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Abstract

We review a scheme for describing a multi-phase interacting system
of electrons within the dynamical algebra su(8): we discuss the therino
dynamics of a submodel which incorporates the relevant physics, and has
so(4) so(4) for its dynamical algebra.
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We first write down a mean-field harniltonian H in terms of electron annihila
tion (creation) operators akG (4) which satisfy the anti-commutation relation:

{ akG, a,6,} 6Jvk’, 8G6’ (1)

apar üin ie

perconductivity (Hs(J), charge-density (H(;DW) and spin-density wave (HSDw)
terms. Thus

H = liKE t ‘SG + I(iDW 1- fiDW

where

HKE = EE(k)a)GakG (3)

Hs(; = E/ak1a_k +h.c. (4)

H(Dw = E7oak+Qakc, + h.c. (5)

Hyr = Jak + h.c. (6)

Here expressions 3—6 are standard, with Q = 2kF (kF is the wave vector of the
fermi level) a characteristic wave vector for density wave order. [Summation
over repeated indices and over implied spin indices in (6).] With the additional
simplification that there is no contribution from terms for which IkI > Q, we
may write H as a direct sum, H = eH(k); H(k) is a hermitian bilinear in

B(k), where (writing k = k
— Q)

{B(k)} = (7)

As in (1), {B2,B} = S and the bilinears X1 BB generate the Lie algebra
gl(8); the hermitian combinations occurring in the hiamiltonian — which in

addition has zero trace — may be shown to generate the whole of su(8)[1].
A physical consequence of this mathematical property is that, among others,
triplet superconductivity terms are generated [2].

This su(8) model incorporates the mean field liamiltonian necessary for a
discussion of coexistence of any of these phases (superconducting or density
wave). However, a more tractable model which nonetheless encapsulates the
essential features may be obtained by choosing only specified components of the

density wave terms in (5) and (6) (7° purely imaginary, real and y with y along

the third axis and assuming the so called “nesting” condition, €(k) + €(i) = 0).
The resulting hamiltonian 6H may be written as

H = ekH(k),
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It follows immediately, on use of the two invariants )2 + k2 and A ic associated
with SO(4), that the energy spectrum of the system has the values

E(k) = [4e(k)2 + + (2 + )2]

(9

The hamiltonian H(k) may be rotated to a sum of the Cartan elements of
the algebra (L, Ks’) by the rotation R(k),

R(k) = e2_Leie1(Ki+) (10)

with

= tan1(7o/26)

42 = —(1/2) tan1 {4(42
+ y)

4/(42
+ ‘y + ‘-y

— 42)}

= (1/2) tan{273(4c2+ -y)4/(4e2 +
—

+
42)} (11)

[The index k is suppressed in (12).]
In addition to this inner automorphism of so(4)so(4), a further rotation R0,
which is an element of SU(8) but an outer automorphism of so(4)so(4) is neces
sary in order to send the Cartans into a sum of number operators
M B,tB, thus diagonal in Fock space. (In the basis (4) R0 may be cho
sen to be exp !f(ro x r1 x r2).)

The ground state (temperature T = 0) properties of this model were dis
cussed in reference [2]: we now proceed to a discussion of the thermodynamics.

The thermodynamics of the system H = eH(k) is particularly straightfor
ward. Thus the partition function Z may be written

Z Trexp(—/3H) = Trexp(—/9EH(h)) = f[Z(k) [J = (kiT)’]

where Z(k) = tr(exp —/3H(k)) is the partition function restricted to the k
system. (Tr is the trace over all states, tr over the k-states only.) Similarly

for an operator Q = Q(k), we may easily see that

Trexp(—,BH)Q/Z =

If under the diagonalizing rotation — valid even in the su(8) case —

U(k)

Q(k) + (non-diagonal terms)
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then one may evaluate readily

= + 1)

In the so(4)eso(4) case, we have

{E} = {E, E, —E, —E; E, E, —E, —E}

where E are given in (11), similarly for the rotated Q(k)

{I’i} = {+, i-’-, —i+, —L; I+, bL+,

so that iii general we have

= —2 tanli — 2_ tanh

In the same way, the average total energy of the system may be written

= —2{E tanli + E tanli }.

Choosing the negative square root values in (10), we see that the zero-temperature
limit (/ — cc) is given by

= 2(E + Ej.

This corresponds to a filled Fermi sea ground state. The analogous zero-
temperature order parameters are

2( +

All 12 operators in so(4)eso(4) may be identified with physical processes;
six have zero-thermodynamic expectation at all temperatures. In the appended
table we give the thermodynamic and ground state (,6 = cc) expectations for
the six non-vanishing operators; the latter values are in complete accord with
the zero-temperatue calculations of reference [2].
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