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Abstract
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ABSTRACT

We consider an extension of the BCS model which includes umklapp processes, and give

a condition such that this model be supersymmetric within an su(212) algebra. We show

that a mean field fermion reduction of the model is diagonalizable provided the same

condition is satisfied.

A standard Lie algebraic approach [1] to a hamiltonian H of an interacting fermion

system, where

> jata+ <ijIVIkl>ajtajtajak, (1)
I i,j,1,k

with

{ak,akl} = 0 ; {ak,ak,t} = 8k,k’ ; k (k,fl-), —k (—k,1j.), (2)

proceeds as follows.

i) By means of some linearization procedure, one reduces H to

= eata1+ > (pairs of a’s), (3)

which is now an element of a Lie algebra 2..

ii) The spectrum is obtained by means of a generalized Bogolubov transformation

which is an automorphism : 2. —* 2.. such that

= a1h1 + . + ajhj , (4)
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where the set {h1,. .. ,hi; e1,. .. , e_1} is a Cartan basis for the n-dimensional rank-i Lie

algebra i:..

zi:) The Cartan elements {h1, , h1} represent observables which are conserved in

the high temperature phase, but no longer conserved in some low temperature phase.

iv) The remaining basis elements {ei,... , e_j} represent order operators whose

expectations < e1 > give the relevant order parameters

v) Coherent states [2] are obtained by the action of a unitary operator U which

implements the automorphism ; e.g. the coherent state given by >= U w >

corresponds to the cyclic vector > which is the vacuum for the diagonalized Hred

We can implement the linearization procedure 1) as follows. We consider the iden

tity

AB=(A—<A>)(B-<B>)+<A>B+A<B>—<A><B>, (5)

where < . > is the expectation in some state. If the first term at the r.h.s. can be

considered “small” in some sense, this linearizes to

AB<A>B+A<B>-<A><B>. (6)

This approximation is consistent only in the following cases

a) [A, B] = 0; A and B are bosonic. This is the case, for example, of the standard

mean field reduction of hamiltonian (1), where A =a2ta_1t, A =

b) {A, B} = 0; A and B are fermionic. Then AB = —BA requires that iiA =< A>

and l!B =< B > be anticommuting numbers which anticommute as well with the operators

AandB

We exemplify this procedure by a generalization of the BCS model which includes

umklapp processes.

From the interaction part of the hamiltonian (1) we retain only the following terms

1) Cooper-pairing terms (BCS): Ei,j <i — V I I — I > ata_1taa1

2) Umklapp terms (U) E2 <.i I V
—

—j >a1ta3ta_a_3 These terms are

permitted in a crystal where momentum needs only be conserved modulo a wave vector of

the reciprocal lattice L (the prime indicates this restriction on the summation).



Using the linearization procedure of case a), our reduced hamiltonian is now of the

form H(1) = >, H2(’), where

Hk(1) = k(aktak + a_kta_k) + (kakta_kt + vkakt a_k + h.c.); (7)

(8)

Vk : <kjIV!—j _k><a3ta_,>. (9)

The dynamical Lie algebra for this BCS-U model is ek (su(2) su(2))k generated

by

= (j_(k))t
= akta_kt

j3(k)
= (aktak + a_kr a_k — 1);

4 = (j ) = akta_k , j3 ) = (ata
— a_ka_k). (10)

The spectrum is easily obtained by means of the Bogolubov transformation

Hk(1) F—* \/k2 + IkI2 (aktak + a_kta_k — 1) + IvkI (aktak — a_kta_k), (11)

and the coherent states follow as outlined above.

We now add fermionic operators to the BCS-U model, including the following

additional umklapp terms,

3) < — i V (k 1> ata_taak ; (i + k) E L,

4) E,k < — V k — I > a1ta_it a_Iak ; (i — k) E L.

We use the linearization procedure b) on these terms, so that, for example,

aita_Itajak < aja_a > aj + ata_ta <ak>

to obtain a new reduced hamiltonian H(2) Ek Hk2 of the form

= 6

bB + fF e su(2 I 2) (12)

where we suppressed the k-dependence on the r.h.s.. The operators B

are the generators of the (su(2) e 8u(2))k algebra introduced above in (10); while the

F, , j = 1, ... , 8 are the fermionic operators

{ak, a_k, akt, a_kt, nka_k, n_kak, a_ktk, aktn_k},



where k aktak. The set {B1,. . . , B; F0,F1,... , F8} (where F0 I was added) forms

a basis for the superalgebra su(212)k. The coefficients b2, ft are elements of the extension

ring C[6, 6,
.. .J generated by the 6-terms, which are expectations of odd numbers of

fermions arising from the linearization procedure b).

This model has been treated in ref.[3], where the finite- temperature self-consistency

equations (which are independent of 6) were written down.

Within the context of the su(2J2) superalgebra, it was shown in ref.[3} that the

hamiltonian H(1) is supersymmetric; that is we may define a charge Q E (ek SU(212)k)

( denoting the fermionic sector) such that

H(1) = {Q, Qt}
, = 0 , [H(1), Q] = 0 . (13)

This is only possible when the coefficients in (7) satisfy the following condition

I’kI2 IkI2 + e. (14)

We now treat H(1) by means of a self-consistent mean-field Fermi reduction us

ing the linearization process b) on the interaction terms. This produces the following

hamiltonian

= ek(rik + fl_k) + {k(< akt > a_kt + akt <a_kt>)

+Vk(< akt > a_k + akt <a_k >) + h.c.}. (15)

Define

= -k <ak > +Vk <akt>,

= k <a_k > +Vk <a_kt> , (16)

and write

a(6(k)) 6±(k)a±k ; at((k)) a±kt±(k) = [a(6(k))}t. (17)

With this notation the hamiltonian Hk’ becomes

HkF = k(flk + fl_k) + {a(6_(°)(k)) + a(6(°)(k)) + h.c.} , (18)



which is an element of a solvable SLA Ak C su(212)k.

To diagonalize Hi’, we consider the adjoint action exp(ad iZ) of an element Z A,

where A 8k Ak, Z = ek Zk , and

Zk = {a(6÷(k)) +a(6_(k)) +h.c.}. (19)

The condition that exp(ad iZ)(HF’) U(6)HFU—l(6) be free of non-diagonal

terms is

= .!—6(°)(k). (20)

We may evaluate the expectation of any operator 0 in the supercoherent state

In>=U_1(l9)I> by

<nb/n >=<

=< ‘/exp(i adZ)(0)/c>. (21)

In particular, for the single-fermion operator expectation we have

<a(6(k)) > = i(k)6(k) ,i.e. <ak> = —i(k); (22)

thus, using eq.(20), <ak >= —+ (°)(k)/k.

However, by definition (16),

— + Vk1_ (°)(k)
<ak> —

It’kl I.kI

We have similar equations for < aj > , < > , < a_ >. We thus obtain four

linear equations homogeneous in (k) , 6_(°) (k) + (°) (k) , _ (°) (k) , leading to the

determinantal condition

I-’kI2 = Ik/2 +, (23)

which is the same as eq.(14) for the hamiltonian H(1) to be supersymmetric.

The superalgebraic approach outlined in this note may be generalized to more

complex interacting fermion systems. In an n-fermion problem defined by anticommuting

operators {a1,.. . , a; al,.. . , a} the superalgebra generated by all possible combinations

is 8U(21I21) of dimension 22n 1 . For example,



ii = 2 BCS type (singlet) models e su(212) dim = 15

n = 4 Helium-3 type (triplet) models E su(818) dim 255

= 8 Superconducting density wave models E su(128 1128) dim = 65535

Purely Lie-algebraic treatments of the rz. = 4 and n = 8 cases are given in

refs.[1j and [4] respectively. The rapid growth of the dimension in the superalgebraic case

indicates an increasing complexity of structure; some analysis of the n = 4 case has

already been made [5]
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