to zero }
$$

cone with vertex in the point a. But $\{a\}^{-1}=\{a\}^{\perp}$ so the time interval In Minkowski space-time $\{a\}^{\perp}=M \backslash\left(j_{j} V_{a}\right\}_{1}$ where V_{a} is an open $t \in\left(t_{a}, t_{b}\right),(t, f(t))$ 它 $\} a$ $b \neq a, b \in\{a\}-\beta$ then there exists $f \in \beta(a) \beta(b)$ such that for any tion that $b \in\{a\}^{\perp 1}$ or $a \in\{a\}^{\perp} \mathcal{L}$ respectively. So that if there exists from $\{a\}^{\perp}$ to b or $g_{a} \in \mathcal{G}_{\alpha}$ from $\{a\}^{\perp}$ to a which contradicts our assumpsuch that $h \cap\{a\}^{\perp} \neq \phi$ and using condition 2 for $-\infty$ there exists $g_{b}=\mathcal{F}_{x}$ Let us fix t and assume that $(t, f(t)) \notin\}^{\perp}$ then there exists $h \approx \beta(t, f(t$ We shall prove that $(t, f(t))=\{a\}^{\perp 1}$ for any $t t_{-}\left(t_{a}, t_{b}\right)$. that $f \rightarrow, a ; \neq f$ and by condition 1 for $\approx a$ is defined for any $t \in(t, t$ by $4.2 a \perp b$. By assumption $b \neq ;, \dot{\sim}$ so there exists fef(b) such opposite case $t_{b}<t_{a}$ the proof proceeds analogously). If $t_{a}=t_{b}$ then assume that there exists $\left.b=\left(t_{b}, x_{b}\right) \leftrightarrow i, a\right\}^{1}$ such that $t_{a}<t_{b}$ (in the that each point is an atom. Clearly $a \in\{a\}$, let us take $a=\left(t_{a}, x_{a}\right)$ and

Because the order is given by set theoretic inclusion it is enough to prove
Proof.
$\varrho_{(}\left(M, \perp_{\alpha}\right)$ is an atomic lattice. The points are the atoms.
Let us examine the properties of $\varrho_{-}\left(M, \perp_{\alpha}\right)$.
Lemma 5.1 .
For the proof see $[13,15]$ atom of L. for every $a \in L$ and each atom p not orthogonal to $a, f_{a}(p)$ is an

An atomic orthomodular lattice L has the covering property if and only if
Theorem 5.1.
define the Sasaki projection $\quad T_{a}(b):=a \wedge\left(b \vee a^{\perp}\right)$ where $b \in L$ nected with the so called Sasaki projection. For an element a in the lattice L modular lattices $[2,13,15]$. The one most useful in our investigations is conThere are many equivalent conditions for the covering property in atomic, orthothat $\mathcal{\ell}\left(M, L_{\alpha}\right)$ does not satisfy the covering law.
property in the causal logic $\ell\left(M, \perp_{\chi}\right)$ of Minkowski space-time. We will prove
commute if and only if a $\left.~ b=a, ~ b v a^{1}\right)$. So from 2.1 and lemma 5.1 we have

$$
a \wedge b=f, \quad a \wedge\left(b \vee a^{i}\right)=a
$$

Because \mathscr{S}_{x} covers M then for $a \leq M, a \neq \notin$ there exists $f \therefore(a)$ and no point from this path f is orthogonal to a, therefore the center contains only \notin and M.

Combaing the Sasaki projection with theorem 3.1 and lemma 5.1 we have the following result.

Lemma 5.3.
$E(M,-\infty)$ does not satisfy the covering law.

Proof.
Observe that by the lattice operation (2.1) the condition (3.3) means that $A^{\perp} \cap\left(x^{\perp} \cap A^{\perp}\right)^{\perp}=A^{\perp} \wedge(x \vee A)$. Taking as A a point $A=\left(t_{A}, x_{A}\right)$ by lemma 5.1 we have $A^{-1}=A$ and we are in the case of the Sasaki projection $P_{A^{-}}(p)$ associated with A^{\perp}.
Let us take an atom $p=\left(t_{p}, x_{p}\right)$ such that $p \neq A^{\perp}, p \neq A^{\perp+}$ then by theorem 3. (a point is an orthogonal set) there exists $(a, f(a))$ such that $(a, f(a)) \in \overbrace{A^{-}}$ and $t_{p}<a \leq t_{A}$. We shall prove the existance of another atom in ρ_{A+} different from $(a, f(a))$. From $p \neq A^{\perp}$ there exists $g \in \beta\left(t_{p}, x_{p}\right)$ such that $g \cap A=$ and $t_{p}<a<t_{A}$. Connectness of g (3.2) gave us that $a \in \operatorname{dom} g$ and so $(a, f(a)) \perp(a, g(a))$. But $(a, g(a)) \neq A^{\perp}$ and $(a, g(a)) \neq A^{+1}$ we can repeat the arguments of the theorem 3.1 starting from the point $(a, g(a))$ and as a result we have $\left(a_{1}, h\left(a_{1}\right)\right) \in \hat{T}_{A \perp}$ which is different from ($\left.a, f(a)\right)$.

Corollary.
$e\left(M, \perp_{\alpha}\right)$ cannot be represented faithfully by a lattice of projections in the Hilbert space.

Proof.
Assuming such a representation exists and using lemma 5.1 and 5.2 we obtain a contradiction with lemma 5.3 (the lattice of all projections in Hilbert space satisfies the covering law).

Acknowlegment.

This paper was presented on the Workshop on "Quantum Probability and Application at the $2^{\text {nd }}$ University of Rome. Part of it was announced earlier on the Seminar "Quantum Stochastics" in Oberwolfach. The author is very grateful to Prof.L. Accard for kind hospitality during his stay in Rome. It is a pleasure to thank also

References.

1. Amemiya,I.,Araki H.
2. Beltrametti,E., Cassinelli,G.
3. Birkhoff,G.
4. Borchers,H.J.
5. Cegła,W., Jadczyk,A.Z.
6. Cegła,W., Florek,J.
7. Foulis,D.J.,Randall,C.H.
8. Foulis, D.J., Randa11,C.H.
9. Fredenhagen, K. ,Haag,R.
10. Hislop, P.
11. Wightman,A.S.
12. Maeda,F. Maeda,S.
13. Piron, C.
14. Piron, C.
15. Schreiner,E.

RIMS Ser. A2, 423, 1966
"The Logic of Quantum Mechanics"
Addison-Wesley Pub. Com. 1981
"Lattice Theory" Amer.Math.Soc.Coll.Pub1. 1967
"Commun.Math.Phys." 4, 315 (1967)
"Commun.Math.Phys." 57, 377 (1979)
"Orthomodularity of Causal Logic" to be published
"J.Comb.Theory" 11, 157 (1971)
"J.Math.Phys." 13, 1667 (1972), 14, 1472 (1973)
"Commun.Math.Phys." 108, 91 (1987)
"J.Math.Phys." 27, 2542 (1986)
"Rev.Mod.Phys." 34, 845 (1962)
"Theory of Symmetric Lattices" Springer 1970
"Foundation of Quantum Physics" Benjamin 1976
"Helv.Phys.Acta" 37, 439 (1964)
"Pacific J.Math." 19, 519 (1966)

