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1.. lntraductinn

B!J linearizing the field equations around a monopole solution, Brandt

and Neri [1) arid Coleman [2] have shown that most non—Abel Ian monopoles are

unstable with respect to small perturbations. Using the properties or the

rotation group, they demonstrate in fact that a monopole can be stable only

if all elgenvalues of its non—Abelian charge [3] Q satisfy the “Brandt—Nerr

condition

q = 0 or ± 1/2. (1.1)

Goddard and Olive [4] prove then that the semisimple part of 0 must be

of a very special form, known in representation theory as a “minimal

co—weight” (see Sections 2 and 4 for details).

As it is well—known, monopoles fall into t.gpoigical sectors

separated by infinite — energy barriers, and one can prove [2,4,5] that each

such topological sector there is a unique stable monopole.

Asymptotic monopole configurations with residual group H behave

very much like pure Yang — Mills theory onS2with gauge group H. But this is a

special case of YM on Riemann surfaces, studied by Atiyah and Bott [Eij

Translating the topological formula of [6J , Friedrich and Hobermonn [7] have

shown that such a configuration (also characterized by 0) admits

= 2 21q1—1 (1.2)

negative modes, where the sum goes overall çj.gative elgenvalues of 0. (1.2)

obviously implies the BN condition (1.1).

The aim of this paper is to relate and complete the above results . After

summarizing the necessary algebraic tools, we review those properties of

finite—energy configurations (Section 3) and of solutions (Section 4) which

are relevant for our purposes. Most of the contents of these sections are
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already known [2,aj , ( a possible exception being the explicit formula (4.10)

for the unique stable monopole of a given topological sector) but we have

assembled the results from different sources and summarized them for

completeness and for the convenience of the reader.

The monopole is stable if its second variation (called the Hessian) has

no negative eigenvalues. In Section 5 we show first that, for non—zero Higgs

potentials and suitable variations of the gauge field, the 3—dimensional

problem essentially reduces to pure YM theory on S2. (Although the radial

contribution is not zero, it yields a “mass term which does not change the

stability behaviour.

For
2

the general theory of Atigah and 5ott [6) can be related to the

8randt—Neri—Colemon rotation — group approach. Indeed, on the q—eigenspoce

the interesting part of the Hessian is

J drdQ tr { (J2- q(q- 1 ))6A, 8A} + q J drdQ tr(6A)2, (1.3)

where r and Q = (8,p) are polar coordinates and J2 = j(j+ 1) is the Casimir of

the angular momentum vector 3. Since the first term Is non—negative and

the first non—zero elgenvalue Is at least 21q1, negative mode can occur only

if the first term In (1.3) vanIshes, which happens only if

IqI—1 and j=(qI—1. (1.4)

From this result it is evident that the negative modes form a 2j+ 1 = 2!i1i

dimensional SU(2) — multiplej. A simple way of counting the number of

negative modes is to use the diagram Introduced by ott [91.

The special form (1.3) of the Hessian makes it possible to construct

the negative modes explicitly and in terms of the stereographic (complex)

coordinate z on and in section 6 they are shown to be
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= 1 ÷z), k = 0,...,21q1—2 (1 .5)

Summing over all eigenvalues one gets once more the index formula (1.2). The

positive modes, or j Iqi states, may be constructed by the same technique.

Not surprisingly, the expressions in (1.5) are known to generate the

spin 2(qt—2 representations of the rotation group. (The (—2) comes from the

fact that the integrand in the first term in (1 .3) is a combination of a spin

21q1 and of a spin I field [2] )

For Bogornolny.—Prasod Sommerfield monopoles [10,1 1] there is an

extra term q2 in the Hessian due to the long—range Higgs field (see (3.6) ),

which cancels the corresponding term in (1.3) and we get rather

= J dr dO tr{ (m2 + J2) 6A, 6A}, (1 .6)

which is manifestly positive. It follows that PS monopoles ore stable with

respect to variations of the gauge field. The instabilities found by Toubes [12]

arise because he includes variations 6 0 of the Higgs field.

In Section 7 we illustrate our general theory . First we study the

situation with residual symmetry groups H = U(2) and H = U(3). However the

simplest example where the special property of the stable charges

(mentioned above) enters, is when the semisimple part of H is (a covering of)

50(5). So we have studied this case also.

The monopole—stobility problem is related to that of loop—stability in

the residual group [6,7j , This and the topological aspects of monopole

instabilities will be discussed in a forthcoming paper.
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2. Mgebrflic Structure [13]

Let us consider a compact simple Lie algebra 4 and choose a Cartan

subalgebra t. A root x is a linear function on the complexified Cartan

algebra I , and to each ix is associated a vector Ea from ñ (the familiar

step operator) which satisfies, with any vector H from t, the relation [H, E]

= cc(H) Ea There exists a set of primitive roots o ,i = 1 ,.r (= rank) such that

every positive root is a linear combination of the oe with non—negative integer

coefficients i.e. ix = m1 o for all ix.

Alternatively, we can consider the real combinations Xc,. = Ec,. + E_c,.

and = (E1
— E_a) which satisfy

[H, Xj = q Y and [H, ‘ci = —qX (2. 1)

where = ccW)/i is real.

If ix is a root, define the vector Ha in t
(t

x(X) = tr(Hc,.X). Chosing

the normalization tr(Ea,E a
= 1, we hove[Ea, Ea] = Ha Let us now define the

primitive charg. Q

= 2H1/tr(H2). (2.2)

The primitive charges form a natural (non—orthogonal) basis for the

Cortan algebra and by adding the Ea’s we get a basis for the Lie algebra 4

Similarly, the primitive charges and the {Xa,Ya} form a basis for the real

algebra 4. For H = SU(2) for example, the Cartan algebra can be taken to

consist of diagonal matrices (multiples of cr3) , the are the familiar step

operators, and X = o and V = O2.

Denote by H the (unique) compact, simple and simply connected Lie

group generated by ,f All the primitive charges satisfy the quentization

condition exp 2rtiQ1 = 1, where the exponential is taken in the fundamental
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representations i e in H (in the case of the orthogonal groups the

word fundamental denotes the n - dimensional (vector) representation for

SO(n) itself and the fundamental spinor representation(s) for Spin (n)).

If a general charge Q is defined to be any element of the Cartan

algebra that is similarly quantized in the fundamental representation i.e.

ezp 2inQ = 1, (2 3)

then it can be expanded as a linear combination ot the primitive Q ‘s

with integer coefficients, Q = n an integer. Since the primitive

charges may be regarded as (non-orthogonal) base vectors in r - dimen

sional euclidean space, the set of all charges may be regarded as a lattice

generated by the Q. This lattice is usually called the charge lattice and

is denoted by FQ. As it will be explained later, monopoles are charges

and the instabilities lie in suitable E (or X, Y ) directions

Let us introduce a dual basis for the Cartan algebra with elements

W1 where

c(W1)=Tr(W1H1)=Sjj, i, j = 1,...r . (2.4)

By comparing (2.4) with the conventional definition for primitive weights

{ 13J, for which there is an extra factor (aj, c)/2 in front of the f5jj, one

sees that the W2 ‘s are just re-scaled weights They are called co-weights

[4] and it is evident that they can be normalized so as to coincide with

weights (by chosing (a2,c) = 2 ) for all groups whose roots are all of the

same length i.e. all groups except Sympi (2n), Spin (2n+1) and G2. The

integer combinations mW form a lattice that we denote by I’w and

since all roots take integer values on a charge, the W - lattice actually

contains the charge lattice, D FQ.

The root - planes of / are those vectors X in the Càrtan algebra for

which a(X) is an integer The W - lattice containing the charge lattice,

together with the root planes, forms the (Bott [9] ) diagram of H

Finally, although, in general, ezp 2wiW is not unity in the funda

mental representation, it j. unity in the adjoint representation and hence

ezp 2iriW1 = z (2.5)

belongs to the centre Z of H Note, however, that the correspondence W

z is one-to-one only for SU(n), since for the other groups there are r

W ‘s but less then r elements in Z (as shown in Table 1)
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On the other hand the correspondence W z can be made one-to-one

by restriting the Ws to those ones, W ‘s say, for which the geodesics

ezp 27rit W for 0 t 1 are geodesics of minimal length from 1 to z

i.e. for which Tr 1412 is minimal for each z E Z. (Since the weights W

are all of different length and are unique up to conjugation, the W for

each z c Z will be unique up to conjugation). Such co-weights are called

minimal co-weights [4J and a simple intuitive way to find them (indeed

an alternative way to introduce them) is as follows:

Let z E Z be a central element in the fundamental representation F’ of

the group and let f be the dimension of F. Then by Schur ‘s lemma and the

unimodularity of F the elements z must be of the form z = (ezp 2iA)1j,

where A = p/f and p is an integer between 0 and f, 0 p f. (Note

that if F is real or pseudo - real z must be real and therefore equal ±1,

a result which expains the abundance of Z = 1, and Z = Z2 in Table

1). It is clear that z is an element in the centre of SU(f) as well as

and hence one may start by constructing the minimal geodesic from i

to z in SU(f). Let this be ezp 27ritE, where E is a generator of SU(f)

and 0 t 1. Since exp2wiE = (ezp2iriA)lf, the eigenvalues of E can

oniy be of the form A + 1k, k = 1,..,f where the 1k are integers, and hence

the geodesic length must be proportional to k
(A + 1k

)2. It is clear that

this length will be smaller for i = 0 or — 1 than for any other set of

i’s. But since E must be traceless, there is actually only one E for which

= 0, —1, namely

E =
(P1

_qip)
(2.6)

(up to conjugation). ForG = SU(n) this is evidently the end of the story

since n = f and hence W = E. But the remarkable fact is that for the

other groups also, it s the end of the story. More precisely, for every

group G in Table 1 , W is an SU(f) - conjugate of E. We do not know of

any universal (G - independent) proof of this result, but it is not difficult

to verify it for each class of group in Table 1 separately. For this purpose

it is convenient to characterize E in a conjugation - independent manner,

namely to write

(E—1)(E+1)= 0, (2.7)

since then one has only to verify that the group in question has a generator

satisfying (2.7) for a given central element i.e. given fraction p/f. Now for
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the groups with centre Z2 and Z2 x Z2 equation (2.7) reduces to Y2 1/4

and it is easy to verify that the generators shown in Table 1. have this

property. Similarly for the only group with centre Z3, namely E6, it can

be verified directly that it has a generator of the form (y/3) X l and that

such a generator satisfies (2.7) for p/f = 1/3. The class of group with

centre Z4, namely Spin (4n+2), is perhaps the most interesting. In this

case E should satisfy the equations

= or (E ± 1)(E i) = 0 (2.8)

and one can see that the entries for W given in Table 1 satisfy these

equations and are generators by recalling that Spin(4n+2) splits into

the direct sum of the two inequivalent spin representations of Spin(4n)

with generators 4(1 ± )[, 7k,] repsectively, where 7 = 7172 . . .7 is the

generalization of to 4n dimensions

Collecting the results for the different groups G together, one sees

that in all cases the W in the fundamental representation are matrices

with (i) only two distinct eigenvalues and (ii) unit difference between

eigenvalues. Since it can be shown that the converse is also true (any

such matrix is an W) the W may actually be characterized by this prop

erty. Furthermore, since the adjoint representation occurs in the tensor

product F x F* the property (1), (‘1) may also be expressed by saying that

the W’s can have oniy eigenvalues 0 or ± un the adjoint representation,

and since the converse is again true, the W’ s may be characterized by

this (0, ± 1) property also.

In terms of the roots a, the (0, ± 1) property may be expressed by

saying that for any positive root a the quantity a(W) must be zero or

unity i.e. [E,WJ cz(W)Ea

a(W) = 0, ±1 for all a > 0 (2.9),

cf. [4,5]. Viewed on the (Bott) diagram, those vectors satisfying this

condition either lie themselves in the centre or belong to the root plane

which is the closest to the centre. Examples are given in Section 7.

If one considers in particular the expansion of the highest root 0 in

terms of the r primitive roots a, 0 = > h 1, and applies

(2.9) to both sides of this equation, one sees that a1(W) can be non

zero for only one primitive root, say, and that the coefficient h of &
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must be unity. This result provides us with a simple, practical method

of identifying the W in terms of primitive weights, namely as the duals

of those primitive roots for which the coefficient in the expansion of 0 is

unity [4,5] and this method has been used to obtain the identifications

given in Table 1.



_____________ ______ _______________ _____________

[a)

Yang—Mills Higgs

0, given by the

where V(’) is a Higgs potential for the scalor field , 0 is the Yang—Mills

magnetic field and D1 is the covorlont derivative, E3 = eJkJk/2. 6k = —

VkAJ + [Aj,AkJ , = VP + AP where A is the gauge potential and AP

denotes its action on P in the representation to which P belongs.

In this section we shall require that the fields satisfy the Euler —

Lagrange field equations, but only that they be of finite energy i.e. such that

the integral in (3.1) converges. One reason for this is to emphosise that the

most important spontaneous symmetry breakdown, namely that of the Higgs

potential, comes from the finite—energy and not from the field equations.

We shall consider the three terms in the Homiltonlon (3. 1) in turn. It

will be convenient to use the radial gauge x..A = 0.

Pure gjge term tr

For sufficiently smooth gauge fields the finite—energy condition

imposed by this term is evidently

0(x) —‘ b(Q).x/r3 =

where Q denotes the polar angles (8,p), b(Q) = (Oxa(Q) + (Q)xa(Q)). x/r and

a=rv.

Although o(Q) and b(Q) in must be single—valued on the sphere
52

they need not be quantized for (3.2) to be satisfied. The situation is analogous

to an Aharonov—6ohm potential in two dimensions, where the gauge—field is

9

3Finite inrgg configuratian! nnd Higg breakdown

Our starting point is a static, purely—magnetic

(YMH) system with a simple and compact gouge group

Hamil tonian

2E= [dx { tr + (D,D) + 2V()}, V() 0; (3.1)

A(x) -÷
(3.2)
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single—valued but the magnetic flux need not be quantized. [Onig for the

so—called vortex sgstem in which there exists, in addition to the gouge

—field, a scaler field (x), which remains finite and covariantlq constant as

r —- co does the flux become quantized The generalization of the vortex case

will be seen below].

Higgs Potential V()

The finite—energg condition for this term is evidentigr2VQ’) —* 0 as r

-+ co. A necessorg condition for this is that V -+ 0 .8ut V 0 is assumed to

be a Higgs potential i.e. minimizes on a non—trivial group orbit 6/H. Therefore,

at large distances, the Higgs field is not zero, takes its values on the orbit

6/H and meg depend non—triviallg on the polar angles Q ‘t(r,Q) -+ (Q) as r

—-oo. Then (Q) defines a mop of S2 into the orbit 6/H and thus a homotopg

class in x2(G/H). Since this class cannot be changed bg smooth deformations

[6] , the space of finite—energg configurations splits into topological sectors

labelled byn2(6/H).

The topological sectors can also be labelled by classes in r11(H).

Indeed, on the upper and respectively lower hemispheres N and S of

IgN(Q)P(E) in N

(Q) =

(3.3)

in S

where E is an arbitrary point in the overlap, a g the east pole

h(p) =g11(p)g5(p) (3.4)

(where i is the polar angle on the equator of S2 ) is a loop in H which

represents the topological sector

For simplicity, and because it is the most relevant case, we shall



11

assume that the homotopy group r(G/H) is described by a single integer

“quantum “numberm. This is equivalent to assuming that the Lie algebraRor

H has a 1—dimensional centre generated by a vector V , and H, the

semisimple subgroup of H generated by f= [ ñ,ñ], is simply connected.

When the Higgs field ‘(Q) belongs to the adjoint representation of a

classical group 6, and the Higgs potential V() is quartic, the one —

dimensionalit!J of the centre is actually not en assumption at all, but is

simply a consequence of the fact that Michel’s conjecture [14] is valid for

this case. In fact, for the ad joint representation of a classical group t itself

generates the centre and is parallel to one of the primitive (but not

necessarily minimal) W ‘s.

Whether t(c2) is in the adjoint or not, we can associate to it a new,

ad joint “Higgs” field V defined by V(Q) = g(Q) V g’(Q) , where g(Q) is any of

those in (3.3). W(Q) is well—defined, because V belongs to the center of /

(Of course, if ‘P(Q) is in the odjoint representation, then W(Q) and ‘P(Q) are

proportional).

The quantum number m can also be calculated as a surface integral.

indeed, the projection onto the centre of H of the charge—lattice r is a

1—dimensional lattice in the centre. If we choose V to be its Z—generotor

then the quantum number m can be recovered [1 5] according to

2m = J dQ1tr{iiS(Q)[81W(Q),8W(Q)] }. (3.5)

The homotopy classification is not merely convenient, but is

mandatory in the sense that the classes are separated by infinite energy

barriers. Thus, while an interpolated field of the form = t’P1+(1—t)’P2,

0t1 between two finite—energy configurations cP and ‘P2 is perfectly

smooth if ‘P and ‘P2 are smooth, it does not satisfy the finite—energy

conditionr2V(&) — 0, or even Y(’Pt)
-+ 0, as r-+oo, for general t Note that

since not only V —p. 0 but r3V —. 0 one has, using the notation q ‘P(r,Q) —
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cp(Q) rMq1J ——>0 where M = , and hence for generic

potentials Ci e those for which the onl!j zeros of the ‘mass — matrix’ av/at2

at V = Vmin ore the Goldstone zeros) the phUsical part of ij falls off foster

than r1 as r -* co and one gets (x)-* CP(Q) + ij(r,Q) , where ri)(r,Q)—. 0 as

r —+00. A notable exception to this observation is the 8ogomolrt!j — Prosad —

Sommerfield (6PS) case V = 0, for which the 8ogomoln!J condition B = DcP

implies [ 10, NJ that

c1(x) —a- CP(O) + b(Q)/r + O(1/r2)as r —a-co (3.6)

The cross—term (DD)2

This final term involves both c and A and it hence provides the

connection between the Higgs field (Q) and the gauge field b(Q) and thus

puts a topological constraint on the gouge field. As might be expected from

the vortex analogj, this constraint mou be expressed as a quoritization

condition as follows: the finite—energy condition is easilj seen to ber2(D)2

-a- 0 =>

+ o(Q)(Q) = 0 (37)

and thus also dW(Q) = W(Q) + [o(Q),NS(Q)J = 0. (Q), and W(Q) are hence

both covariantlU constant on S2. It follows from (3.7) that the topological

quantum number m can also be expressed as

2nm JdQ tr(Wb) (3.8)

Equation (3.8) is the generolizaton of the vortex quantization condition

mentioned earlier and it shows that in general it is not the gauge field b

itself, but onl!j its projection onto the centre that is quantized. Note that

the quontizotion of Jtr(bW) is again mandatory since the value of tr(b,W)
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cannot b2 chartgd without violating at 1at on of th finite_nrgj

conditions r2V ——> 0 orr3(D’)2 ——> 0 and thus passing through an intinite

energj barrier. Notice also that the value of (3.a) is octuall!J independent of

the choice of the Yang—Mills potential A as long as is covariantlij constant

[15].
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4.. Finite—eflerggOlUtiOflS of the field equ8tions [3,6]

The onl!J condition imposed on the ‘/MH configurations (A,) u to

this point is that the energy be finite. But it is obviously of interest to

consider the special case of finite—energy configurations that are &so

solutions of the YMH field equations,

D2 = avia and DxD = (, tD), (4.1)

where t denotes the generators of the Lie algebra in the suitable

representation.

Finite—energy solutions may be classified using data referring to the

field b(Q) alone. For this it is sufficient to consider the field equations (4.1)

for large r, in which case they reduce to

= (rv/a d)i and dxb = 0 (4.2)

in the generic case (and to dxb=O, q= 0 in the Bogomolny case). The first

equation shows that, for solutions of (4.1), the generic finite—energy

condition -q -+ 0 is sharpened to an exponential fall—off of q. (The BPS case

escapes because D2i = 0 is consistent with q = b(Q)/r).

Since (Q) and b(Q) are the only components of the field

configuration that survive in the asymptotic region, within each topological

sector defined by (Q), the only possible asymptotic classification of the

configurations is according to b(Q). The conditions satisfied by b(Q) are then

contained in the second equation in (4 2), which may be written as

db ab + [8(Q), b] = 0 .
(4.3)

This equation shows that b(Q) is covariantly constant and thus lies on an H—
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orbit. Therefore b(Q) = hr(Q)QhN1(Q) in N and b(Q) = hs(Q)0h3’(o) fl 9

where 0 = b(E) is in h. PlainlU, 0 is unique up to global gouge rotations, and

there is thus no loss of generolitj in choosing it in a given Carton algebra. In

the singular gauge where b(Q) = 0, the loop (3.Q) is simply

h(ip) = exp 2iQp O p 2n (44)

and the periodicity of p provides us with the uantization condition

exp 4r(iO = 1 .

(4.5)

Conversel!J, any quantized Q defines on asymptotic solution, namely

= ±( I +cos8)0. (4.6)

This shows that the solutions of the field equations can be classified

asymptotically by the chorg of H.

According to (3.8), the expression (3.8) for the “Higgs’ quantum

number m reduces to

m = 2 tr(QW) / tr(W2) .
(4.7)

for those fields which are solutions of the field equations.

Let us now consider a monopole (given by) 0 with Higgs charge m, and

decompose it to central and semisimple ports 0,, and O respectively.

According to (4.7) 20 = mW. Observe now that

z = exp 4r0,1 = exp(—4nQ1) (4.8)
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lies simultaneously in Z(H)0, (the connected component of the centre of H)

and in , and thus in Z(H5). Let us decompose h5 into simple factors,

=
e ... e hk, and denote by H the simple and simply connected group

whose algebra IS h1 itself simply connected by assumption, so 2(H55) =

2(H1) x ... x Z(H
k

and thus Z = Zl...Zk, where z is in 2(H1). However, as

emphasised in Section 2, the central elements of a simple and simply

connected group are in (1—1) correspondence with the minimal W’s and thus,

for each z in the centre, there exists a unique set of W11s (where W1 is either

zero or a minimal vector of h) such that

k

2 = (exp —2i W1)...(exp - 2it Wk) = exp(-2xt J = exp—2W

j (4.9)

depends only on the sector and not on 0 itself, because all charges of a

sector have the same Hence the entire sector con be characterized by

writing

2Q(m)= mW
+ (mj

(4.10)

Ey (4.8) 2(m) is again a chdrge (exp
4(m)

1) and it obviously belongs to

the sector m. Furthermore exp 4(0—0) = exp 4n0 . exp (—4xtD) = I shows

that 20’ = 2(0—0) is in the charge lattice of H55. We conclude that any

monopole is uniquely of the form

r

(4.11)

where the n1 are integers, and the 0, i= 1, ... r are the primitive charges of H55.

The integers n1 could be regarded as secondary quantum numbers which

supplement the Riggs charge m.
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The expansion (4.11) will be crucial in our stability investigations As

a matter of fact, we shall show that
(m)

is the unique stable monopole in the

sector m. The situation is conveniently illustrated on the diagrams of the

examples in Section 7.

The classification of finite—energy solutions according to the

secondary quantum numbers or, equivalently the matrix—valued charge Q, is

convenient and illuminating, but in contrast to the classification of

finite—energy configurations according to the Higgs charge m, it is not

mandatory, in the sense that (for fixed m) the different charges Q are not

separated by infinite energy barrriers. To see this one has only to note that

the family of configurations [16]

= tA + (1—t)A’ , = , 0t1 (4.12)

which are not in general solutions of (4.1) except for t = 0,1, but which

interpolate smoothly between solutions (A,) and (A) and which lie in the

same Higgs sector because P does not change, have finite energy for all

0t.c1. Indeed, as r —* co one has At 1/r, r’2 (Dt)
= t(r’2D) +

(1—t)(r312D’cr’) -* 0, r3V() = rV() -+ 0, so that the integral (2.1)

converges for (At,). As a matter of fact, one may obtain a rather simple and

compact expression for the interpolated energy E(At) as follows: DtcP
= t(DP)

+ (1 —t)(D’) and = + (1 —t)B + t( 1 —t) [L, Lj , where L = A. —

This shows that the interpolated energy must be of the general form Et =

at2+b( 1 —t)2+ct2(I —t)2÷2ft( I —t)+2gt2(1 —t)+2ht( 1 —t)2, where a,...,g are

integrals over the field configurations which are independent of t, and in

particular a = E, b = E’ and c = J?x tt,zsj
2

where E and E’ are the

energies of the solutions (A,) and (A’,t). ut since the solutions are

extremal points of the energy, E/Ot must vanish at t= 0,1 and this leads to

the conditions b = f+h and a = f+g. Using these two equations to eliminate h

and g one finds that f is also eliminated and thus Et reduces to the simple
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expression

=t2(3-2t)E + (1 -t)2( 1 +2t) E’
2

+ t2( 1 -t) 2C/2 (4.13)

Since z 1 /r os r —+ co it is evident thet C is finite, end hence thot the

interpolated energy is finite for oil Ot1. Thus the energj barrier between E

and E’ is finite. Note that in the special case that E = E’ (4. 1 3) reduces to Et

= E +t2(l—t)2C, which is just a standard quartic Higgs potential in t. But, of

course, the interpolation (4.12) is not the optimal interpolation in this case

since it does not, in general, follow the orbit of the gouge transformation (in

H) which connects 0 to 0’ when E = E’.
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5 Unstable solutions: reduction from an IL to anS2_problern

In next two sections we wish to show that monopoles for which
1

0 are unstable with respect to variations of the gouge field and we have

rather

= 2 2iqJ—1 (51)

q<0

independent negative modes, where the sum goes over oil negative

eigenvelues q of 0 (since 20 is a charge, 2q is always on integer). We also

wish to construct the negative modes explicitly. For these purposes it will

be sufficient to consider only variations of the gauge potential of the Higgs

group H for large values r R of the coordinates, and in this section we

specify the variations more precisely and show that they effectively reduce

the problem to the corresponding Yang—Mills problem on S2.

For H—valued variations of the ggpotentiais alone, 6 = 0, 8A =

a E soy, the variations of the gauge field and covoriont derivative ore

easily seen to be 60 = Dxa 60 = axa and 6(DcP) = a. Note that all

higher—order variations 60 etc. are zero.

For the energy functional (3.1) the first variation is, of course, zero,

since (A,) is a solution of the field equations, and the higher—order

variations are

= [ d3x (tr(Dxn)2 + tr (Oaxa) +

= 2f d3x tr{(Dxo)axa} , 6”E = 2f d3x tr(axa)2 (5.2)

all higher—order variations being zero. We shall assume that all variations

are squore—integrable, (a,o) = Jd3xtr(a) 2<

There ore some general points worth noting. First, since 6 = 0, the

only term in (5.2) that involves the Higgs field is tr(a)2 and since a must

be in the little group of (Q) = lirn, (r,Q), in the case V 0 this term
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vanishes asymptotically. Thus in the asymptotic limit 1-* cc (5.2) becomes

the variation of a pure Yang—Mills Lograngian.

Second, the only term rn (5 2) that involves radial derivatives i the

r2 term in (Dxa)2 and this contribution may be written as

62Er = Jdx tr(ar
0)2 = JdrdQ tr(rdra)2

= JdrdQ±1rda)2÷ 02/4) = m2(o, a) (5.3)

where d is the symmetrized dilatation operator r,8r}/2,
62 its average

value and m2 1/4+62 it can be shown (see Appendix) that the infimum ofm2

is 1/4, and thus, although 62Er is not negligible because of the lower bound 1/4,

it can be reduced to this lower bound, and O2Er can be regarded as a mass

term . Then the variations (5.2) are essentially variations on the 2—sphere
2

for each value of r.

Finally, it should be noted that some of the variations, namely a = Dy

+ 0(y2), where y is any scalar, are simply gauge transformations of the

background field A and lead to zero energy variations. in particular, it is easy

to verify that, because A satisfies the field equations, the second variation

62E is zero for the infinitesimal variations Dy, and for this reason it is

convenient to define the ‘physical’ variations a as those which are orthogonal

to the Dy. Since y is arbitrary, one has f d3x tr(o,dy) = d3x tr(Da,y) = 0 =>

D.n = 0 (5.4)

from which one sees that the physical variations may also be characterized

as those which are divergence—free.

We shall be interested primarily in the second variation or Hessian

62E in (5.2), and in finding the negative modes of this quantity. Since all the

terms in 82E are positive, except possibly the tr(Daxa) term, negative modes

are most likely to occur when this term is large and the others are as small
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as possible. Since B increases and the Higgs term decreases ‘vith r, this

suggests that negative modes are most probable for large r, and hence we

consider only variations whose support is asymptotic i.e.

a(r,Q) = 0 for r R (55)

where R is ‘sufficiently large’, and in practice this will mean R large enough

for the asymptotic form of the fields (3.2) to be valid. We can then drop the

Higgs terms in (5.2) and consider the pure Yang—Mills variations

62E = { d3x { tr(Dxo)2 + tr (B0x6)}. (5.6)

It will be convenient to write this expression in the form

62E =62E1+62E2 = Jd3x {tr(Dx)2+tr(D.o)2} + Jdx tr{(Oaxo —(D,a)2}, (5.7)

bearing in mind that D is unphysical and may be gauged to zero.

Let us first consider 62E1. From the identity (Dx(Dxo)) = —

D.(D.a) — (D), where (O) = one sees that

62E1 = J d3x tr { — + B, o) = 62Er + J d3x r2 tr(L2+ tia, a), (5.8)

where I = x x D and ö2Er is the radial part discussed above.

It is well—known that the components of I do not satisfy the angular

momentum relation, [LL3J = Ejik [Lk + Xk(X.D)l E< Lk, but that for

spherically symmetric, and hence for asymptotic, fields, the quantities J

obtained by adding x.(x..D) to I do satisfy such an algebra i.e.

= E1JVJk, where = L1 + x1(x ) (5 )
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Furthermore, since x and L ore orthogonal, we have = L2 + b2. Hence we

may write

62E1 = JdrdQ tr{(J2 - b(b-1))o,o} ()

Now, since J also commutes with x..D in the asymptotic region, it is

convenient to decompose the variations o into eigenmodes of i.e. to write

(1/r2) [B
a]=

q a (5.1 1)

where the q ‘s ore the eigenvolues. This is possible and the q ‘s will be real

because is skew—symmetric in the Lie algebra as well as in the vector

space, and indeed, because of this, it is easy to see that the q ‘s come in

pairs of opposite sign and multiplicity two i.e. in quadruplets (q,q,—q,—q). As a

matter of fact, the eigenvalues are q = q where the q ore the charges

defined in (2.1) and have the two—dimensional eigenspaces spanned by X and

ç. Then on each q —sector 62E1 will be

62E1 = JdrdQ tr ((m2+ C— q(q—1))a,a) (5.12)

where is now parallel to or Va and C= j(j÷1) (j 0) is the Cesimir of

the angular momentum algebra generated by J. Note that j must be integer or

half—integer, according as q is integer or half—integer, because q is the only

non—orbital contribution to 3. Now since 62E1 in (5.7) is manifestly positive

we must have

m2 + C- q(q-1) = (1/4
+ 62)

+ j(j÷1) - q(q-1) 0 (5.13)

and since is arbitrarily small, we see that j Jql—1. Note that j

follows from the manifest positivity of 6E1 and does not require any special
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pleading, such as that used, for example, by Coleman [2]. It follows from

(5.13) that the only possible elgenvalues of j ore IqI—1, Icil, iqi÷l,.. .in

particular the value j = Id— 1 con occur only for q — I. it will be convenient

to separate the j = IqI— 1 and j Il cases and to write

82E1 = rn2 (a,i) for j = IqI—1, Id 1 (5.14)

and

{m2 + (j—q)(j+q+ 1 )} (8,1) for j Id. (5.15)

Let us now consider 6E2. Using the equality tr(8xQ) = tr(80a) =

r2tr(aba = qr2tr(,), and the fact that D. is zero on the physical

states, we see that

82E2 = q (a,a) (5. 16)

From the positivity of 62E1 we then see that the Hessian will be positive

unless q is negative. Furthermore, when q is negative, (5.15) becomes

62E1 = {m2 + (j+IqI)(j—Iqt+1} (a,a) 21q1 (a,a) (5.17)

so, for j tl , the restriction of 8E1 to the physical states will dominate

82E2 and the Hessian will again be positive. it follows that the only

possibility for negative modes of the Hessian is when ci — 1 and j = id — 1, in

which case,

82E = Cm2 — Id) (o,a) <0 (5. 1 8)

Note that since in the case j = lqI—1 the first term on the r.h.s. of (5.7)

vanishes, the variation actually satisfies the simple equations
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dxa = 0, d.a = 0 (5 1’;)

where d = rD. in particular the equation D.a = 0 shows that they ore true

physical modes. it is also easy to see that these modes form a 2j+ 1 =

jql—1 dimensional multipjj of the J — algebra. We shall see in the next

section that for each Jqj there is one and only one such multiplet. Thus finally

we have the result that the monopole is unstable if, and only if, Iqi 1 and

that it has 2 (2lqi — 1) negative modes (corresponding to the two negative q ‘s

in the quadruplet (q,q,—q,—q). This proves the index formula (5. 1).

The simplest way of counting the number of instabilities for j JqJ is

to use the diagram (see examples in Section 7); (1.2) is twice the number of

times the straight line drawn from the origin to 20 intersects the root

planes. The opposite condition Iqi i/ is, of course, just the 8randt—Neri

stability condition [1 ,2,4] . From the discussion of Section 4 we know

however that IqI 1/2 if and only if 0 = 0 is a sum of minimal W ‘5 i.e. when 0’

in ëqn. (4.11) is zero: 3, given by (4.10), is the unique stable monopole of the

topological sector under consideration.

For 6PS monopoles the above argument breaks down: due to the b/r

term in the expansion (3.6) of the Higgs field, the second variation picks up

an extra term tr( [ba]
)2

and we get rather

82E = 62Er + f drdQ {tr(J2— b(b— 1 )a, a) 1-tr([b,aj
)2

} (5.20)

On the q—eigenspace of b the new term is q2, which just cancels the —q2 in

eqn. (5.10), and consequently the total Hessian is manifestly positive,

ö2E = ((m2+J2)a, a)> 0. (5.2 1)

PS monopoles are hence stable under variations of the gauge field alone,

even if their charge is of the form (4 10) In particular, a PS monopole
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whose non—Abelian charge is a non—minimal primitive W 15 stable [1 7] (while

for 1 0 it would be unstable).

in conclusion it might be worth remarking that the instability index

(xlqi—1) can be related to the Atiyah—Singer index for the Dirac operator and

to the Witten index for supersymmetry. Indeed if one writes the negative

mode equations (5. 1 9) in their complex form)

= 0 where D = D1+D2 , a = a1
—

(5.22)

one sees at once that they are Dirac—like equations and hence the number of

solutions is an AS—index. (Note however, that since is supposed to be a

2—vector, whereas the conventional AS—equation is for a 2—spinor, there is

an extra factor
h14

in the inner product for , and this results in a reduction

from 21q1 to 21qf— 1 solutions. In other words the instability index is the

AS—index for vectors).

To obtain the relation to the Witten index one needs only note that

the Hamiltonian

1 o

H=
‘D D

(5.23)

L 12

is supersijmmetric, and that (5.22) is just the equation that defines the

ground (H = 0) states of this Homiltonian.
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6. Negative modes

In this section we wish to show that the negative modes anticipa ted

in Section 5 actually exist and to construct them explicitly. For this

purpose it is convenient to use stereographic coordinates on S2 i.e. to use

3—dimensional coordinates (r,z), where z = x +iy = e’ tan 8/2 and r,8,tp are

the usual polar coordinates. In the (r,z) coordinates the 3—dimensional line

element and the 2—dimensional surface element become, respectively, ds2

= dr2 + (r/)2(dx2+dy2)and r2dQ = (r/)2 dxdy, where = 1 +x2+y2 = I ÷zz.

The advantage of the stereographic coordinates is that they are the

simplest case of conformal coordinates, for which one has the special

relation ‘J g =
6, ( ‘Ij = ‘fdetg), where g is the restriction of the

metric tensor to In particular the inner product of two vectors on

becomes

(o,b) = Jdxd!J fg ab = J dxdy (a,b) (6. 1)

( —co x, g co), and thus it reduces to the usual planar inner—product for

functions of x and g. It is easy to see that in the stereographic coordinate

the background gouge—potential A = 0(1 —cos 9) becomes

= 0 yIp, (6.2)

Let us now consider the part 62E1 of the Hessian, which played a

central role in Section 5. From eqn. (5.7) one may write 62E1 = j d3x (8r8) +

f rdrK, where, in stereographic coordinates,

K = J dxdy g2 tr[(EDao)2
+ (g?2

Da fg ga
)2) =

= J dxdy g12 tr{ (D1a2 0201) + (Do+ 0282) }

= J dxdy
2

tr (Do)2 (6.3)
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where D = D1÷ ID2, a
=

3— 182. On account of the form (6.2) for the

gouge—potential it is natural to absorb tie in D by defining

L(Q) = I =1 (g + Q) (so that L4(Q) = I (pa + Dz)) (54)

and then (using partial integration) K may be rewritten in the more compact

form

K = J dxdy tr(o, O)L(Q)a) .
(6.5)

We now wish to relate the operator L(D)t(Q) in (6.4) to the total

angular momentum operator J2 of Section 5. First, we note that in

stereographic coordinates the components of J are given by

J=i(d+z2a+z), J_=i(a+2-zo),J3=za-2+Q-l (6.6)

where 8 means 8 and means . Indeed, it is easy to verily directly that

the operators in (6.6) satisfy the so(3) algebra. On the other hand, by using

the identity

z28 = z M + (ñ) , where M = — 2d, (6.7)

one sees that the operators J in (5.5) may also be written as

.3÷ = I + z(1÷J3)) , .3 = I (pa + (1—J3)) (6.6)

which shows that the are operators of the same kind as occur in (6.4)

but with Q replaced by R = 1—J3. In other words,

J. = i’(R), J_ = (R) and = &(R)z(R) + J3(J3.- 1) (6.9)
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Hence to relate (O)(Q) to r we need onig relate it to (R) (R). Now

a straightforward computation shows that

= I(0) t2(0) — 0(0—1) + QW÷M—2) (6.10)

arid since in the computation the onig propertg of 0 that is used is that 0

commutes with z and , and this is true also of R, a similar formula holds

for R. Furthermore the last term in (6.10) (coefficient of p) is invariant

under the interchange 0 ÷‘- P. It follows that

+ 0(0—1) = (R)(R) ÷J3(23—1) (6.11)

arid since the right—hand—side of eqn. (6.11) is just the CosimirJ2,one sees

that the required relation between (Q)L(0) and

=J2—0(Q—1), (6.12)

in agreement with the results of Section 5.

Up to this point, of course, we have onig reproduced the results of

Section 5 in stereographic coordinates. The point, however, is that in these

coordinates it is easg to construct the negative modes (indeed the whole

elgerispace of the Hessian) explicitlg,

Let us first consider the negative modes. As alreodg discussed in

Section 5, for each eigenspace spanned bg X,’ç such that q = — 1, the

negative modes are solutions to the two coupled equations in (5.19). Adding

(—1) — times the first term to the second we get

Da = (QO + q)a = 0, (6. 1 3)
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whose general solution is

(k) = Iqi = kR1 +ñ), k = 0,1
,.

(5 14)

From the expression (5. 1) f or the inner product one sees that the

squore—integrable if and only if k s 21q1—2 . We conclude that the neqative

modes are just the a ‘s in eqn. (6. 1 4) for which jj2Iql—2, and there

are just 21q1—1 (i.e. a 21q(—1—dirnerisional multiplet) of them, as anticipated.

In polar coordinates 8,L these negative modes ore also expressed as

= (1/2) e’ (r
8/2)k

(cos
8/2)2q—2—k x

= (sin e/2)<(cos
8/2)2—1-k

0 k 21q1—2. (6.15)

and with X replaced by Y respectively.

This result can also be understood in a geometric framework [5j: the

a< ‘s are antiholomorphic sections of suitable line bundles. This is not a

coincidence, since these holomorphic sections of line bundles are exac:tly

the representation spaces of the rotation group SU(2) )

Now we turn to the remaining eigenspoce of the Hessian. From (5.7)

and (5.10) one sees that they are just the elgenspoces of modulo zero

modes. Hence it suffices to consider the eigenspace of i.e. the weights

of the various representations of J2. Furthermore, since any weight can be

obtained from the lowest (or highest) weight in a given irreducible

representation J2 = j(j÷1) by the repeated application of J, it suffices to

consider the lowest (or highest) weights. These are evidently defined as

those a ‘s for which

3_a = 0, J3 a
= —j a (ori÷ a = 0 end 33 a = ja) (6.16)



Since for a given j the operators J in (6.8) become I ( + zj(j+ 1)) and its

hermitien conjugate, eqns. (6.16) maj be written as

+ z(J+ 1)) a = 0, (z3 - ã) a = (—j+q+ 1) 3 (5 17)

arid its conjugate. The solution of (6.17) is eesilg seen to be unique and of

the form

= 2-j-IqI+ 1, j+ I = -i-II+ ‘1 (1 +z2)
IqI (6.18)

Thus there is just one multiplet for each j and its highest and lowest

weights are just (6.18) and its conjugate respectiveig. The negative mode

multiplet is just that for j = IqI—1, and it might be worth remarking that, in

contrast to this case, the weights for j II do no satisfj the gauge

condition D..a = Da + Da = 0, and hence are mixtures of phgsical and gauge

(zero—mode) states.
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7. Exarnp1

The simplest case of interest is that of when the little group H of the

Higgs field is H = U(2)Jhe Carton algebra of u(2) is two—dimensional, it is

in fact the set of all diagonal hermitian matrices. The vertical axis on Fig. 1

represents the centre generated bg diag (1,1), and the horizontal axis t’

consists of multiples of a’3— diag (1,—i). The onlj positive root is o(X) =

X1—X2, the difference of the diagonal entries. The corresponding primitive

vector, W = cr3/2 = diog (1/2,—1/2) is also a minimal one. In fact, exp2riW

The vertical lines intersecting t’ in integer multiples of W ore the

root planes. Q = 2W o generates the charge lattice of H5 = SU(2)

which is also the topological zero—sector of U(2). Those charges on the

same horizontal lines form the topological sectors labelled b!J a single

integer m, defined bg 20 = m diag (1/2,—1/2) = m W. Sector 1 is shifted with

respect to the 0—sector b!j W+\/ . Remarkobig, all even (respectivelj odd)

sectors reproduce the same pattern.

The unique stable monopole of the sector m is

Idiog (k,k) for m = 2k

mW + W11 =
(7.1)

diag (k+1, k) form= 2k+1

where [mj is m modulo 2 and W0 = 0 bj convention. An!J other monopole of

the sector m is of the form

20(m) = 20(m) + o1 = 20(m) + diag (n,—n). (7.2)

Those monopoles for which n 0 are unstable, with index V =

2(2n—1) for m even and v= 4n for m odd. For example, when G = SU(3) is

broken to IJ(2) b!j an adjoint Higgs 1, the vacuum sector contains 3
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configuration (whose edstence has been rigorousig proved in [18)) whose

non—Abelion charge 0 is conjugate to diag (1/2, —1/2, o) [1J This

configuration is indeed unstable and has 2 negative modes, namelij

39 = (1/2) e’ c11,
a

= esin 8 o, (1 = 1,2) (73)

where o ore the off—diagonal Pauli matrices in su(2) c u(2).

The physic8llj most relevant example (at present) is when the Higgs

little group is H = U( (local1 su(3)+ U(1)em) which ma!:j well be the

exact symrnetrg group in nature of the strong and electromagnetic

interactions.

The diagram is now three—dimensional, with the central u( 1) being

the vertical axis on Fig. 2 and ‘ the horizontal plane shown in Fig. 3, which

is in fact the diagram of SU(3). The primitive roots are o1(X) = X1—X2 and

x2(X) = —X3 for X = Wag (X1,X2,X3). The corresponding primitive vectors

are W1= Wag (2/3,—1/3,—1/3) and = Wag (1/3,l/3,—2/3). Theg are also

minimal vectors; their exponentials are in bijection with the elements in

the3—centre of SU(3).

The three families of root planes correspond to the positive roots

and the highest root 8 = o+ The charge lattice of Hçg = SU(3) is

generated bU = diag (1.,—1,0) and
2=

Wag (0,1,—i).

Those charges l!Jing in the same horizontal plane form the topological

sectors, labelled b!j an integer m. in fact, the projection of on entire sector

onto the centre of u(3) is mW = m diag (1/3,1/3,1/3). The unique stable

monopole in the sector m is

diag (k,k,k)

0 (m) = mW + Wtmi = diag(k+ 1 ,k,k) for m = 3k+ 1 (7.4)

diog(k+ 1 ,k+ 1 ,k) for m = 3k+2
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where [ml means m modulo 3. All other monopoles are

20 = 20 +n101+n2Q2 = 20 + diag(n1,n2-n1,-n2). (75)

and are thus unstable for n1 or n2 not equal to zero. Sector 1 (respectively

Sector 2) are obtained form the 0—sector by adding W and shifting by

and W2 respectively, and the pattern is periodic modulo 3

Those configurations for which 0’ 0 ore unstable. The simplest wag

of counting the index is by using the diagram . For example, the monopole

whose charge is 2Q = diag (2,0,—2) belongs to the vacuum—sector (since

its charge is in H5 = SLJ(3) ) . Furthermore x1(20) = 2, x2(2Q) = 2 and 8(20)

= 4, and so the index is 10. The negative modes are given by (6. 1 5).

To have a simple example where not all primitive weights are

minimal, let us assume, that the residual group is H = LL(j)p()L2.Then

6= sp(4) = so(5) and is Spin(S), the double covering of SO(S). 4 can

be represented by 4x4 symplectic matrices with a 2—dimensional Carton

algebra, soy ‘ = diag (a,b,—o,--b). The charge lattice consists of vectors in

1’ with integer entries. Let us choose the primitive roots c = tr (H1. )

and 0(2 = tr (H2.) , where

H1 = (1/2) diag (1,—1,—1,1) and H2= (1/2) diag (0,1,0,—I) (7.6)

Those vectors dual to the primitive roots are

= diag (1,0,-1,0) and = (1/2) diag (1,1,-1,-1) (7.7)

Any of the properties a), b), or c) of Section 2 shows that only W2 is

minimal: For example, only W2 exponentiates into the non—trivial element

(—1) of Sp(4): exp 2n = 1, exp 2r = — 1, In other words, while is



34

alread!J a charge, W2 is onlj half—of—a charge (Fig. 4). Alternativelg, the

two remaining positive roots are p = 0(1 + 0(2 and the highest root 9 = 2ft +

0(2. Thus there are hence 4 families of root — planes.

Let the integer m label the topological sectors. For m even, rn = 2k,

the unique stable monopole belongs to the centre,

°

20’ = 2k W (7.8)

where V is a generator of the centre normolizd so that 2W is a charge. For

m odd, m = 2k+1, the unique stable monopole is rather

2Q(2 1)
= (2K÷ 1) V +

It maj be worth noting that, in contrast to the H5 = SU(N) case, 2Q
=

W is

an ustable monopole in the vacuum sector, which has index 2 (8(W1) — 1) =

2. (Remark, that if was the charge of a Prasod—Sommerfield monopole,

it would be stable [17]).

The negative modes are expressed once more b (7.3), but this time

means rather

0 1 0—i

10 10

= (1/2) ci’ = (i/a) (7.10)

0-1 0 I

—1 0 —i 0



35

Acknowl edgement

We ore indebted to J—M Souriou for hospitolitg in Morseflie where

port of this work has been completed. We would also like to thank

Professors S. Coleman, P. Forgcs, P. Goddard, D. Olive, D. Sirnrns, and A.

Wipf for discussions. Special thanks are due to Professor J. owns]eU for

his help and collaboration at various stages of this work.



36

AIiPr1di

PROPOSITION: m2(â,a) ddr tr(rra)2 ((1/4)
+ 2)

(aa)

and infrn =1/

Proof:

r(r(aa)2) j (raa + a/2)2 dr -J t- (raara)dr - (1 /4)kjr t

=ft(r8r+a/2)2+(1/4)fSra2÷17-.a2(R) R 12

Therefore,

Equoiiti con never be achieved because rara+W2 = 0 => a is

proportional to rld2 => 0. However, consider f(r) ((Sl)

where 3(fl.) is a vector on and

ç(r_R)/R R r 2P

= 2R/r)’12 2R r 2sR

2sRr

Then J(rörf)2dr/J f2dr = (17 + 3 in s) (5+ 12 In s) -> 1/4 as s -> co,

showing that 1 /4 is indeed the infimum.
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Figure caDtiOfl

Eiurei. Diagram of U(2). The horizontal axis represents the Cartan algebra

(multiplesof ci = diag(l,—l))of the semi—simplepart / = stj(2), and the

vertical axis represents the centre generated by W = (1/2) dtag (1,1). The

only root Is tr(c13. ). The charges are Q = m’4 + W1 + nci3, where m is the

topological quantum number [ml means m modulo 2 and n is a ‘secondary’

quantum number. W = c13/2 is a minimalvector, dual to the root. The root

planes are vertical lines which intersect the horizontal axis at Integer

multiples of W. The horizontal lines are the topological sectors (labeled by

m). In each sector, the charge which Is the closes to the centre is the

unique stable monopole there. For other charges the number of lnstabIlit1e

is twice the Intersection with the root planes. Sector I is obtained from

the vacuum sector by shifting by W. The pattern is periodic In m modulo 2.

Figure 2. Diagram of U(3) . The vertical axis represents the centre

generated by ‘V = (1/3) dlag (1,1,1), and the horizontal plane t’ is the

Cartan algebra of SU(3) shown in more detail on Fig. 3. The charges are

m’4÷W +n1Q1+n2Q2,where [ml means m modulo 3, n1 and n are Integers

and Q1, °2
are the primitive charges of SU(3) on Figure 3. The horizontal

planes are the topological sectors. Sector m is obtained from the

vacuum-sector by shifting by W(. In each sector, the charge closest to

the centre is that of the unique stable monopole and the number of

instabilttiesis twice the Intersection with the root planes. The diagram Is

periodic in m modulo 3



40

Eigjit&1.. Diagram of SU(3) Q1 = diag (1,- 1,0) and
°2

=diag (0,1,-I), are

the primitive charges and the two primitive roots roots are tr(Q1 . ) and

tr(Q2. ). Theminimal vectors = (I/3)diag(2,-1,-1) and = (1/3)diag

(1.,1,-3) generate the diagram. There are three root planes, intersecting in

angle n/3.

FigureA The diagram of Sp(4) Spin(5), the double-covering of S0(5). The

primitivecharges are Q1 = dlag( 1,0,- 1,0) and = diag(0, 1 ,0,— 1). The two

primitiveW’s are W1 = diag(1,0,-1,0) and W2 =(1/2)diag(1,1,-1,-1), out

of which only W2 is minimal.

TABLE CAPTtON

Table 1.

The simply connected simple compact Lie groups with non - trivial centres,

their minimal co — weights (expressed as matrices and as primitive weights),

the representations characterized by co — weights, and the expansions of the

highest roots in terms of primitive roots. Here
°2’

03 denote Pauli matrices,

y Clifford matrices, y the SU(3) hypercharge diag(2,-l,-l) and y
=
y1y2...
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Centre
Group W as matrix W as weight W —representation Highest root expansion

Spin (2n+i) o= l-[y any p F1 (vector) a1-f- 2ct2+..+ 2r—l 2ar

Z2 Sympl(2n) (1/2)03 x 1 2 Wr Fr (rank r atisymm. 2cx1+2a2+. .+ 2a+
‘r

tensor)

E7 (1/2)02 X 11 28
56 —dimensional

Z3
(1/3) y x w1, w2 27, 21

72x72 Spin (4n) a ,(l/2)(l+y) a
F1 (vector),

w, W , w
a+2a+...+2cL +cx +cx

1 r-1 r (spinor)
1 2 r—2 r-i r

Z4 Spin(4n+2) (1/2)y , y +(l/2)(l+y)o

Zn SU(n) (1/n) diag(k, n—k) wk, k = 1,...n—1 n—i primitive reps. a.1+ ÷
afl2

+ ani

Fk

Table 1.




