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1. Introduction

By linearizing the field equations around a monopole solution, Brandt
and Neri[1] and Coleman [2] have shown that most non-Abelian monopoles are
unstable with respect to ‘small perturbations. Using the properties of the
rotation group, they demonstrate in fact that a monopole can be stable only
if all eigenvalues of its non-Abelian charge [3] Q satisfy the "Brandt-Neri”

condition
g=0o0orz 1/2. (1.1)

Goddard and Olive [4] prove then that the semisimple part of @ must be
of a very special form, known in representation theory as a "minimal
co—weight” (see Sections 2 and 4 for details).

As it is well-known, monopoles fall into topological sectors

separated by infinite — energy barriers, and one can prove [2,4,5] that each

such topological sector there is a unique stable monopole.

Asymptotic monopole configurations with residual group H behave

very much like pure Yang_— Mills theory on S2with gauge group H. But thisis a

special case of YM on Riemann surfaces, studied by Atiyah and Bott [6] .
Translating the topological formula of [6] , Friedrich and Habermann [7] have

shown that such a configuration (also characterized by Q) admits
v=23% 2lgl-1 (1.2)

negative modes, where the sum goes over all negative eigenvalues of Q. (1.2)
obviously implies the BN condition (1.1).

The aim of this paper is to relate and complete the sbove results . After
summarizing the necessary algebraic tools, we review those properties of
finite—energy configurations (Sectio'h 3) and of solutions (Section 4) which

are relevant for our purposes. Most of the contents of these sections are




already known[2,8], (a possible exception being the explicit formula (4.10)
for the unique stable monopole of a given topological sector) but we have
assembled the results from different sources and summarized them for
completenesé and for the convenience of the reader . ’

The monopale is stable if its second variation (called the Hessian) has
no negative eigenvalues. In Section S we show first that, for non-zero Higgs
potentials and suitable variations of the gauge field, the 3-dimensional
prablem essentially reduces to pure YM theory on 52, (Although the radial
contriﬁution is not zeko, it yields a "mass” term which does not change the
stability behaviour.

For 52 the general theory of Atiyah and Bott [6] can be related to the
Brandt-Neri-Coleman rotation - group approach. Indeed, on the q-eigenspace

the interesting part of the Hessian is

J drdQ tr { (J%- q(g-1))8A, 8A} + g J drdQ tr(5A)°, (1.3)

where r and Q = (8,¢) are polar coordinates and F = j(j+1) is the Casimir of
the angular momentum vector J. Since the first term is non-negative and
the first non-zero eigenvalue is at least 2lql, negative mode can occur only

if the first term in (1.3) vanishes, which happens only if
g -1 and j=Ilal-1. (1.4)

Erom this result it is evident that the negative modes forma 2j+1 = 2lal-1

dimensional SU(2) - multiplet. A simple way of counting the number of
negative modes is to use the diagram introduced by Bott [9].

The special form (1.3) of the Hessian makes it possible to construct
the negative modes explicitly and in terms of the stereographic (complex)

coordinate z on S° and in section 6 they are shown to be



5A = 2 /(142 k=0,.,2lgl-2 | (1.5)

Summing over all eigenvalues one gets once more the index formula (1.2). The
positive modes, or j > lql states, may be constructed by the same technique.

Not surprisingly, the expressions in (1.5) are known to generate the
spin 2lgl-2 representations of the rotation group. (The (-2) comes from the
fact that the integrand in the first term in (1.3) is a combination of a spin
2lgl and of a spin 1 field[2] ).

For Bogornalny-Frasad Sommerfield monopales [10,11] there is an
extra term g in the Hessian due to the long-range Higgs field (see (3.6) ),
which cancels the carresponding term in (1.3) and we get rather

828 = [ dr dQ tr{ (m” + J°) BA, 8A}, (1.6)

which is manifestly positive. It follows that BPS monopoles are stable with
respect to variations of the gauge field. The instabilities found by Taubes [12]
arise because he includes variations 8@ = O of the Higgs field.

In Section 7 we illustrate our general theory . First we study the
situation with residual symmetry groups H = U(2) and H = U(3). However the
simplest example where the special property of the stable charges
(mentioned above) enters, is when the semisimple part of His (a covering of)
S0(5). So we have studied this case alsa.

The monopole-stability problem is related to that of loop-stability in
the residual group [6,7], This and the topological aspects of monopaole

instabilities will be discussed in a forthcoming paper.



2. Algebraic Structure [13]

Let us consider a compact simple Lie algebra 4 . and choose a Cartan
subalgebra #. A root o is a linear function on the complexified Cartan
algebra ¢ u:, and to each « is associated a vector E_ from 4% (the familiar
step operatar) which satisfies, with any vector H from fm, the relation[H, E_]
= ce(H) Ea. There exists a set of primitive roots o , i=1,.r (=rank) such that
every positive root is a linear combination of the o with non-negative integer
coefficients ie. ot = 2, m, o for all o

Alternatively, we can consider the real combinations X =E_+ E_|

and Y_=1i(E - E_ ) which satisfy

[H, X, ] =0a,Y, and [H, Y ]=-0,X, (2.1)
where g, = cc(Q)/1i is real.

If e is @ root, define the vector H_in ¢t by ce(¥) = tr(H_¥). Chosing
the normalization tr(E_E_ ) =1, we have[E, E_,J=H, Letus now define the

primitive charge Q, by

0, = 2H./tr(H?). (2.2)

The primitive charges form a natural (non-orthogensl) basis for the
Cartan algebra and by adding the E 's we get a basis for the Lie algebra/ L
Similarly, the primitive charges and the {X_,Y_ } form a basis for the real
algebra A FEor H = SU(2) for example, the Cartan algebra can be taken to
consist of diagonal matrices (multiples of 0'3) , the E_are the familiar step
operators, and X = o, and ¥ = a’,.

Denote by H the (unique) compact, simple and simply connected Lie
group generated by /4. All the primitive charges satisfy the quantization

condition exp 2miQ, = 1, where the exponential is taken in the fundamental
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representations i.e. in H. (in the case of the orthogonal groups the
word fundamental denotes the n - dimensional (vector) representation for
SO(n) itself and the fundamental spinor representation(s) for Spin (n)).
If a general charge Q is defined to be any element of the Cartan
algebra that is similarly quantized in the fundamental representation i.e.

exp 2miQ) = 1, (2.3)

then it can be expanded as a linear combination ot the primitive Q; ’s
with integer coeficients, Q = > n;Q;, n; an integer. Since the primitive
" charges may be regarded as (non-orthogonal) base vectors in r - dimen-
sional euclidean space, the set of all charges may be regarded as a lattice
generated by the Q;. This lattice is usually called the charge lattice and
is denoted by I'g. As it will be explained later, monopoles are charges
and the instabilities lie in suitable E, (or X,,Y, ) directions.

Let us introduce a dual basis for the Cartan algebra with elements
W; where

o;(W;)=Tr(W:;H;)=6;5, ¢,7=1,..r. (2.4)

By comparing (2.4) with the conventional definition for primitive weights
[13], for which there is an extra factor (o;, a;)/2 in front of the 4;;, one
sees that the W; 's are just re-scaled weights. They are called co-weights
[4] and it is evident that they can be normalized so as to coincide with
weights (by chosing (a;, ;) = 2 ) for all groups whose roots are all of the
same length i.e. all groups except Sympl (2n), Spin (2n+1) and G,. The
integer combinations Y m;W; form a lattice that we denote by I'iy and
since all roots take integer values on a charge, the W - lattice actually
contains the charge lattice, I'w D T'g.

The root - planes of A are those vectors X in the Cartan algebra for
which a(X) is an integer. The W - lattice containing the charge lattice,
together with the root planes, forms the (Bott [9] ) diagram of H.

Finally, although, in general, ezp 27iW; is not unity in the funda-
mental representation, it is unity in the adjoint representation and hence

exp 2miW; = z; (2.5)

belongs to the centre Z of H. Note, however, that the correspondence W
~ 7 is one-to-one only for SU(n), since for the other groups there are r
W ’s but less then r elements in Z (as shown in Table 1.).



On the other hand the correspondence W ~ zcan be made one-to-one
by restricoting the W's to those ones, W ’s say, for which the geodesics
exp2mitW for 0 < ¢ < 1 are geodesics of minimal length from 1 to z
i e. for which TrW? is minimal for each z € Z. (Since the weights W
are all of different length and are unique up to conjugation, the W for
each z ¢ Z will be unique up to conjugation). Such co-weights are called
minimal co-weights [4] and a simple intuitive way to find them (indeed
an alternative way to introduce them) is as follows:

Let z € Z be a central element in the fundamental representation F of
the group and let f be the dimension of F. Then by Schur 's lemma and the
unimodularity of F the elements z must be of the form z = (ezp 2miA)ly,
where A = p/f and p is an integer between 0 and f, 0 < p < f. (Note
that if F is real or pseudo - real z must be real and therefore equal +1,
a result which expains the abundance of Z = 1y and Z = Z; in Table
1). It is clear that z is an element in the centre of SU(f) as well as G,
and hence one may start by constructing the minimal geodesic from 1y
to z in SU(f). Let this be ezp2mitE, where I is a generator of SU(f)
and 0 < t < 1. Since ezp 2mi¥ = (ezp 2miA)1ly, the eigenvalues of ¥ can
only be of the form A+ g, k = 1,..,f where the [} are integers, and hence
the geodesic length must be proportional to . (A + I;)2. It is clear that
this length will be smaller for I; = 0 or — 1 than for any other set of
I’s. But since & must be traceless, there is actually only one X for which

[ =0,—1, namely
1 /(p1
Y= = 1 2.6
f( ‘qlp) (2:6)

(up to conjugation). For G = SU(n) this is evidently the end of the story
since n = f and hence W = I. But the remarkable fact is that for the
other groups also, it is the end of the story. More precisely, for every
group G in Table 1, W is an SU(f) - conjugate of X. We do not know of
any universal (G - independent) proof of this result, but it is not difficult
to verify it for each class of group in Table 1 separately. For this purpose
it is convenient to characterize I in a conjugation - independent manner,
namely to write

(- %’,—1)(2+%1) =0, (2.7)

since then one has only to verify that the group in question has a generator
satisfying (2.7) for a given central element i.e. given fraction p /f. Now for



the groups with centre Z, and Zz X Z2 equation (2.7) reduces to % = 1/4
and it is easy to verify that the generators shown in Table 1 have this
property. Similarly for the only group with centre Z3, namely Ejy, it can
be verified directly that it has a generator of the form (y/3) x 1, and that
such a generator satisfies (2.7) for p/f = 1/3. The class of group with
centre Z4, namely Spin (4n+2), is perhaps the most interesting. In this
case U should satisfy the equations

, 1 1 3.
nt=7 or (Eizl)(zqzzl) =0 (2.8)
and one can see that the entries for V?/ given in Table 1 satisfy these
equations and are generators by recalling that Spin(4n+2) splits into
the direct sum of the two inequivalent spin representations of Spin(4n)
with generators %(1 + v)[Vpu, 70| repsectively, where v = 7172...774n is the
generalization of v5 to 4n dimensions.

Collecting the results for the different groups G together, one sees
that in all cases the W in the fundamental representation are matrices
with (i) only two distinct eigenvalues and (ii) unit difference between
eigenvalues. Since it can be shown that the converse is also true (any
such matrix is an W) the W may actually be characterized by this prop-
erty. Furthermore, since the adjoint representation occurs in the tensor
product F x F* the property (i), (ii) may also be expressed by saying that
the W'’s can have only eigenvalues O or & 1 in the adjoint representation,
and since the converse is again true, the W’ s may be characterized by
this (0, £ 1) property also.

In terms of the roots e, the (0, £ 1) property may be expressed by
saying that for any positive root o the quantity a(W) must be zero or

[

unity i.e. [Eq, W] = a(W)Es =
a(VE’) =0, 1 foralla >0 (2.9),

cf. [4,5]. Viewed on the (Bott) diagram, those vectors satisfying this
condition either lie themselves in the centre or belong to the root plane
which is the closest to the centre. Examples are given in Section 7.

If one considers in particular the expansion of the highest root ¢ in
terms of the r primitive roots a;, ¢ = ) hja;, hy > 1, and applies
(2.9) to both sides of this equation, one sees that a;(W) can be non-
zero for only one primitive root, a; say, and that the coefficient h; of &;
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must be unity. This result provides us with a simple, practical method
of identifying the W in terms of primitive weights, namely as the duals
of those primitive roots for which the coefficient in the expansion of 4 is
unity [4,5] and this method has been used to obtain the identifications

given in Table 1.



3 Finite energy configurations and Higgs breakdown [8]

Our starting point is a static, purely-magnetic Yang-Mills Higgs
(YMH) system with a simple and compact gauge group G, given by the

Hamiltonian

2E= szx {(tr B2+ (DO,D®) + 2V(D)}, V(P) 2 0; (3.1)

where V(@) is a Higgs potential for the scalar field ¢, B is the Yang-Mills
magnetic field and D is the covariant derivative, By = eijkBjkfz, By = VA -
VkAj + [Aj,Ak] , Do = ‘71@ + AQ where A is the gauge potential and AP
denotes its action on @ in the representation to which @ belongs.

In this section we shall not require that the fields satisfy the Euler -
Lagrange field equations, but only that they be of finite energy 1.e. such that
the integral in (3.1) converges. One reason for this is to emphasise that the
most important spontaneous symmetry breakdown, namely that of the Higgs
potential, comes from the finite-energy and not from the field equations.

we shall consider the three terms in the Hamiltonian (3.1) in turn. It

will be convenient to use the radial gauge x.A = 0.

FPure qauge term tr 82

For sufficiently smooth gauge fields the finite-energy condition

imposed by this term is evidently
Alx) - a(Q)/r, B - b(Q)Lx/r° = b/, (3.2)

where Q denotes the polar angles (8,9), b(Q) = (axa(Q) + a(Q)xal(Q)) . %/r and
d=rv. ,

Although a{Q) and b(Q) in must be single-vaiued on the sphere 5%,
they need not be quantized for (3.2) to be satisfied. The situation is analogous

to an Aharonov-Bohm potential in two dimensions, where the gauge-field is
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single-valued but the magnetic flux need not be quantized. [Only for the

so—called vortex system, in which there exists, in addition to the gauge

e —————

—field, a scalar field ®(x), which remains finite and covariantly constant as

r -» oo does the flux become quantized. The generalization of the vortex case

will be seen below]

Higgs Potential ¥(®)
The finite—energy condition for this term is evidently AY(P) > O as r

_» oco. A necessary condition for this is that V¥ — 0 But ¥ O is assumed to
be a Higgs potential i.e. minimizes on a non-trivial group orbit G/H. Therefore,
at large distances, the Higgs field is not zero, takes its values on the orbit
G/H and may depend non-trivially on the polar angles Q : ®(r,Q) —» D(Q) asr
—»co. Then ©(Q) defines a map of 52 into the orbit G/H and thus a homotopy
class in 1,(G/H). Since this class cannot be changed by smooth deformations

[8], the space of finite-energy configurations splits inta topological sectors

labelled by 1,(G/H).
The topologicel sectors can also be labelled by classes in 1((H).

Indeed, on the upper and respectively lower hemispheres N and S of S

g (DPE) inN
0(Q) = (3.3)
g(DP(E) inS |

where E is an arbitrary point in the averlap, e.g. the "east pole”.
hp) = gy~ ' (9)gs(9) (3.4)

(where ¢ is the polar angle on the equator of g2 Y is a loop in H which
represents the topological sector. |

For simplicity, and because it is the most relevant case, we shall
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assume that the homotopy group 1L(G/H) is described by a single integer
"quantum “"number m. This is equivalent to assuming that the Lie algebraﬁ of
H has a |-dimensional centre generated by a vector W , and H__, the
semisimple subgroup of H generated by h=04.4],1s simply connected.

when the Higgs field ®(Q) belongs to the adjoint representation of &
classical group G, and the Higgs potential ¥(®) is quartic, the one -
dimensionality of the centre is actually not an assumption at all, but is
simply a consequence of the fact that Michel's conjecture [14] is valid for
this caée. In fact, far the adjoint representation of a classical group @ itself
generates the centre and is parallel to ane of the primitive (but not
necessarily minimal) Wj 's.

whether ©(Q) is in the adjoint or not, we can associate to it a new,
adjoint " Higgs" field W defined by W(Q) = g(Q) ¥ g"‘(Q) , where g(Q) is any of
those in (2.3). W(Q) is well-defined, because ¥ belongs to the center of A
(Of course, if ©(Q) is in the adjoint representation, then W(Q) and ©(Q) are
proportional).

The guantum number m can also be calculated as a surface integral.
Indeed, the projection onto the centre of H of the charge-lattice l‘Q is a

i—dimensional lattice in the centre. If we choose ¥ to be its Z-generator

then the quantum number m can be recovered [15] according to

2nm = | do,tr(b(@) [a,¥(Q),3¥(@)]}. (3.5)

The homotopy classification is not merely convenient, but is
mandatory in the sense that the classes are separated by infinite energy
barriers. Thus, while an interpolated field of the form o' = te +(1-1)2,,
0<t<1 between two finite-energy configurations @, and @, is perfectly
smooth if ¢, and @, are smooth, it does not satisfy the finite—energy
condition Pv(2Y) - 0, or even V(@t) - 0, as r-oo, for general t. Note that

since not only ¥ — O but PV — 0 one has, using the notation 1 = ®(r,Q) -



12

(Q), M0, —->0 where M = 8°V/3® 3¢ o, and hence for generic
potentials (i.e. those for which the anly zeros af the 'mass - matrix’ Fv/ap?
at v =V, are the Goldstane zeras) the physical part of v falls off faster
than r~ ' as r - oo and one gets @ (x)—» ¢(Q) + 3(r,Q), where ry(r,Q)— 0 as
r -co. A notable exception to this observation is the Bogomolny - Prasad -

Sommerfield (BPS) case V = 0, for which the Bogomolny condition B = D¢

implies [10,11] that
(%) = (Q) + b(Q)/r+ 0(1/r) as r oo (3.6)

The cross—term (D® )_2

This final term involves both ¢ and A and it hence provides the
connection between the Higgs field ®(Q) and the gauge field b(Q) and thus
puts a topological constraint on the gauge field. As might be expected from
the vortex analogy, this constraint may be expressed as a quantization
condition as follows: the finite-energy condition is easily seen to be (Dd)?

- 0=
dd =ade + a(Q)P(Q) =0 (3.7)

and thus also d¥(Q) = 3¥(Q) + [a(Q),¥{(Q)] = 0. ©(Q), and ¥(Q) are hence
both covariantly constant on 52, It follows from (3.7) that the topological

quantum number m can also be expressed as

2rtm = JdQ tr(wb) (3.8)

Equation (3.8) is the generalizaton of the vortex quantization condition
mentioned earlier and it shows that in general it is not the gauge field b

itself, but only its projection onto the centre that is quantized. Note that

the quantization of [tr(bW) is again mandatory_since the value of tr(b,¥)
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cannot be changed without vinlating at least ane aof the finite-energy

conditions PV —=> 0 ar 2(D1)? ——> 0 and thus passing through an infinite
energy barrier. Notice also that the value of (3.8) is actually independent of

the choice of the Yang-Mills potential A as long as ¢ is covariantly constént

[15]
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4_ Finite—energy solutions of the field equations [3,8]

The only condition imposed on the YMH configurations (A,¢) up to
~ this point is that the energy be finite. But it is obviously of interest to
consider the special case of finite—energy configurations that are also

solutions of the YMH field equations,
D%p = av/3¢ and DxB = (¢, TD®), (4.1)

where T denotes the generators of the Lie algebra in the suitable
representation.

Finite—energy solutions may be classified using data referring to the
fiald b(Q) alone. For this it is sufficient to consider the field equations (4.1)

for large r, in which case they reduce to
an, = (8°v/30 30,1, and dxb =0 (4.2)

in the generic case (and to dxb=0, Ay= 0 in the Bogomolny case). The first
equation shows that, for solutions of (4.1), the generic finite-energy
condition 1 - O is sharpened to an exponential fall-off of 1. (The BPS case
escapes because 021] = 0 is consistent with 3 = b(Q)/r ).

Since ©(Q) and b{(Q) are the only components of the field
configuration that survive in the asymptotic region, within each topological
sector defined by ®(Q), the only possible asymptotic classification of the
configurations is according to b(Q). The conditions satisfied by b{(Q) are then

contained in the second equation in (4.2), which may be written as
db = 8b + [a(Q), b]l=0. (4.2)

This equation shows that b(Q) is covariantly constant and thus lies on an H-
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orbit. Therefore b(Q) = h“(Q)DhN"(Q) in N and b(Q) = PLS(Q)OhS"(Q) in S,
where @ = b(E) is in /4 Plainly, Q is unigue up to global gauge ratations, and
there is thus no loss of generality in choosing it in a given Cartan algebra. In

the singular gauge where b(Q) = Q, the loop (3.9) is simply
h(p) = exp 2ilp 0< ¢ £ 21 (4.4)

and the periodicity of ¢ provides us with the guantization condition

exp 4ni = 1. | (4.5)

Conversely, any quantized Q defines an asymptotic solution, namely
= :(1+cos8)Q. (4.6)

This shows that the solutions of the field equations can be classified
asymptotically by the charges of H.

According to (3.8), the expression (3.8) for the "Higgs® quantum
number m reduces to

m = 2 tr(Q¥) 7 tr(¥?) . (4.7)
for those fields which are solutions of the field equations.

Let us now consider a monopole (given by) Q with Higgs charge m, and
decompose it to central and semisimple parts Q  and Q, respectively.

According to (4.7) 20, = mW¥. Observe now that

z = exp 4nQ_ = exp(-4nQ,) (4.8)



lies simultaneausly in Z(H) , (the cannected companent of the centre af H)
and in H__, and thus in Z(HSS). Let us decompose ﬁss into simple factars,
po=H® .3 #,, and denote by Hj the simple and simply connected group
whose algebra is ﬁj. HSs itself simply connected by assumption, so Z(HSS) =
Z(H) x .. x 2(H ) and thus z = z,..7,, where 2 is in Z(Hj). However, as
emphasised in Section 2, the central elements of a simple and simply
connected group are in {1-1) correspondence with the minimal W's and thus,
far each z in the centre, there exists a unique set of 'v(:!j's (where \,tfj is either
zera or a minimal vector of /ij) such that

k
2 = {exp -2n 'v:f,)...(exp - 21 %:!k) = exp{-2x Z's:lj} ~ exp-21W ™,

! (4.9)

(™) depends only on the sector and not on Q itself, because all charges of a

sector have the same Q . Hence the entire sector cen be characterized by

writing
° -]
2™ = My« W™ (4.10)

By (4.8) 26™ is again a charge (exp 4nd™ = 1) and it abviously belongs to
the sector m. Furthermore exp 4n(a-Q) = exp 4nQ . exp (-4nQ) = 1 shows
that 20' = 2(Q-Q) is in the charge lattice of H_. We conclude that any

monopole is uniquely of the form

,
6
0=0+0"=0+i2 nq,, (4.11)

i=1

where the n; are integers, and the Q,, i=1, .. r are the primitive charges of H__.
The integers n, could be regarded as secondary gquantum numbers which

supplement the Higgs charge m.
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The expansian (4.11) will be crucial in our stahility investigations. As

é(m)

a matter of fact, we shall show that is the unique stable monopale in the

sector m. The situation is conveniently illustrated on the diagrams of the
examples in Section 7.

The classification of finite-energy solutions according to the
secondary quantum numbers or, equivalently the matrix-valued charge Q, is
convenient and illuminating, but in contrast to the classification of
finite—energy configurations according to the Higgs charge m, it is not
mandatory, in the sense that (for fixed m) the different charges Q are not
separated by infinite energy barrriers. To see this one has only to note that

the family of configurations [16]
A=tA+(I-DA, 2'= 0, ogtgl (4.12)

which are not in general solutions aof (4.1) except for t = 0,1, but which
interpolate smoothly between solutions (A,?) and (A',®) and which lie in the
same Higgs sector because @ does not change, have finite energy for all
0<tg1. Indeed, as r — oo one has A' ~ 1/r, 2 (0'¢) = t(*?Do) +
(1-00*20'0) » 0, V(Y = PV(®) - 0, so that the integral (2.1)
converges for (At,@). As a matter of fact, one may obtain a rather simple and
compact expression for the interpolated energy E(A') as follows: D'o = t(D®)
+ (1-)(D'®) and B, ' = tB;j + (1-1B ' + L(1-1) [4,, A], where A, = A, - A',.
This shows that the interpolated energy must be of the general form E =
at?eb(1-0)%+ct®(1-0)%e 21t (1-1)+2gt3(1 ~t)+2nt(1-t)?, where a,.g are
integrals over the field configurations which are independent of t, and in
particular a = E, b =E and ¢ = ]dsx tr{a.',ﬁj] 2 where E and E' are the
energies of the solutions (A,®) and (A',®). But since the solutions are
extremal points of the energy, 3E'/at must vanish at t= 0,1 and this leads to
the conditions b = f+h and a = f+g. Using these two equations to eliminate h

and g one finds that f is also eliminated and thus E' reduces to the simple
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expression
£ 1203220 + (1-02(1+20 B 2+ (1=t %c/2 (4.13)

Since A ~. 1/r s r — oo it is evident that C is finite, and hence that the
interpolated energy is finite for all O<t<1. Thus the energy barrier betweenE
and E' is finite. Note that in the special case that E = E' (4.13) reduces to e
— E +« t2(1-t)°C, which is just a standard quartic Higgs potential in t. But, of
course, the interpolation (4.12) is not the optimal interpolation in this case
since it does not, in general, follow the orbit of the gauge transformation (in

H) which connects Q to @ when E = E'.
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5 Unstable solutions: reduction from an n% to an SQ;prnblem.

In next two sections we wish to show that monopoles for which Q' =
0 are unstahle with respect to variations of the gauge field and we have
rather

v= 22 2gl-! (5.1)

g< O

independent negative modes, where the sum goes over all negative
eigenvalues q of Q (since 20 is a charge, 2q is always an integer). We also
wish to construct the negative modes explicitly. For these purposes it will
be sufficient to consider only variations of the gauge potential of the Higgs
group H for large values r = R of the coordinates, and in this section we
specify the variations more precisely and show that they effectively reduce
the problem to the corresponding Yang-Mills problem on 52,

For H-valued variations of the gauge potentials alone, 8¢ = 0, 5A =

a ¢ 4 say, the variations of the gauge field and covariant derivative are
gasily seen to be 6B = Dxa 5B = axa and 5(D®) = at®. Note that all
higher—order variations §°B etc. are zero.

For the energy functional (3.1) the first variation is, of course, zero,
since (A,®) is a solution of the field equations, and the higher-order

variations are

5%E = [ d*x {tr(Dxa)* + tr (Baxa) + (a®)?},

§°E = 2] d®x tr{(Dxa)axa} 5*E = 2| d®x tr(axa)? (5.2)

all higher-order variations being zero. We shall assume that all variations
are square-integrable, (a,a) = [d®xtr(a) 24 oo.

There are some general points worth noting. First, since 8¢ = 0, the
only term in (5.2) that involves the Higgs field is tr(a®)® and since a must

be in the little group of @(Q) = lirq,“o@(r,Q), in the case V = 0 this term
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vanishes asymptotically. Thus in the asymptotic limit ¥— co (5.2) becomes

the variation of a pure Y'ang-MiHs Lagrangian.
Second, the only term in (5.2) that involves radial derivatives is the

(Elra)2 term in (Dxa)2 snd this contribution may be written as

5%, = [d*x tr(a, @)% = JdrdQ tr(rd a)® -
= [drdotr(@a)®+ a%/4) = m* (a, a) (5.3)

where @ is the symmetrized dilatation operator {r,a}/2, 82 its average
value and mZ 2 174+8°. It can be shown (see Appendix) that the infimum of m?
is ¥4, and thus, although BZE', is not negligible because of the lower bound 1/4,
it can be reduced to this lower bound, and GZEF can be regarded as a mass
term . Then the variations (5.2) are essentially variations on the 2-csphere g%
for each value of r.

Finally, it should be noted that some of the variations, namelya = Dy
+ O(xz), where y is any scalar, are simply gauge transformations of the
background field A and lead to zero energy variations. In particular, it is easy
to verify that, because A satisfies the field equations, the second variation
5%E is zern for the infinitesimal variations Dy, and for this reason it is
convenient to define the 'physical' variations a as those which are orthogonal

to the Dy. Since Y is arbitrary, one has | d*x tria,dy) = | d>x tr(Da,y) =0 =
D.a=0 (5.4)

from which one sees that the physical variations may also be characterized
as those which are divergence-free.

we shall be interested primarily in the second variation or Hessian
52E in (5.2), and in finding the negative modes of this quantity. Since all the
terms in 62E are positive, except possibly the tr(Baxa) term, negative modes

are most likely to occur when this term is large and the others are as small
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as possible. Since B increases and the Higgs term decreases with r, this
suggests that negative rodes are most probable for large r, and hence we

consider only variations whose support is asymptotic ie.
a(rQ) =0 forr<R (5.5)

where R is'sufficiently large', and in practice this will mean R large enough
for the asymptotic form of the fields (3.2) to be valid. We can then drop the

Higgs terms in (5.2) and consider the pure Yang-Mills variations
5°E = J d°x { tr(Dxa)® + tr (Baxa)}. (5.6)

It will be convenient to write this expression in the form
§2E = 6%E +6°F, = | ¢ (tr(Dxa)’+tr(D.a)) + [ tr{(Baxa ~(D.a)%}, (5.7)

bearing in mind that D.a is unphysical and may be gauged to zerc.
Let us first consider 62E1. From the identity (Dx(Dxa)), = Dzai -
D.(D.a) - (Ba),, where (Ba), = [Bij,aj], one sees that

5°E, = | #xtr{-D*+Ba,a} = 62Er « [ d®% r 2 tr(L?+ ba, @), (5.8)

where L = x x D and 62Er is the radial part discussed above.

It is well-known that the components of L do not satisfy the angular
momentum relation, [Li,Lj] = €5 (L, + xk(x.B)] &y L, but that for
spherically symmetric, and hence for asymptotic, fields, the quantities J

obtained by adding x.(x.B) to L do satisfy such an algebra f.e.

[Jidd = €5 where c=L, +x,(x.B) (5.9)
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. 2 2 2
Furthermore, since x and L are orthogonal, we have J° =L + b°. Hence we

may write
€, = Jardo tri(J2 - b(o-1laal + 9 Ey. (5.10)

Now, since J also commutes with x.B in the asymptotic region, it is

convenient to decompose the variations a into eigenmodes of B ie. to write

(1279 (B,

i ,aj]=-q 8, (5.11)

where the q's are the eigenvalues. This is possible and the q's will be real
because Bij is skew-symmetric in the Lie algebra as well as in the vector
space, and indeed, because of this, it is easy to see that the g's come in
pairs of opposite sign and multiplicity two i.e. in quadruplets (g,q,-q,-9). As a
matter of fact, the éigenvalues are q = q, where the q  are the charges
defined in (2.1) and have the two-dimensional eigenspaces spanned by Xa and

Yq. Then on each q -sector 252E1 will be
6%, = JardQ tr ((m*+ € - q(g-1)a,a) (5.12)

where a is now parallel to X, or Y and £ = j(j+1) (j = 0) is the Casimir of
the angular momentum algebra generated by J. Note that j must be integer or
half-integer, according as g is integer or half-integer, because g is the only
non-orbital contribution to J. Now since BzE, in {5.7) is manifestly positive

we must have
m? + £-q(g-1) = (174 + 82) + j(j+1) - qlg-1) 2 0 (5.13)

and since 8 is arbitrarily small, we see that j > lgl-1. Note that j = lgl-!

follows from the manifest positivity of &E, and does not require any special
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pleading, such as that used, far example, by Caleman [2] It fallows from
{5.13) that the only possible eigenvalues of j are Igl-1, lal, lIgl+1,.. .In
particular the value j = lql-1 can occur only for g < -1. It will be convenient
to separate the j=Igl-1and j3 lal cases and to write |

EizE1 = m” (a,a) for j=Igl-1, lal=1 (5.14)
and

2

8°E, {m'2 + (j-q)(j+q+ 1)} (a,@)  for j= gl (5.15)

Let us now consider 62E2. Using the equality tr(Baxa) = tr(aBa) =
r'ztr(aba) = q r'2tr(a,a), and the fact that D.a is zero on the physical

states, we see that
8°E, = q (a,a) | (5.16)

From the positivity of 62E1 we then see that the Hessian 62E will be positive

unless q is negative. Furthermore, when g is negative, (5.15) becomes

§7€, = (m? + (j+la(j-lal+ 1} (a,8) 3 2lal (a,@) (5.17)
so, for j = lal , the restriction of BZE, to the physical states will dominate
E‘>2E2 and the Hessian will again be positive. It follows that the only
possibility for negative modes of the Hessian is when q < -1tand j=Igl -1, in

which case,
5%E = (m° - lgl)(a,a) <O (5.18)

Note that since in the case j = Iql-1 the first term on the rhs. of (5.7)

vanishes, the variation actually satisfies the simple equations
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dxa=0, da=0 (5.19)

where d = rD. In particular the equation D.a = 0 shows that they are true
physical modes. It is also easy to see that these modes form a 2j+1 =

2lgl=1_dimensional multipiet of the J - algebra. we shall see in the next

saction that for each lgl there is one and only one such multiplet. Thus finally
we have the result that the monopole is_unstable if, and only if, lgl = 1 and
that it has 2 (2lgl - 1) negative modes (corresponding to the two negative g's
in the quadruplet (q,q,-q,-g). This proves the index farmula (5.1).

The simplest way of counting the number of instabilities for j= lalis
ta use the diagram (see examples in Section 7) ; (1.2) is twice the number of
times the straight line drawn from the origin to 2Q intersects the root

planes. The opposite condition lgl < 12 is, of course, just the Brandt-Neri

stability condition [1,2,4] . From the discussion of Section 4 we Kknhow

however that |gl €172 if and only if @ = [3 is a sum of minimal \:? 'sie. whenQ'

in egn. (4.11) is zero: fl, given by (4.10), is the unigue stable monopole of the

topological sector under consideration.

For BPS monopoles the above argument breaks down: due to the b/r

term in the expansion (3.6) of the Higgs field, the second variation picks up

an extra term tr{[b,a] Y and we get rather
§%c = 6%, + [ drdQ {tr(J°- b(b-1)a, a) «tr(b,a])*} (5.20)

On the g-eigenspace of b the new term is q2, which just cancels the —q2 in

egn. (5.10), and consequently the total Hessian is manifestly positive,

52 = ((m%+ J)a, a) > 0. (5.21)

BPS monopales are hence stahle under variations of the gauge field alone,

even if their charge is not of the form (4.10). In particular, a BPS monopole

—
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whaee non-Abelian charge is a nan-minimal primitive W is stahle[17] (while
for V = 0 it would be unstable).

In conclusion it might be worth remarking that the instability inde‘x
(lgl-1) can be related to the Atigah-Singer index for the Dirac operator and
to the witten index for supersymmetry. Indeed if one writes the negative

mode equations (5.19) in their complex form)
Da=0 where D=D,+D, , a=48,- ‘a, | (5.22)

one sees at once that they are Dirac-like equations and hence the nurnber of
solutions is an AS-index. (Note however, that since a is supposed to be a
2_vector, whereas the conventional AS-equation is for a 2-spinor, there is
an extra factor g”4 in the inner product for a, and this results in a reduction
from 2lql to 2lgl-1 solutions. In other words the instability index is the
AS-index for vectors).

To obtain the relation to the Witten index one needs only note that
the Hamiltonian

o) D, + 0,

H= D,- iD, o ‘ (5.23)

is supersymmetric, and that (5.22) is just the equation that defines the

ground (H = 0) states of this Hamiltonian.
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6. Negative modes

In this section we wish to show that the negative modes anticipated
in Section 5 actuslly exist and to construct them explicitly. For this
purpose it is convenient to use stereographic coordinates on 5% ie. to use
z_dimensional coordinates (r,z), where z = x +iy = " tan 8/2and r.8,¢ are
the usual polar coordinates. In the (r,2) coordinates the 3-dimensional line
element and the 2-dimensional surface element become, respectively, ds?
= dr’ + (r/g)z(d:<2+dgz) and r#dQ = (r/@)2 dxdy, where p = 1+x2+g2 = 1+22.
The advantage of the stereographic coordinates is that they are the
simplest case of conformal coordinates, for which one has the special
relation g g“s =8 ¢ ¥g = JEETQ—,J@ ), where g, is the restriction of the
metric tensor to 5%, In particular the inner product of two vectors aon 52

becames
(a,0) = Jaxdy vg g™ a by = | dxay (s,.0,) (6.1)

( —o0 € X, Y £ o0), and thus it reduces to the usual planar inner-product for
functions of % and y. It is easy to see that in the stereographic coordinate

the background gauge-potential A = Q(1-cos 8) becomes
A, =0y/p, A =-0x/p (6.2)
Let us now consider the part 82E1 of the Hessian, which played a

central role in Section 5. From eqn. (5.7) one may write 82E1 = | dx (3.a) +

Itjdl’K, where, in stereographic coordinates,
K = I dxdy g''? tr{(e“‘:‘Dua&)z « (g2 D, ¥g g'xﬁ’as '

= | axdy g2 tr (D8, - Dza,)2 +(D,a,+ 0282)2 b=

I dxdy 92 tr (Dza)2 (6.3)
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where D, = D+ iD,, 8 = 8- ia,. On account of the form (6.2) far the
gauge-potential it is natural to absorb the 92 in D, by defining

A(Q) =1ipD, =i(pd, + 3Q) (sothat A'(Q) =i(pd;+ az)) (6.4)

and then (using partial integration) K may be rewritten in the more compact

form
K = [ dxdy tr(a, AY(Q)A(Q)a) . (6.5)
we now wish to relate the operator A'(Q)A(Q) in (6.4) to the total
angular momentum operator J? of Section 5. First, we note that in
stereographic coordinates the compaonents of J are given by

3, =1(3+2%8+02), J=i1@+32-20), J=20-23+0-1  (66)

where @ means @, and d means 8; . Indeed, it is easy to verify directly that
the operators in (6.6) satisfy the so(2) algebra. On the other hand, by using
the identity

23=2M+(23)3 , where M=2z3- 23, (6.7)
one sees that the operators J, in (6.6) may also be written as
J, =ilpd+ 201430}, J_=ilpd+ 2(1-3)) (6.8)

which shows that the Jt are operators of the same kind as occur in (6.4)

but with Q replaced by R = l—J3. In other waords,

I =a'R), I =ARend I = AYRAR) + I (6.9)



Hence to relate AT(D)A(Q) to J° we need only relate it to AT(R) A(R). Now

a straightforward computation shows that
A AQ) = AT(0) A0) - Q(Q-1) + pQ(Q+M-2) (6.10)

and since in the computation the only property of Q that is used is that Q
commutes with zZ and 23, and this is true also of R, a similar formula holds
for R. Furthermore the last term in (6.10) (coefficient of p) is invariant

under the interchange O <« R. It follows that
AN@A@) + A-1) = ATRIAR) + J5(I;-1) (6.11)

and since the right-hand-side of eqgn. {(6.11) is just the Casimir J°, one sees

that the reguired relation between AT(Q)A(Q) and 2 s
At@a@ = J° -a@-1), (6.12)

in agreement with the results of Section 5.

Up to this point, of course, we have only reproduced the results of
Section 5 in stereographic coordinates. The paint, however, is that in these
coordinates it is easy to construct the negative modes (indeed the whole
eigenspace of the Hessian) explicitly.

Let us first consider the negative modes. As already discussed in
Section 5, for each eigenspace spanned by >{°t,\(Ot such that g = q, < -1, the
negative modes are solutions to the two coupled equations in (5.19). Adding

(-1) - times the first term to the second we get

D,a =(pd + Zgla = 0, (6.13)
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whasge general solution is
a® _ 3% gl o k2, k=01, (6.14)

From the expression {(6.1) for the inner product one sees that the amare
square-integrable if and only if k < < 2lql-2 . we conclude that the negative
mades are just the a5 in eqgn. (6.14) for which 0 £k < 2lgl=2, and there
are just 2lgl-1 (e. a 2lgl- 1 -dirnensional multiplet) of them, as anticipated.
In polar coordinates 8,¢ these negative modes are also expressed &s

2q-2-k

8y = (1/2) omik+ 1 oin g/2) (cos 8/2)

al

0, = & " (sin 8/2)" (cos 8/2°7 "% , ogkg2ld-2 (619
and with X replaced by Y respectively.

This result can also be understood in a geometric framework [S]: the
a(k] 's are antihalomorphic sections of suitable line bundles. This is not &
coincidence, since these holomarphic sections of line bundles are exactly
the representation spaces of the rotation group SU(2)) .

Now we turn to the remaining eigenspace of the Hessian. From (5.7)
and (5.10) one sees that they are just the eigenspaces of J° modulo zero
modes. Hence it suffices to consider the eigenspace of J% ie. the weights
of the various representations of J%. Furthermore, since any weight can be
obtained from the lowest (or highest) weight in a given irreducible
representation J? = j(j+1) by the repeated application of J,, it suffices to

consider the lowest {(or highest) weights. These are evidently defined as

those a's for which

Ja=0, Ja=-ja (orJ, a=028andJ; a=ja) (6.16)



Since for a given j the operators J, in (6.8) becarne i (pd + zj(j+ 1)) and its

hermitian conjugate, egns. (6.16) may be written as
(gé+z(J+1))a=0, (z3 - z3)a=(-j+q+1) a (6.17)

and its conjugate. The solution of (6.17) is easily seen to be unique and of

the form

g = zilbkly gt gl g gzl (6.18)

Thus there is just one multiplet for each j and its highest and lowest
weights are just (6.18) and its conjugate respectively. The negative mode
multiplet is just that for j = Iql-1, and it might be worth remarking that, in
contrast to this case, the weights for j > lal do no satisfy the gauge
condition D.a = Da + Da = 0, and hence are mixtures of physical and gauge

(zero-mode) states.
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7. Examples
The simplest case of interest is that of when the little group H of the

Higgs field is H = U(2).The Cartan algebra of u(2) is two-dimensional, it is
in fact the set of all diagonal hermitian matrices. The vertical axis on Fig.l
represents the centre generated by diag (1,1), and the horizon{al axis ¢’
consists of multiples of 07,= diag (1,-1). The only positive root is ®(X) =
X,-X,, the difference of the diagonal entries. The corresponding primitive
vector, W = ug/2 = diag (1/2,-1/2) is also a minimal one. In fact, exp2ni\;f
= -1 |

The vertical lines intersecting ?’ in integer multiples of ‘;f are the
root planes. 0, = 2\7\1: 0z generates the charge lattice of H_ = SU(2)
which is also the topological zero-sector of U(2). Those charges on the
same harizontal lines form the topological sectors labelled by a gingle
integer m, defined by 2Q, = m diag (1/2, -1/2) = m . Sector 1 is shifted with
respect to the 0-sector by W Remarkably, all even (respectively odd)
sectors reproduce the same pattern.

The unique stable monopole of the sector m is

diag (k k) for m = 2k |
2(m) _ S
207 =¥+ W, = (7.1)
diag (k+1, k) for m= 2k+|

where [m] is m modulo 2 and 'v:io = 0 by convention. Any other monopale of

the sector m is of the form
20™ = 26™ 4 na, = 20™ + diag (n,-n). (7.2)

Those monopoles for which n = 0 are unstable, with index v =
2(2n-1) for m even and v= 4n for m odd. For example, when G = SU(3) is

broken to U(2) by an adjoint Higgs @, the vacuum seclor contains &
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canfiguration (whaose avistence has been rigorausly proved in [18]) whose
non-Abelian charge Q is conjugate ta diag (1/2, -1/2, o) [19] . This

configuration is indeed unstable and has 2 negative modes, namely

a, = (1/2) g'? 0, 8= e ®sin 8 o, (i=12) (7.3)

where o, are the of f-diagonal Pauli matrices in su(2) < u(2).

The physically most relevant example (at present) is when the Higgs
little group is H = U(3) (locally su(3), + u(1),.), which may well be the
exact symrmetry group in nature of the strong and electromagnetic
interactions. |

The disgram is now three-dimensionsl, with the central u(1) being
the vertical axis on Fig. 2 and ¢’ the horizontal plane shown in Fig. 3, which
is in fact the diagram of SU(3). The primitive roots are o (X) = X =X, and
0, (X)) = ¥%-¥g for X = diag (XI,XZ,KS). The corresponding primitive vectors
are W,= diag (2/3,-1/3,-1/3) and W, = diag (1/3,1/3,-2/3). They are also
minimal vectors; their exponentials are in bijection with the elements in
the Z -centre of SU(3).

The three families of root planes correspond to the positive roots o,
o, and the highest root 8 = o+ o, The charge lattice of H_ = SU(3) is
generated by Q, = diag (1,-1,0) and Q, = diag (0,1,-1).

Those charges lying in the same horizontal plane form the topological
sectors, labelled by an integer m. In fact, the projection of an entire sector
onto the centre of u(3) is m¥ = m diag (1/3,1/3,173). The unique stable
monopole in the sector m is

diag (k,k,k)

Q(m) =m¥+ W, = diag(k+1,k,k)  form = 3k+1 (7.4)

diag(k+1,k+1,k) for m = 3k+2
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where [m] means m modulo 3. All ather monopoles are
Q -]
20 = 20 + n,Q,+n,0, = 20 + diag(n,, ny-n,,-n,). (7.5)

and are thus unstable for n, or n,not equal to zero. Sector 1 (respectively
Sector 2) are obtained form the O-sector by adding ¥ and shifting by \;i‘
and \:12 respectively, and the pattern is periodic modulo 3.

Those configurations for which Q' = O are unstable. The simplest way
of counting the index is by using the diagram . For example, the monopole
whose charge is 20 = diag (2,0,-2) belongs to the vacuum-sector (since
its charge is in H__ = SU(3) ) . Furthermore o,(2Q) = 2, o¢,(20Q) = 2 and 8(20Q)

= 4, and so the index is 10. The negative modes are given by (6.15).

To have a simple example where not all primitive weights are
minimal, let us assurne, that the residual group is H = (U(1)xSp(4))/Z,. Then

/2_)_= sp(4) = so(5) and H__ is Spin(S), the double covering of SO(S). A, cen
be represented by 4x4 symplectic matrices with a 2-dimensional Cartan
algebra, say ¢’ = diag (a,b,-a,-b). The charge lattice consists of vectors in
¢ with integer entries. Let us choose the primitive roots e, = tr (H.)

and o, = tr (H2 .}, where
H, = (1/2) diag (1,-1,-1,1) and H, = (1/2) diag (0,1,0,-1) (7.6)
Those vectors dual to the primitive roots are

W, = dieg (1,0,-1,0) and W, = (1/2) diag (1,1,~1,-1) (7.7)
Any of the properties a), b), or c) of Section 2 shows that only »3!.2 is
minimal: For example, only ‘v:fz exponentiates into the non-trivial element

(=1) of Sp(4): exp 2 W, =1, exp 2w, = - 1. In other words, while W, i3
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already a charge, h:'z is only half-of-a charge (Fig. 4). Alternatively, the
two remaining positive roots are ¢ = ¢, + &, and the highest root 8 = Z¢¢, +
0Ly Thus there are hence 4 families of roaot - planes.

Let the integer m label the topological sectors. For m even, m = 2k,

the unique stable monopole belongs to the centre,
20 = 2 w, (7.8)

where ¥ is a generator of the centre normalizd so that 2¥ is a charge. For

m odd, m = 2k+1, the unique stable monopole is rather
2024 2 (2K 1) W + W, (7.9)

It may be worth noting that, in contrast to the H__ = SU(N) case, 20 =W, is
an ustable monopole in the vacuum sector, which has index 2B8W)-1)=
2. (Remark, that if w, was the charge of a Prasad-Sommerfield monopole,

it would be stable[17]).
The negative modes are expressed once maore by (7.3), but this time

0’i means rather

0 1 0 -i

o, = (1/2) o = (1/2) (7.10)
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Appendix
PROPOSITION: mz(a,a) = SdSLdr tr(r Bra)2 > ((1/4) +-‘82) (a,a)

and inf m2 = 1/4 .
Proof:

| Tdrh(rz(ara)z)= [ hirga+d/2)? dr - [t (radadr - (1/4)dr b (a?)
0 R R ) R

=f’vv(r8ra+a/2)2 +(1/4) f&rt\.32+ a2(R) R /2 .
R R

Therefore, m? > 1. 3,
Equality can never be achieved because rara+a/2 = 0 = @ is

proportional to 2 _, Rg2(R) = 0. However, consider Q = f(r) (5(.&?.)

2, and

where (L) is a vector on S
(r-R)/R R €£r<2R
f((r)= { 2R/n)"?

s”zR 2sR £ r

2R € r £2sR

Then Jera,0%ar/ | Par = (17 « 31n's) (S+ 12 In's) => 1/4 85 5 => oo,

showing that 1/4 is indeed the infimum.
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Fiqure captio

Figurel. Diagram of U(2). The horizontal axis represents the Cartan algebra
(multiples of 05 = diag(1,-1)) of the semi-simplepart /g = su(2), and the
vertical axis represents the centre generated by WV = (1/2)diag (1,1). The
only root is tr(dy. ). The charges are Q=mV¥+ Wlm,+ N0y, Wwhere m is the

topological quantum number [m] means m modulo 2 and n is a "secondary”

quantum number. W = 0g/21is a minimalvector, dual to the root . The root
planes are vertical lines which intersect the horizontal axis at integer
multiples of W. The horizontal lines are the topological sectors (1abeled by
m). In each sector, the charge which is the closes to the centre is the
unique stable monopole there. For other charges the number of instabilities
is twice the intersection with the root planes. Sector 1 is obtained from

the vacuum sector by shiftingby W. The pattern is periodicinm modulo 2.

Figure 2. Diagram of UQ3) . The vertical axis represents the centre
generated by V = (1/3) diag (1,1,1), and the horizontal plane ¢° is the
Cartan algebra of SU(3) shown in more detail on Fig. 3. The charges are
mww‘?/w + N,Qq+nQ,, where [m] means m modulo 3, n, and n, are integers
and Q,, Q, are the primitive charges of SU(3) on Figure 3. The horizontal
planes are the topologlcal ectors Sector m is obtained from the
vacuum-sector by shiftingby Wlml In each sector, the charge closest to
the centre is that of the unique stable monopole and the number of
instabilitiesis twice the intersection with the root planes. The diagram is

periodic in m modulo 3.
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Figure 3. Diagram of su(3). Q, = diag (1,-1,0) and Q, =diag (0,1,-1), are
the primitive charges and the two primitive roots roots are tr(Q, . ) and
tr(Q, . ) - The minimal vectors \/°V1 = (1/3) diag (2,-1,-1) and W, = (1/3) diag

(1,1,-3) generate the diagram. There are three root planes, intersectingin

angle /3.

Figure 4 The diagram of Sp(4) Spin(3), the double-covering of SO(5). The
primitivecharges are Q, = diag(1,0,-1,0) and Q, = diag(0,1,0,-1). The two
primitiveW 's are W, = diag (1,0,-1,0) and \2/2 = (1/2) diag(1,1,-1,-1), out

of which only W, is minimal.

TABLE CAPTION

Table 1.

The simply connected simple compact Lie groups with non - trivial centres,
their minimal co - weights (expressed as matrices and as primitive weights),
the representations characterized by co - weights, and the expansions of the
highest roots in terms of primitive roots. Here o,, 03 denote Pauli matrices,

i Clifford matrices, y the SU(3) hypercharge diag(2,-1,-1) and vy = YyYp-++ Ygp-
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