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The Anomaly.FlnxIndeX Identity and its Eucidean Extension
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ABSTRACT

The identity of the U(1) anomaly A, the magnetic dux and the

Atiyah-Singer index I (A = = I) for 2n-dimensional compact man

ifolds is recalled and established in a simple manner by identifying

each of them with the central quantity Q = rn2 tr ç2 + m2),

where is the 2n-dimensional analogue of -. and it is shown that

for Eucidean manifolds the identity holds if the index I = (n÷ — n_)

is replaced by the quantity! = (n — n_) + (q(0) q..(0)) where

11± (0) are sums over zero-energy phase-shifts.

1. INTRODUCTION.

In recent years the so-called anomalies of gauge-field theories (and their ab

sences) have come to play an increasingly important role. For example it is the

requirement that the U(1) anomalies of the standard electroweak-theory be ab

sent that leads to equal numbers of quark and lepton generationst1 and it was

the discovery that superstring theory was anomaly-free that started the present

f Report on joint work with P. Forgacs, R. Musto and A. Wipf presented

at the 16th International Colloquium on Group Theoretical Methods in Phycs,

Varna, June 1987.



wave of interest in that theory2 Another interesting aspect of a.nomthes, how

ever, is that they establish links between hitherto unconnected pieces of physics

and mathematics For compact manifolds, for example, it is now realized that the

U(l)-anoma.ly A of Adler et the magnetic flux and the Atiyah-Singer index

I are identical (A = = I) and the first part of this lecture will be devoted to

showing how this identity can easily be established by relating a.U three quantities

to a central quantity (see Fig. 1) Q defined as

Q tr [7(m222)] (11)

where is the Dirac operator in 2n-dimensions, and = ±1 the generalization of

the Dirac that distinguishes between the two spinor representations of SO(2n).

For non-compact manifolds the identity Q = A = continues to hold (indeed

the proof of these relations makes no use of the compactness of the manifolds i.e.

the discreteness of the spectrum of .) but the identify of the other quantities with

I cannot continue to hold since I is an integer but the others are not necessarily so.

However, the index can be replaced by a modified non-integer quantity I for which

the identity does hold and one such modification, for which the fractional part of

I is called the q-invariant(5)and which is defined on non-compact manifolds with

boundaries, has been much discussed in the recent literature6.Here we wish to

discuss a modification which is defined on the Eucidean manifold of the original

anomaly3 and for which the fractional part turns out to be the phase-shift for

low-energy scatteringT.In fact, instead of A = = I (n. — n_) one obtains

in the Eucidean case the identity

(1.2)

where ± denotes chirality and qe(O) the scattering phase-shifts in the limit of zero

energy The great advantage of this Euclidean version of the index theorem is

that it refers directly to physical quantities, and that it relates two further pieces

of physics that were hitherto unrelated, namely, the Levinson theorem (obtained
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from (1.2) for = 0) and the Bohm-Aharonov effect (obtained from (1.2) for

= n_).

2. DENTIFICATION OF THE ANOMALY WITH Q.

We begin with the relation Q A (a..nomaiy), although this is in some sense

the least satisfactory of the three relations (Q = .4 = = I) because the anomaly

4 needs field theory and ultra-violet regularization to place it in context’)t8) The

starting point is the Schwinger functional for the Dirac operator (at zero external

current), namely,

J=inf d()exp(+:M)
(21)

=lndet( +iM) = tr ln(. + i.M), M = m

where the right hand side is assumed to be regularized (e.g. by subtracting a

Pauli-Vilars term) to ensure the ultra-violet convergence of the trace. The znass

term M has been inserted to ensure the infra-red existence of the logarithm, the

form M = m+iyp being chosen to keep track of chiral variations, for which (m, )

is supposed to be a doublet.

Then for (global) chiral transformations with (constant) parameter a one has

= and M — M(a) = e’M’7 = Me2’°, (2.2)

and hence

I 1(a) = tr ln( + iM(a)). (2.3)

From (2 3) one sees at once that

aJ(a) ri M(a) 1
a = —2 “

+ iM(a)) j (2.4)

and an interesting feature of (2.4) is that the trace on the right-hand-side cx

ists without any ultra-violet regularization. Thus while 1(a) requires ultra-violet

regularization J’(a) does not.
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If now, following convention, one defines the global anomaly A as the chjraj

variation of 1(a) at a = 0 (with t = 0 and a factor (2i)’) one sees from (2.4)

that ri m \ 1
.4 = I tr J (

. ) ‘1 (2.5)
L\P+:m j

Hence, on multiplying above aiid below by ( im) and using the Dirac trace,

one has

A = i tr
[(737)

} [(22m) 1j = Q, (2.6)

as required.

3. DENTIFICATION OF THE FLUX WITH Q.

The magnetic flux is defined (for the U(1) case) to be

= f F,, = 8A —
(3.1)

where is the electromagnetic field in 2n-dimensions, and for n = 1,2 reduces

to the familiar forms

3=Jd2xB(x) and (3.2)

respectively, where B is the 2-dimensional magnetic field, and star denotes dual.

The identity = Q is established in two steps. First Q(e) is shown to be a poly

nomial of degree at most 2n in the coupling constant e and then the (consequently

terminating) perturbation expansion is used to show that ail coefficients in the

polynomial vanish except the coefficient of c’1, which (for e = 1) is just .

For the first step the idea is to note that the traces

gp(e)= tr
(.‘.M)’

(33)

exist in 2n-dimensions provided that p> 2n + 1. Furthermore, since () + im)

is invariant with respect to chiral transformations

- M Mc’”° (3.4)



and the fermions drop out in the (finite) trace, the gp(e) can be functions of m

and p only through the chiral-iavariant combination o = m2 + On the other

hand, one sees by inspection that

/ I ‘ / 1
(ôgp(e))o =ptr

+ iM)
I

+ iM4)

1 f8\
\P / 1

tr

But since, from (2.5), the trace in the last expression in (3.5) is just Q(e), one

then has
/8

Q() = (p — 1)! —gp(e)

= (p — 1)’ (2p(e)) = o, for p >(2n + 1), (3 6J

and this shows that Q(e) is a polynoznia.l of degree at most (2n + 1), as required.

The second step is to use the perturbation expansion for Q(), which now

terminates, and may be written in the form

Q()= tr [( im)(4im)’j
(3.7)

The argument used above for gp(e), p> 2n + I fails for p 2n + 1 since the

corresponding traces do not est (otherwise Q() would be zero and there would be

no anomaly!). However, the denominators in (3.7) are the free-field denominators

so ordinary Feynman graph techniques can be used. These techniques are too well-

known to be worth reproducing here so I shall just indicate how the computation

goes for the 2..dimensional case. In that case the series (3.7) has just three terms,

If rn \ ‘ (1 m rn
trI . J+tr(.I . 4 .

1\ç+smJ ) I.\+srn t+:rnJ

1/rn rn m’
+ ti

+ im4 + im4 + im)
(3.8)

of which the first vamahes because the Dirac trace is zero and the third vanishes

because it is a peeudo.scalar, but Lorentz and ordinary gauge invariance require



it to be of the form f B (x)F((x — y)2 )B (x)d2z, which is a. scalar. That leaves

only the central term, which may be written as

(m2

____

r 2
tr

ô2+rn2 B(x) (82÷ 2))
= j

B(x)d S = (. (39)

as required.

4. IDENTIFICATION OF THE INDEX WITH Q (COACT CASE).

To identify the index with Q one notes first of all that since the Dirac operator

anti-commutes with , it is completely off-diagonal when is diagonal,

) when
j=(

0’).
(4.1)

Hence in this basis Q takes the form

/ m2 m2

- DD÷+m2)’
(4.2)

where tr now denotes the n-dimensional, rather than the 2n-dimensionai, trace. If

the manifold is compact, the spectra of D±D are discrete, and since

= DD(ö) = Ao, where o = Dw, (4.3)

one sees that the eigenvalues of D±D are the same (and have the same mu1ti.

plicity), except possibly for the zero eigenvalues. From this observation and (4.2)

it follows at once that

Q = (ra.. n...), (4.4)

where nj are the zziultiplicities of the zero eigenvalues of D±D (equivalently

D). Since (n+ — n_) is just the index I this establishes the result. Note that

what one has actually used in (4.2)(4.3) and (4.4) is that DjD are the two pieces

of a supersymmetric quantum-mechanical Hamiltonia.n, namely,

H=D2+?F, =(1±y) (4.5)

where o are the generators of the spinor representations of SO(2n).
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5. IDENTIFICATION OF THE MODIFIED INDEX WITH Q (EUCLIDEAN

CASE WITH m 0).

Since the identification Q = I in the compact case relied heavily on the dis

creteness of the operators D±D it is clear that some new idea is required for the

Euclidean case. However (4.2) is still valid in that case. and may be written in the

form

Q = JdE( ) d(E(e) - E(c)) , DD = J±(E) (5.1)

where E(c) are the spectral measures for the Hamiltonia,ns (4.5), at fixed t,

and £ denotes angular momenta quantum numbers in the spherically symmetric

case, and more generally the discrete eigenvalues of complete set of operators that

commute with D±D. The problem is to compute E (E) and the new idea is to

use an old formula of quantum mechanics’° which expresses the spectral measure

of any Hamiltonian (whose potential vanishes at spatial infinity) in terms of the

phase-shift. The formula is

d(E(E)— Et (E)) = d(qe(E)(c)) , H
= / EdE (E), (5 2)

where E€ (E) is the corresponding measure for the free Ha.iniltonian, q(E) is the

phase-shift for fixed £ and x(E) is the characteristic function (€) = 0,1 for

E < 06 0. This formula will be established in the appendix, and anticipating its

establishment we insert (5.2) into (5.1) to obtain

I qO + IL (m ) q(c)dc. (5.3)

Since q(E) is a continuous function of E for 6 0 the integral in (5.3) vanishes

(like m2 in m) as m — 0. Hence in this limit we have

Q = I (q(o) q(O)) = (n÷ + .1 £ ((°) — i(O)) (5.4)



where in the second equation ,) denotes the proper-fractional part of q and we

have used Levinson’s theorem. Eq. (5.4) is the required modification of the index

theorem for the Euclidean case. It is, perhaps, surprising that the step from (5.3)

to (5.4) required the limit m —. 0, since Q is dimensionless and should therefore

not depend on m, as was found explicitly for the compact case, and in the next

section we shall show that at least in two dimensions Q is indeed independent of

m so the limit m — 0 is not actually necessary.

6. IDENTIFICATION OF THE MODIFIED INDEX WITH Q (EUCLIDEAN

CASE FOR ANY m).

In this section we wish to show that. in. two dimensions at least, equation

(5.4) holds for any value of m2 so that the limit m — 0 is unnecessary. We believe

that the same is true for higher dimensions, but it will be seen that the proof we

give does not immediately generalize.

The natural gauge for this problem is the radial gauge A,. = 0 and in this

gauge the Dirac equation for scattering becomes

(.

.D÷)

(+) = where D = ±c(&r ± (A.1)

In the asymptotic (r — cx,) region A(r. ) —, a()/r and a() can be gauged

to ..t where w is a constant. In that case the asymptotic version of (A.!) can be

decomposed into eigenstates of the angular momentum operator and takes

the form

1

____

e(8r+)1 (ft
1e(—8r + e+w+L) j \f

for each eigenvalue £. If a factor exp(—sq is absorbed in

1 o (o,.+) (ft..1
Ii e+w+1\ I— —

r ) \Je

the index on ft changing by one unit because the factor

momentum minus one. On squaring (A.3) one obtains

+ (w 0 (ft..1’ 2 (ft.1
0 8r + t1

— E p
(A.4)

= (A.2)

ft then (A.2) becomes

(f), (A.3)

exp (—ii) has angular



which shows that the f± are actually Bessel functions. In fact, if Ofle takes the

correlation (A.3) into account one sees that the solution of (A.4) is

= ciJ+e(er) + /9J_(+e)(Er)
(4.5)

= aJ,.,+e+j(Er) —

with the same constants , $ in both cases. From the asymptotic properties of the

Bessel functions (4(x) — x1’2 cos(x +
—

one then sees that the phase

shifts are

+ tan {: tan () }, wiiere (A 6)

and thus they are correlated as follows,

— = o where q = sgn( + £ + 1) ( ±1). (A.7)

Eqn.(A.7) is evidently the continuum analogue of the supersymmetric relation (4.3)

and, like (4.3), it leads to an infinite set of cancellations. In fact, from (A.7) one

sees that the sum over angular momenta (5.1) — (5.2) ‘telescopes’ into a difference

of the two extreme angular momenta

E(6t—6fl=6 —6:M (A8)

There is not a complete cancellation because (A.7) connects the phase-shifts only

slantwise (see Fig. 2). Note that the slantwise action is due to the fact that the

vertical (fixed £) supersymmetry of the two-dimensional Dirac operator in (A.2)

becomes a slaatwiae supersymmetry for the radial Dirac operator in (A.3).

Eq.(A.8) shows that the contribution to the modified index actually comes

only from the high angular momentum limit, and this essentially establishes the

result because, for Bessel functions .T, (x), large v corresponds to small z, and

hence to E — 0, which is the limit obtained from m — 0 in (5.3). However,

some physical insight can be obtained by continuing the present line of argument

and drawing the result directly from (A.8). For this purpose, one recalls that
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angular momentum drives wavefunctions away from the origin (with factors r9

and hence if one chooses the angular momenta M, N in (4.8) so large they drive

the wave function into the asymptotic region of the potential (r > £0 say) then

the solutions (4.5) acquire the boundary conditions J(er3) 0. But in that case

0 and 3 0 for .5 and 6 respectively and the phase-shifts reduce to

—j. Thus as M,N - 6 — w and since is just

the ux one has (5 —
— flux, as required.

In higher dimensions the operator D+ in (4.1) generalizes to

= U(12) ( + (4.9)

where a factor r2(t) has been taken out of the wave-functions, C) denotes all

polar angles, and U(f1) is a unitary matrix. For example, in four dimensions one

has

= D + i8. = eX [or + I + £)) ], (4.10)

where (i = 1,2,3) are polar angles, r is the four dimensional length,

= -a-, lxi =tan’i!i, and K=O—t, Z=2xä. (4.11)
JXJ lxi

However, it is not so easy to proceed further because U(fl) is no longer a step-

operator for D0 and hence the ‘slanted’ supersymmetry, obtained on eliminating

U(f2) from (4.9), is much more complicated in the higher dimensions.

It might be worth mentioning that the cancellation of phase-shifts in (4.8),

analogous to the cancellation of discrete energy-levels in (4.2), is not a character

istic of supersymmetry alone, but of supersymmetry and the scale covariance of

the Dirse operator. In fact, supersymmetric potentials for which the phase-shift

cancellation does not take place are known”,

APPENDIX. THE SPECTRAL MEASURE OF HAMELTONIAN

AND THE PHASE-SHIFT.

We wish to establish eq. (5.2) relating E(E) and q(E). For simplicity, and

because the extension to gauge-potentials and to spherically asymmetric systems
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is not dicnlt, we shall consider only Hamiltonians of the conventional spheric ally

symmetric form

H = !p2+V(r), Vfr)-0, r—*, H = (41)

for fixed angular momentum £ (whose index is suppressed). Let us then consider

the energy-trace

T = tr ((H)
-

= fd(E(E)_E(e) (A2)

where H is the free-Hamiltonian and g(H) any function of H for which this trace

exists. The problem is that the spectrum of H is continuous, and to circumvent this

we temporarily immerse the system in a sphere of radius R (in practice impose the

boundary condition (R, 0) = 0 on wave-functions ‘(r, 0)), where R is so large

that V(R) 0 and the continuum limit can be recovered for R . For the

immersed system (A2) becomes

T = —
(A3)

where €, are the (now discrete) eigenvalues of H, H and are assumed to corre

spond to each other in the sense that E — as V(r) — 0 (for all r). Now in the

asymptotic region for V the wrve-fiuiction takes the usual scattering form

— (k,r)(1i)sin(k,r + q,), where f, = (A4)

But because of the boundary condition (R) = 0 the momenta k, k, and the

phase-shdtq, are related by the conditions

kR ÷ q. = Iv, R = ., s:nteger (A5)

(a result which was somewhat anticipated by using the subscript s for E,). On

eliminating R and • from (A5) one obtains

(Iv,— k,) 6k,
0 TT__, (A8)

IL L
—
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a result which is interesting in itself because it shows that, for the immersed system.

the phase-shift can be interpreted as an energy-shift 5e,, measured in units of the

free-energy difference SE,. For our purposes, however, the interest of (A6) is that

it can be inserted in (A3) to yield

T = = —g’(e,)q,E,, (A7)

and since the c, are just free energy differences, Fermi’s golden rule can be used

to pass to the continuum limit and obtain

T = -_!fgl(e)q(E)dE. (A8)

Using partial integration, with q(oo) = 0 (because for large energies the potential

becomes unimportant) but q(O) not necessarily zero, one then has

T = f g(e)q’(e)dE + !g((O)q(0). (A9)

By using the identify x’(c) = 6(E) the expression (A9) may be written in the form

T = !Jg(E) (_11(E)x(E)) dE, (AlO)

and when written in this form it may be compared with (A2) to give

dE(E) = d(q(E)(E)), (All)

as required.
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