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Gravitation and the Unification of the Fundamental Forces

L. O’Raifearta.igh

School of Theoretical Physics

Dublin Institute for Advanced Studies

10 Burling-ton Road, Dublin 4. Ireland

It is with great pleasure that I give this address in celebration of Professor

Wayman’s 60th. birthday and it is an honour for me to be invited to do so. It

is also with great pleasure that I give it at Dunsink, where I and my colleagues

have so often been the recipients of the Waymans’ hospitality. Only ten years ago

it would have been difficult for particle physicists to find common ground with

astronomers, but happily this is no longer the case, and I hope that my talk will

help to explain the convergence between the two fields that has begun to take

place during the past decade.

One of the greatest achievements of seventeenth-century physics was the uni

fication of terrestial and astronomical physics, that is, the observation that it is

the same force, namely gravitation, that causes things to fall and the planets to

revolve around the sun. This unification is now so much taken for granted that

when the first Sputnik was launched it was hailed for many reasons, but not for

the reason that it was actually the first direct experimental test of this unification!

However, despite this great initial unification of astronomy and terrestial

physics, the two branches of physics tended to go their own separate ways in

the course of the succeeding centuries and it is only in our own time that their

paths have begun to converge again. Indeed, until about ten years ago, such fun-
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damentai discoveries as electromagnetism and nuclear physics were important for

astrophysics only to the extent that they provided new techniques for observation

and new information about the composition of matter in the stars and gala.ñes.

One of the main reasons for the separation of astrophysics from the other branches

of physics was the failure to unify gravitation with any of the other fundamental

forces. Indeed, until the nineteen-seventies, the only further unification of funda

mental forces that had been achieved was the la.te-nineteenth-centurv unification

of electricity and magnetism. consolidated by the special theory of relativity. At

tempts to carry the unification process further, in particular attempts to unify

electromagnetism and gravitation, were singularly unsuccessful.

In recent times, however, the situation has begun to change. First has come

the realization that the nuclear interactions are at least of the same general form

(the so-called gauge, or vector-meson form) as electromagnetism1,a realization

that was dramatically confirmed by the 1983 experimental production of the vec

tor mesons in question, namely the W and Z particles predicted by the simplest

consistent electroweak model. Although the common form of the nuclear and elec

tromagnetic interactions does not constitute a full unification it does constitute an

important step toward unification and has also pointed toward a unification with

gravity. Two questions that might then be asked are: How did modern physicists

have some success in the unification of electromagnetism and nuclear forces and

why have they such hopes for gravitation, when the efforts in these directions of

some of the most eminent physicists, such as Einstein and Schrödinger, were so

singularly unsuccessful? (An apocryphal story, which might illustrate how un

successful they were, is the following: Sometime in the early fifties Schrödinger

submitted to the Royal Irish Academy one Friday afternoon a paper entitled ‘The

Unified Theory of Matter’. But on Monday morning the Editor of the Proceedings

found a note from him on his desk saying ‘Re the paper submitted on Friday. I

have been thinking about it over the weekend and should like to amend the title

to ‘The Unified Theory of Matter Part I’!).
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The answer to the first of these questions is that, with hindsight, one can

see that the unification of nuclear and electromagnetic forces is much easier than

the unification of gravitation and electromagnetism, so the earlier physicists had

actually tackled the more difficult project The reason for the relative ease of

the transition from electromagnetism to the nuclear interactions is that both of

them are theories of spin-one particles, photons and vector-mesons respectively.

(This had not been appreciated at first because the vector character of the nuclear

interactions had been masked at the experimentai level by other phenomena. the

so-called spontaneous symmetry breaking and confinement phenomena, and indeed

the main advance has been to disentangle these complications). Gravitation, in

contrast, is a spin-two theory in Einstein’s version, and a. spin-zero theory in

Newton’s. but in no version is it a spin-one theory (indeed if it were, gravitation

would be a repulsive, rather than an attractive force) and it is the difference in

spins that constituted the great obstacle in the earlier attempts at unification

The role of the spin answers, at least to some extent, the question as to

why the modern physicists have had some success in unifying the nuclear forces

with electromagnetism, but it does not answer the question as to why they are

so sanguine about the possibility of including gravitation. Indeed, if anything,

it makes that question even more pertinent. The basis for the renewed hopes

about gravitation is that in 1974, just when the neutral weak currents were be

ing detected experimentally, a new, very remarkable, theory, called the theory of

supersymmetry(2),made its appearance. The exciting feature of supersymmetry

is that instead of dealing with single particles, or multiplets of particles with dif

ferent internal quantum numbers such as nucleons of different charge (protons and

neutrons) but the same spin, it deals with multiplets of particles of different spin.

In fact it deals with finite multiplets of particles of different spin and since parti

cles of spin one and two (together with spin zero, one-half and three-halves for the

matter) is just what is needed for unifying electromagnetism and gravitation, one

sees that supersyxnmetry opens up tremendous possibilities for unification. In view
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of this one should, perhaps, interject a word about the nature of supersymmetry.

Like all good ideas, the bask idea of supersymmetry is very simple. and, with

hindsight, one is left only to wonder why it was not discovered earlier. To explain

it let us recall the idea used by Dirac in 1928 in setting up his wave-equation. The

idea was to take the square-root of the Laplacian operator by constructing four

matrices such that

(8)2 (1)

Similarly, the idea of supersymmetry is to take the square-root of the Dirac oper

ator in turn, by constructing four operators Q such that

= {qa, Q8 } (2)

where c, ,3, e are matrix indices and C is a constant matrix.* Under rotations, and,

more generally, under Lorentz transformations. the O must transform as spinors

(so that their anti-commutator in (2) produces a vector 9) and this means that

the Q must have half-odd-integer spin. Hence the Q can only connect states

whose spin differs by one-hail, and thus their very existence implies the existence

of multiplets of particles whose spins are j.j±1/2, j±1.•. Furthermore the fact

that the right hand-side of (2) is an anti-commutator rather than a commutator

means that the multiplets are finite, j, j ± 1/2,
• •f ± jo. But this is just what

one wants for unification, since, as mentioned earlier, one needs spins zero, one-

half and possibly three-halves for the matter fields, and spins one and two for the

electronuclear and gravitational interactions, respectively.

Of course, to discover the existence of supersymmetry, and to construct a

supersymmetric model that agrees with all the phenomonology, are two very dif

ferent things, and so far a fully satisfactory model has not been found. But recent

Incidentally, the process of taking square-roots ends at the level of supersym

metry because a further square-root would require operators of spin one-quarter

and we know that no such operators exist.
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supersymmetric models3,based on so-called string theories, look quite promis

ing, and this is why physicists are so hopeful now about gravitation. It is. perhaps.

worth mentioning that in the string theories the naturai scaie of energy that enters

is the Planck scale 1018 nucleon masses) and since energies of this scale are

far outside the range of the laboratories but do occur in cosmology, such theories

would appear to turn the wheel full cycle and bring us back to astrophysics for

more experimental information. For terrestiai experiments we may have to wait

another three hundred years!
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Abstract: We discuss some recent results on absence of phase transitions in

one-dimensional spin-glass models with polynomially decaying interactions. We

comment on the probabilistic aspects and on the notion of “weak uniqueness”.

§1 Introduction

Spin-glasses are among the more fashionable models of statistical mechanics

The original problem (and name) comes from the attempt to describe magnetic

atoms (like Fe) which are diluted in a not too high concentration (like 5%) in a non-

magnetic environment (like Au) and which interact via the long range oscillating

RKKY - interaction.

The Harniltonian this problem gives rise to is

H = —

coskp(i— ‘
88 (1)

I ,j

where the quenched disorder vanishes c, = 0, 1 describe the dilution and the s, are

spin variables

Owing to the oscillating character of the cosine and the long-range character

of the interaction, a particular spin can be subject to many competing

* Permanent address
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forces from the other spins The combination of randomness and “frustration” is

generally modelled by Edwards-Anderson (EA) models of the form ([36])

H = — (2)

where the site-random Hamiltonian (1) is replaced by a bond-random Hamiitonian

in which the J(i, j) are independent random variables with a distribution which

only depends on the distance I — I I. Both short- and long-range EA models have

been studied They have been applied to many other areas, in particular to the

theory of neural networks and to optimization problems.

Spin glasses have attracted extensive interest among physicists (for some re

cent reviews, see [1-4]). Up till now, it has been very difficult to obtain mathemati

cally rigorous results on the presumed low-temperature spin-glass phase (for some

recent heuristic theories, see [5,6,7]). On the other hand, during the last years

there have been a number of results about the region where there is no phase

transition (high temperature or low dimension), despite the possible occurrence

of Griffiths singularities [8], which prevents the thermodynamic quantities to be

analytic In my contnbution I will describe some of these results for long-range

models, in particular in one dimension, and discuss some conceptual problems,

like “weak” versus “strong” uniqueness of the Gibbs state.

§2 Results for long-range models

The models we consider have Hamiltonians

H = — Ii —iI(i,I)881 (3)

i,IEZ

where the J(s,j) are independent, identically distributed random variables.We

use the symbol E for taking the average over the disorder variables {J(:, j)}

The { J} distribution satisfies

EJ(i,j)=O (4a)
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and (for small t)

Eexptf(i,j) = expo(t2). (4b)

If we have a boundary condition o outside a volume A we write

= f(i,j)s1s, + i(i,j)eo (5)

i,jEA iEA

jA

(i(i,j) — J(i,j)).

The free energy of a volume A, at inverse temperature 3 and boundary condition

o is

(6)

The following results are known:

Theorem 1 [9, 10, 11]. If a> 4 and A in the sense of Fisher,

limFA,= limEFA,=f
A—+oo A—oo

exists, J-a.lmost surely, and does not depend on the {J} nor on the boundary

condition u, as long as o is chosen independent of the J(i,j).

Remark. A weak version of this result (convergence of the mean free energy) was

proven in [12].

A stronger version, which weakens condition (4b), was recently proven by

ZegarLinsky [131. (He requests existence of moments up to 4th order of the J(i, j).

In fact, using his stability bound ([13] formula A6) and the subadditive ergodic

theorem as in [101, the argument works even if only the second moment exists.).

This theorem is actually valid in any dimension (if ad> 4). The next theo

rem, however, is an essentially one-dimensional result.

Theorem 2 If a> 1, J-almost surely we have the following:

a) There is no phase transition “in the weak sense”. In the thermodynamic limit
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the Gibbs state is pure (extremal Gibbs) and does not depend on the (non-random)

boundary condition a.

b) The correlation functions calculated with respect to this Gibbs state decay with

the same decay rate as the interaction.

c) The free energy is a 0C0 function of temperature and magnetic field.

Remark 1 A weaker form of theorem 2a) (absence of symmetry breaking) was

essentially proven in [11] and shortly after in a different way in [14]. The full proof

of uniqueness and the observation that the arguments give a weak sense” proof

were given in [15]. The fact that weak uniqueness suffices for physics was discussed

before in [16] (boundary conditions represent the experimental set-up, which does

not depend on the sample). Weaker upper bounds on asymptotic correlation decay

than given in 2b) were given in [15] and (for vector spins) in [17]. In its present

form the theorem appeared shortly after the Heriot-Watt conference in [181.

Remark For the case a > ., strong uniqueness (there is only one Gibbs state,

whatever boundary conditions one prescribes) was proven in [19].

The O°° - property and the asymptotic correlation decay were proven in [20].

For vector spins the (strong) absence of symmetry breaking and an upper bound

on the asymptotic correlation decay were proven in [21] and [22].

In the case a> 4 (in general dimension d, ad> 4) high temperature results

have been obtained by Fröhlich and Zegarlinsky [23, 24, 13]:

Theorem 3 Let a> 4. Then there is > 0, such that for 0 /3 <3o J-almost

surely:

a) The Gibbs state is weakly unique

b) The correlation functions decay asymptotically at the same rate as the potential

c) The free energy is 000.

Remark Recently Fröhlich and Zegarlinsky have applied their methods to obtain

a rigorous treatment of the high-temperature phase of the Sherrington-Kirkpatrick
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model [25]. This also has been done via different methods by Aizenman, Lebowitz

and Ruelle [26].

§3. Some remarks about proofs; reduction to a non-random problem and weak

versus strong uniqueness.

Most of the results in the former section have in common that they can be

proven by reducing the spin-glass problem which has an interaction decaying as

I i —
j to a non-random problem with an effective interaction which decays as

— 11—2a The proof for this non-random problem can then be at different levels

of complication, dependent on the problem at hand. The reduction is performed

by successively splitting off terms from the Hamiltonian and afterwards applying

a Taylor expansion or a probabilistic estimate to this term. We can use Fubini’s

theorem to interchange the average over one disorder variable J(i, j) and the

thermal average with respect to the modified Hamiltonian H1,1 H0 + J(i, j)ss,

where the term corresponding to this J(i, j) has been subtracted. Because of

condition (4) the final expression does not contain first order terms, but has only

terms of second and higher order in J(i, ).

For example, for the free energy we use

Elntrexp—(H,, + f(i,j)s1s,)

= E ln tr exp H1,1 — (EJ(,I) tr ssj expH(i,j) = )o

+o(Ii — iI_2a). (Ta)

(For a proof, see for example [17, appendix]).

For the thermal expectations we use, if J(:, j) is small

E
trf exp —(H1

,
+ 11(i, I) 88)

tr exp—(H1,1+J(i,j)s1s1)

— Et7” exp—H1,,
— (E i(i

1tr s s,fexp—H1,1

trexp —H1,1 \ tr exp—H11

— trf exp —H1,, tr ss exp —H1,1
= + ( — —2 (Tb

trexp—H1,, trexp—H1,1 1

5



(For a proof, see [16]).

For probabilistic estimates we use

E
tr {exp_(Hi,j + I(i,i)sisj)xj(If)9.8 >C }

tr exp —(H1,1+ I(i,f) 88,)

Ust exp
(i _,2)’

(7c)

For a proof see [15] or [27].

This type of estimate often turns out to be useful if one wants to apply the Borel

Cantelli lemma.

The nonrandom part of the proof can be either known (subadditivity in Theo

rem 1 [28], Araki’s relative entropy method [11], [16], [29], [30], the Leuven energy-

entropy inequalities [14] [31], the McBryan-Spencer estimates [17], [22] [32] [33]

[34] to show the absence of symmetry breaking and upper bounds on correlation

decay in one and two dimenions) or be developed for the problem at hand like the

block spin arguments of [15] and [18] which are used to map the system onto an

effective high T model (see also [27], [20] and [35] and the different polymer expan

sions of [18] and [23],[24] (see also [20] and [35]) which work in high temperature

regions.

The problem of weak versus strong uniqueness comes in as follows. If one

applies Fubini’s theorem to the double integration with respect to the disorder

variable J(i, j) and the modified thermal average corresponding to H1,,, this pre

supposes that H1,1 does not contain any J(i, j) - dependence. In particular, H,,,

contains boundary conditions, and they should therefore be J(i, j) - independent

for the proof to work. For example, let us consider the interaction energy W be

tween left and right haiffines on Z, and consider the configuration to the right of

the origin as the boundary condition. If a> 1, for each choice of this boundary

condition the expression W,.({J}, {s}) is finite for each s and almost each {J}

(with respect to the J - distnbution) and so is the partition function [11]

Z(W,.) = tr exp W0.({s}, {J}. (8)
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However, if one allows J - dependent boundary conditions and takes the supremum

of W0., over all boundary conditions o, sup0.W0.(s) = oo as soon as a < [ii.].

The fact that sup,
.

W0. (8) < 00 for almost all J is the main ingredient in the

strong uniqueness proof for the case a > in [19], but as for the case 1 < a <

one uses the estimates (7a,b,c), in which we have used Fubini’s theorem to suppress

the “bad” (large energy) configurations, one only obtains weak uniqueness.

A criterion for the absence of phase transitions is the disappearing of the

Edwards-Anderson order parameter which is (formally) defined as [36]

QEA =E<81>, (9)

By an ergodic theorem one can replace the average over the {J} by a spatial

average over the lattice. Weak uniqueness then implies that (J - almost surely)

= A—oo

<8$>40.
= 0 (lOa)

tEA

for each fixed boundary condition o (or

sup lim E<8I>0.=0).
0. A—oo

Strong uniqueness means that [37] (J - almost surely)

.2
Q(strong)

sup
A!

— 0 (lOb)
0.

lEA

Expression (lOb) is equivalent to a thermodynamic definition which uses a repli

cated system

At present there are no examples known of spin-glass models on regular lat

tices which are weakly but not strongly unique. However, such behaviour does

occur for certain temperatures in the Bethe lattice spin-glass model [38]. Of

course the Bethe lattice is somewhat pathological, as the size of the boundary

is macroscopic, and also the free energy depends on the boundary condition in the

thermodynamic limit, but it shows at least in principle that the two notions are
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really different. A technically related problem occurs in unbounded spin systems

where weak uniqueness corresponds to uniqueness of “tempered” Gibbs states (see

for example [1 [401)
Summarising, we have reviewed some recent results on the absence of phase

transitions for long-range spin-glass models, in particular in one dimension (a

more heuristic treatment of this class of models can be found in [41]). We have

discussed some common properties of their proofs and described the difference

between “weak” and “strong” uniqueness.
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