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Abstract

We define a new set of squeezed states using group theoretical methods.

The definition is based on the Hoistein-Primakoff realization of both

SU(2) and SU(l,l). Generalizations of these realizations are presented,

connected with the Brandt-Greenberg generalized bose operators. The new

states exhibit interesting squeezing properties, depending in a

characteristic way on the dimension of the irreducible unitary

representation adopted. We also discuss the asymptotic behaviour and

present a set of relevant numerical results. Unexpected and interesting

scaling behaviour appears.





I Introduction

Glauber’s coherent states(U correspond in configuration space - to

minimum uncertainty Gaussian wave packets whose width is everywhere

equal to that of the vacuum state, produced when a harmonic oscillator

interacts with a classical field of force.

In view of the problem of detecting effects close to the sensitivity

limits imposed by quantum mechanics (such as gravitational radiation2

or multi-photon eigenmodes of the electromagnetic field in an optical

cavity3), a different set of states has been proposed4, which in

configuration space correspond to Gaussian wave packets with widths

distorted from that of the vacuum. The latter are referred to as

squeezed states. Squeezed states should indeed be thought of as states

obtained by displacing a squeezed vacuum by the same displacement

operator which generates Glaubers coherent states. However, since all

states.

The result was negative in the sense examined by Fisher

it yielded operators leading to a non-analytic ground

DAriano, Rasetti and Vadacchino6 produced a different

resorting to generalized k-boson operators, which

non-Gaussian7multi-photon squeezed states.

It is of interest to mention here that the customary squeezed states can

be viewed as coherent states for SU(l,l) in the framework of the concept

of generalized coherent states for an arbitrary Lie group.

In this paper we to rely on this group theoretical approach to define a

the relevant information

vacuum, it is the latter

state.

and features are contained in such a

which is more often referred to as a

squeezed

squeezed

In a recent paper by Fisher, Nieto and Sandberg5

squeezed coherent states of a harmonic oscillator

reviewed in view of a possible higher order general

squeezing operator which might lead to new distributio

allow a different non-linear detection scheme resorting

the concept of

was thoroughly

ization of the

n functions and

to multi-photon

et al., in that

state. However

generalization,

corresponds to



new set of highly non-trivial generalized squeezed states which in

suitable limits reproduce both the usual squeezed states and those of

ref.(6). In addition we study the squeezing properties of these states

as well as the relation between the different realizations and the

different limits.

From the group theoretical point of view these generalized squeezed

states are connected with both SU(2) and SU(l,l) in their

Hoistein-Primakoff realizations.

In the SU(2) case the number of photons is finite, and there ensues an

interesting lower bound on the amount of squeezing one can possibly

achi eve.

The notation used throughout the paper is standard.

In sect. II the multi-boson Holstein-Primakoff coherent states for SU(2)

are defined, and their relation to the generalized bose operators is

analyzed.

In sect. III the squeezing properties of such states are thoroughly

discussed in general whereas sect. IV is devoted to their asymptotic

behaviour.

In sect. V both the definitions and the analysis are carried through to

the SU(l,l) case.

Sect. VI contains a collection of numerical results, meant both to check

the analytical results of the previous sections and to clarify some

global behaviour.

Some unexpected scaling properties of the optimal squeezing with respect

to the unitary irreducible representation label appear.

A summary and some further discussion are presented in Sect VII.
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Here [a,a]=l and =ata.

The states spanning the basis for the (2+l)-dimensional representation

of SU(2) are the normalized bosonic states > () to> ,

n=O,l,...,2& with J3 eigenvalues ranging from - to , respectively.

We may generalize the relations (2.1) as follows. Writing

j_C
&
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V.’.

C)

() (+)

(22)

II. Multiboson Holstein-Primakoff Relations for SU(2)

algebra in

The Holstein-Primakoff8relations form a realization of the SU(2)

terms of a single bose operator:

(2.1)

we obtain

()
Z

A

] c) --

(4) (2.3)

Identifying 10) with the eigenstate 1Y=-6>the form of suggests
(bc)

that J3z [[-J)- so that the complete representation is spanned by the

states 0> ,Ik> , 12k> ,...,I2k> corresponding to eigenvalues of
(k)

equal to -6,-+ ,.. .,, respectively.

Comparison of this form of with the right-hand-side of eq.(2.3)



provides a recurrence relation for which can be shown to result

=
(24)

This result could have been obtained by starting from the usual

Holstein—Primakoff relations, eqs.(2.l), and substituting the

generalized bose operators9

(2.5)

A

jL

where

1) - 71

These generalized bose operators satisfy the usual boson commutation

relations [A(k),A(k)t]=1.

Performing the indicated substitution we obtain

M() A ff4ll

(2.6)

and

1{-ll-

Comparison of eq.(2.6) with eq.(2,4) gives



() ()
(2.7)

III.Squeezing Properties of Multiboson Holstein-Primakoff Coherent

States for SU(2)

We recall the construction of coherent states of SU(2) according to the

general definition for an arbitrary Lie group given by Perelomov0 and

Rasetti
(11)

The set of coherent states for a Lie group G is obtained using a unitary

irreducible representation (u.i.r.) of the group, choosing a fixed

vector cii> in the representation space and acting on it by the whole

group.. It turns out that the coherent states are labelled by means of

the left cosets of the group G with respect to the subgroup leaving (A.’>

invariant up to a phase factor. For the SU(2) group the set of coherent

states within the 2c5+l dimensional u.i.r. is given by the formula:

÷
-T =-;> (3.1)

where is a complex parameter, and J3=- cy;6)is the eigenvector of

corresponding to the eigenvalue -6 . Using the Baker-Campbell-Hausdorff

formula for SU(2):

(3

xr ( =

- (3.2)

where:

= (3.3)



eq.(3.l) can be rewritten in the form:

-( J+
1T=.>

N is a normalization coefficient and we chose to

states directly in terms of In the k-boson

realization of the u.i,r. of SU(2), the vector IJ3-

be the vacuum and the coherent states are written in

10>

Expanding the exponential and using the properties of the

operators we obtain

P
k

3.6) the number operator ñ can be replaced by its eigenvalue k

the explicit form of fk,(ñ), eq.(2.4), eq.(3.6) becomes

-4
2: (3.7)

This is the general expression

are the weight vectors of the

(k)
the elgenvectors of J3

< .

it follows that

for the SU(2) coherent states, where i->

2+l dimensional representation, namely,

Si nce,

(i
+

(3.8)

(3.4)

label the coherent

Hol stein-Primakoff

6;6.>turns out to

the reduced form:

(3.5)

(k)
+

p4 -2:

In eq(

Usi ng

(3.6)
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presented in the previous section in the limit in which such

that = E i I remains finite.

Clearly,

—
(4.2)

and

/ !o /
/ L, /

(4.3)

In the same limit we have ‘ Tc so that

At () r A (44)
— 2G R ; v-- /-\

and the k-boson Holstein-Primakoff coherent states reduce to the

generalized k-boson coherent states . This result is well known in the

case l corresponding to the standard Holstein-Primakoff coherent

states reducing to the Glauber coherent states12.

Retaining terms to order l/G in eq.(3.ll ) we obtain, selecting for

simplicity to be real and positive,

2. /

w’. / P

<;1(°) i;<

a(

(4.5)

x -

0 (+i’ (‘<p)! -

Some interesting special cases are

kl:
3

(4.6)
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Eq (4 12) results in squeezing of (t\p)2 Had we selected negative we

would have obtained squeezing of (Ax)2.

For each finitethe value of corresponding to the optimally squeezed

2min
is given by differentiation of (4.12).

Writing

p
— (4.13)

we find that is the solution of the zeroth order equation

-

—2 (4 14)

is given by

/
Y

-— /
(4.15)

where is the coefficient of I in eq. (4.12). Furthermore,

—
-

(L\

(4.16)

From the definition
of(çt),

eq (4 9), it follois that

‘ +

(2\
(4.17)

so that

- (2-3 -(a)f5 (4.18)

Solving eq (4 14) nurne ically we obtain

Y 0.64675. (4.19)



Substituting this value in eq.(4.l5) we get

-o 2294. (4.?O)

Finally, from eq.(4.16) we find

o.ig72 -+ o.o73
(4.21)

The values of and of
2min

are just the values

corresponding to maximal squeezing for the generalized boson k2

coherent states of ref.(6).

V. Multiboson Holstein-Primakoff Coherent States of SU(l,l)

The commutation relations of SU (1,1)

[ ., ± ] = ±
(5.1)

can be realized by expressing the generators
±

and in terms of

multiboson operators.

Thus, in the u.i.r. corresponding to the eigenvalue
2

of the

Casimir operator J3 -(JJ+JJ) we have

I, .t.
= A A) A

4( A (5.2)

= A A(K



Note that the representations, labelled by c3 , are now infinite

dimensional. The special case kl was considered by GerryU3).

The SU (1,1) coherent states are defined as

-
= e. (5.3)

Using the Baker-Carnpbell-Hausdorff formula we obtain

= (54)

where = Lanh( ) and ;>is normalized

in complete analogy with the SU(2) analysis we obtain

_

I
— (. J

(5.6)

and

2.
2.1L6 jO

= 2 -

(- (5.7)

Furthermore, for k=l

*

—

___

a”,. f2+ri.-j ----
V

- 1I J
(5.8)



ii
÷()

)(2+ (59)

and for k2

(k)Z (2+)(Z+4)

(A1 eQ
(5.10)

The position and momentum uncertainties are obtained in terms of the

above matrix elements.

The definition of for SU (1,1) , eq. (5.2.), suggests two

interesting limits

a) cy— _ with <A(k)A(k)> finite;

b) c5finite with <A(i)A(k)

The limit of the first kind, if taken in such a way that =

remains finite, results in

— to> (5.11)

which is again the generalized boson coherent state6. Note that in

this limit aa>= kç2. which is finite, as required.

The limit of the second kind requires that c’— 1. For k=2 we obtain in

this limit

—

()2
(5.12)

so that 1) becomes a particular harmonic oscillator squeezed state5.

The G-’’ asymptotic expressions are obtained in complete analogy with

the SU(?) case. Upon computing them one notices that the results for

x)2 and ( p)2. both for kl and k2, are obtained from the

expressions given in eqs.(4.lO-4.13) for SU(2) by reversing the sign of

the coefficients of l/



VI. Numerical Results

To illustrate and amplify the previous discussion we present the results

of some numerical computations.

A. Single-boson Case (ktl)

Computing or ( p)2 vs , for a constant value off , we obtain

the behaviour presented in Fig.l, exhibiting an approach to the limiting

value corresponding to an unsqueezed harmonic oscillator coherent state,

as 5—p ‘‘

The (t x)2 vs 4/- curves, for constant f , indicate a close to linear

relation with the intercept and asymptotic slope in agreement with

eq.(4.lO). Fig.2 shows that the optimal squeezing of ( x)2 increases

with 5 , with ( x)
min

0 for large cLV. Also shown in Fig.2 is the

optimal value of the squeezing parameter
2 - nun

Fig.? indicates that (ax)
mm

-‘-‘ G and
min ‘

a ,where

is approximately equal to 1/3 in the SU(2) case.

B. Two-boson Case (k2)

Calculating the maximum squeezing of

different values ofG, we obtain the

corresponding values of’ are presented

and are very close to being linear in

The intercepts of both curves with the

agree with the analytically derived

further, that for G-. both the SU(2)

the generalized boson values, ref.(6).

VII. Conclusions

i\ p)2 as a function of
‘

, for

results presented in Fig.3. The

in Fig.4. Note that both (L p)2

over the range presented.

l/ =0 axis, and their slopes,

values, eqs.(4.19-4.21) Note,

and the SU(1,l) curves approach

The new set of generalized squeezed states defined and investigated in



the present article are actually the group-theoretical coherent states

of the SU(2) and SU(l,l) Lie algebras. The Holstein-Primakoff

realizations of these algebras in terms of the harmonic oscillator

ladder operators and, in particular, the realization introduced in the

present article in terms of multiboson operators, enabled the

investigation of the squeezing properties of the group-theoretical

coherent states with respect to the harmonic oscillator dynamical

variables.

In both the SU(2) and SU(l,l) cases, the single-boson and the two-boson

Holstein-Primakoff states exhibit squeezing of either position or

momentum, depending on the phase of the squeezing parameter. However,

for a Hamiltonian of the form H = j aa + const. ,we have, for real

squeezing parameter

(x
ç;

with a similar expression for [p(t)2, and so the squeezing

between (Ax)2 and (p)2 with frequency 2u.)

For finite values of the label of the irreducible representation,

the maximum amount of squeezing is finite, i.e., neither ( x) nor

(p)2 can shrink indefinitely.

The optimal squeezing of the single boson SU(2)

asymptotic behaviour, i.e., (x)2

squeezing can be achieved by increasing

Note that G can be interpreted as

available, Nph which is certainly

experimental setup. Thus, in this case

have one physically derivable property

states do not have, i.e., they presuppose

number of photons. From the asymptotic

obtain an interesting lower bound on the

• 2
i.e. (ax) c Nph ,where c is

according to our numerical results is of

osci 11 ates

exhibits an interesting

Thus, arbitrarily high

cs to sufficiently large values.

the maximum number of photons

finite in any conceivable

the presently proposed states

the familiar Glauber coherent

a finite rather than infinite

relation mentioned above we

amount of squeezing achievable,

some universal constant, which

order unity. While this result



is very preliminary, it suggests an interesting approach to the general

analysis of the ultimate limits of attainable squeezing. For the

two-boson realizations of both SU(2) and SU(l,l) the optimally squeezed

states approach the optimally squeezed generalized two-boson squeezed

states of ref. (6) in the limit 6-’c,• Actually, by approaching that

limit with a sequence of squeezed states such that the parameter . ‘

is an (arbitrary) constant, we obtain the Glauber coherent states in the

single boson case and the generalized boson coherent states in general.

The asymptotic approach to this limit was studied analytically, to order

Note that the asymptotic expressions obtained for SU(l,l) are

related to those obtained for SU(2) by a reversal of sign of the

coefficient of l/ . These asymptotic expressions were confirmed

numerically for both SU(2) and SU(l,l) in the cases of the single as

well as of the two-photon Holstein-Primakoff states.

The limit considered above, in which is kept constant, involves a

finite expectation value of the number operator. On the other hand, the

form of the two-boson Holstein-Primakoff SU(l,l) operator suggests that

a different kind of limit could be defined, involving ñ becoming

arbitrarily large. In this limit the two-boson operator attains the

form (a)2, suggesting that the corresponding SU(l,l) coherent states

become the usual harmonic oscillator squeezed states. Note that for k#2

this limit does not exist, which may be related to the results presented

by Fisher, Nieto and Sandberg5 concerning the impossibility of a naive

generalization of squeezing.

The results of the present article suggest several further avenues of

investigation. Among these, the most straightforward seems to be a

definition of k-boson Holstein-Primakoff coherent states in which the

vacuum state 0) is replaced by a linear combination of the form

Clearly, such a definition will involve the whole Fock space rather than

the subspace k> ; =0,1,.. involved in the results presented

above. This will result in much higher flexibility, including the

possibility to obtain squeezing for any k.

This, as well as an analysis of the squeezing properties of higher

moments of the dynamical variables, will be considered in the future.
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Figure Captions

1. Position uncertainties for one-boson SU(2) Hoistein-Primakoff states

with a constant , and momentum uncertainties for the corresponding

SU(l,l) states.

2. Behaviour of the squeezing parameter and of the position

uncertainty for the most squeezed one-boson SU(2) Holstein-Primakoff

states.

3. The most squeezed momentum uncertainties for the two-boson

Holstein-Prirnakoff states (SU(2) and SU(l,l))

4. The squeezing parameter for the most squeezed two-boson

Holstein-Primakoff states (SU(2) and SU(131))
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