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ABSTRACT

We discuss a class of mean field hamiltonians for interactiing

For such systems one can easily derive the finite temps
Green's function in an algebraically explicit way. This
generalized Green's function G is well-known in the case of
superconductivity, for example, where it possesses the pseudo-
unitary property e’ = g%1 (where (i* is a scalar). In the case
of Helium Three, however, this property of the Green's function
is not automatic. By analogy with this latter case we define
unitary systems (or the states of such systems) as those which
satisfy this pseudo-unitary constraint. Such constrained systems
are particularly easy to treat both theoretically and
experimentally; and we explore some of the consequences of
unitarity in the cases of coexisting superconducting and density

wave systems.

The method of Green's functions is standard in field theory and

many body physics, and it is unnecessary to reiterate the value of thi

[

approach in the present note. TIn the many body case, the Green's

function G.. is introduced as a thermodynamic expectation

ij
GMWAxQMxﬁH4V = xAHaAﬁwﬁxavﬁme.a_vvv
where <> = (tr m:mxbu\mmw mimﬂv (g = mewmev

for any operator Q and hamiltonian K = H - uN.



We assume that we are dealing with fermion field operators

i

mWaewA%vmamﬂ H o= 1)

T+ ~¥T ;. -
ﬁwﬂxav =K Gwmxwm K (i = 1,2,...,n)
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Here x,x' are the spatial co-ordinates, and T is a T1-ordering operator
for the wmnmaswmﬂ 17, whi ; is in general complex; in this latter case

note that Ghmxmu # v, {(xt) . TFor 1 = it (t = time) this gives the usual

Heisenberg m40wcnwom. We shall work inm the Fourier transform
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when the Green's function becomes

mquWaw = sAH4m>wAva>QAwOvvv

Using the periodicity of this latter function, period 2B, we may write

?E M :Awim:g.

[For Fermi statistics w takes values w = (2n+1)w/B, n = 1,2,3,...]
It is straightforward to evaluate this in the mean-field case, where we

assume that our hamiltonian may be written

Yo R(k)

i

with K{) = Mw ; awmmwu% mwvb (k).

The fermion operators >.va satisfy the standard anticommutation relations

~> (ky, b>mw Y1 o= wu@ .
kk'

e . + [ -
Writing Mwwﬂwv = wwﬁwv>mmwvv (1,7, = 1,2, ...,n)

these anticommution relations lead to the commitation relations
[X.. = 8§ X, = &, K .
N HWVMWNW jk7ig i27k]

{suppressing explicit k-dependence) which shows that our hamiltonian K

is an element of a subalgebra of mewmr uwmwv. [If the complex



coefficients Bwhmww are such that each K{k) is hermitian - the usual
i

case ~ then the dynamical algebra is a subalgebra of u{n) rather than

g2(n).] Since the {A.} form a first rank contravariant t
g ] :

the %%ww we may readlly obtain
K \ Y =mt y
A.(kg) = ).(e Y. A (k) = ). A, . (kDA (k)
i J 13 1 U 3
. . ‘ . . —~mT
where m is the matrix AEMWAWVVH and A ¢ e .

funvtion G.. {(kw)
L]

. =1
mAWEWNAHEMISW.

As mentioned, the matrix m is hermitian

that is

for some scalar ., then G(kw) 1is explicitly invertible
O mu Fa

Clkw) = (=iwl - Bv\mm

where

In this case G is also pseudo-unitary,

Eﬁ .
]
e}
e
o

These are the systems which we refer to as unitary in th
Although this condition is highly restrictive, it is satisfie

systems of physical interest - as we now illustrate -~ and makes

.

treatment that much simpler, both theoretically and experiments

just how restrictive this unitary condition is

Py

An idea o
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obtained by looking at the dynamical algebra g of the system.

above case, if the hamiltonian K is an element of mmWﬁmww with each

g isomorphic to g, we refer to g as the dynamical or spectrum

k
renierating algebra of the system with hamiltonian K.] For a

aQ



. . . r . \
algebra g there will be invariants Ir = trm {(r = 1,2,...) assc
with the matrix m of the hamiltonian K(k); at most £ of these will be

independent. For a unitary system this number is
3
. . s N £
two invariants, corresponding to tr m and £¥ m =

(semi-simple) case, there is only one invariant. = Thus su(l) is

automatically unitary - the case of superconductivity; but so(5)
of rank 2, unitarity imposes one condit ion ~ and this

superfluid helium three (from which siluation we have

nomenclature [2]). We describe the helium three case

a Hartree-Fock linearisation, the effective hamiltonian for an

acting fermion fluid with pairing in opposite momentum {(but not

necessarily opposite spin) states is given by K = /

k
v + + RERE SUE PR
K k) L Qkiakuaka i a—kaa*ka) + ( E V<k’&’g}8k&3“k$ Sl
o a,B
Choosing a basis of fermion operators {Aik)}g
k) (k) (k) (k) _ * +
(A 7A LA 8,0 = (g ey ba gy sa )

we may write the matrix m in the spin-triplet case as

E v

where E = ng (with gk = € - p; we suppress the momentum index) and
P
1 274

The unitary condition m? = (92 - m2}1 leads to

k i
Y,dy = =V, +V

LS 25 Ay a2

ot

; ) 1. .
V=4d.1, with d V%¢), dy = = §l<v¢f Y

(v,vl1=0
which is
’c:’{' 5 d;’c -0

a form given by, for example, Leggett.

For such unitary states the 4 x 4 Green's function is of course

. . . 2 2 2 2

immediate, with @7 = o” + £+ |d]|".

This exemplifies a characteristic feature of unitary systems; there 1is

a single degencrate energy gap, in the helium three case given by



W@Wm, For a system described by a rank-2 spectrum generating Li

'

algebra we would expect & "gaps". This gives

vriterion.which we now illustrate by referenc

Sooryakumar and Klein on a system of coexis

and superconductivity [4]. We may write th

for the hamiltonian for this model as

Mw !;.w Y t&w
-Q
* %
e T W
m = " m ,
Y -4 W =/
Q
¥ % kS o
~p ey =A=E
-Q B
in a bas
. b . + +
(A, () A, (k) , Ay (k) ,8, (k) = (3 ,a, a2 .2 _ ).
' c okt -k

Here £' = £(k~-Q) = €(k-Q) - u, k = k - Q, where

wave vector for CDW propagation. The couplings

superconductivity and CDW are given by 4 and

A and A _ are so-called anomalous terms, appearing in the hamiltonian

Q -Q
~-A a & ~A.a a., + h.c.

The dynamical algebra here is su(4) [S5], which i

condition forces w& = A Q = 0, and £ + £ = 0.

known as the nesting condition. As the experiment
the presence of two energy gaps, below the approg

transition temperature, we can assert that the s

Therefore at least one of the given conditions must

neglecting the anomalous terms, this means that the

et =]

fails.

For the many fermion systems we have
generating algebra is compact, and so has

hermitian representation. Unitary states




one “invariant associated with the matrix representing

In that case the system exhibits a single energy gap, the [inite-

temperature Green's function is immediately obtainable wit

inversion in the mean field case.
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