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1. Introduction.

In two recent paaeﬁs(grﬂ) we have given the symmetry breaking patterns

N

for SU(n) symmetric field theories with scalar fields in the adjoint or adjoint

and Tundamental representations. Theories with S0(n) symmetry ere also of

considerable interest, partﬁcu?ariv because of their topologically non-trivial

solut€0n3(3), and so we would 2lso like to have the exact form of the symmetry

breaking for them. In this paper we find the breaking patierns for models with

scalar fields in the adjoint, fundamental or adjoint and fundamental representatio
We will consider & general potential of the form

ﬁfszgtmﬁ~%%%ﬁﬂgﬁx@Y+htN” +a\ Y + o (H H) e g2 +ﬁ(,¢ﬂﬁ (1.1)
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where ¢ and H are in the adjoint and fundamental representations of S0(n)
respectively, and (H,H) is the inner product for the fundamental representation
(see section 2). With the definition
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our results may be summarized as follows

Pure Fundamental - S0(n) - S0(n-1)
Pure Adjoint - SO(n) » SU(o) x U{1) for b>0
+.S0(n-2) x U(1) for b<0
Adjoint and Fundamental - This depends on whether n is odd or even.

n odd : SO(n) - SU(o) x U{1) for b>0, £>0
SU{o-1) x U(1) for b>0, 8<0
S0(n-4) x U{1) for b<0
n even : SO(n) » SU(o-1) x U(1) for b>0
+ S0(n-4) x U(1) for b<0

We also find a non-trivial renormalization group behavicur for the last
case, since radiative corrections can change the sign of b. As in the case
of SU(n), we believe that this reflects a real physical effect, namely that
the shape of the effective potential seen by a particie depends on the enerqy
of the particle, but does not affect the mass spectrum of the theory since this
is defined specificaily at zero mecmentum.



The paper is organized as follows: In section two we establish the
notation and take care of some mathematical preliminaries. In sections
three and four we find the symmetry breaking for the pure fundamental and
nure adjoint cases respectively. The case with both adjoint and fundamental
scalars is considered in section five, and the renormalization group equations

for all cases are given in section six.

<

2. Preliminaries.

this section we give a brief description of the structure of SO(n)
and some identities satisfied by its generators and we also give an explicit,
non-standard basis for the generators in terms of nxn matrices. The first
part of this section is based on the work of Cvitanovic(4).
The group SO(n) has generators Ti, i=1.... n(n-1)/2, which may be written
as nxn matrices Tgb satisfying

tﬁTi=0 ) te ] T = &j :[Tifrq::CﬁKTK 2.1
Tc::b ic;ﬂ = ;/3’\(81!45 "Sz:f:» ’-g{zc‘gbi‘) &‘ié;'(’/gé': [...N (2.2)

C

Cr) TR ‘ '
g Aatr T (2.3)

where repeated indices are summed over. Cqji is completely antisymmetric in
i,J.k and there is no symmetric three-index object. One can define a completely

symmetric four~index object

L3 K
Diju = trw [ } (2.4)
sym g
= dyg v oan-) S
(ﬂl-f‘\‘«“i')
€ - .
where dj;, =0 and  Sijeg * (éﬁ 5&2 + élkéiﬁ* é@deK)/;S (2.5}
A useful fddentity which will be needed in calculating the radiative
corrections to the theory is the formula for the symmetric contracticn of
two d's:

{0‘*51‘“‘\{\ dopn lj = [t ﬁLﬁj\ 3] )L kg ¥ {an-1in- Yoy ”é‘wgt\ﬁ_ (2.6

GGV~P qy* (8 L n+H)



In what follows we shall need an explicit basis for the generators.
There are several possibilities, the most common choice being the set Jyj
of all pure imaginary antisymmetric nxn watrices. This has the advantage
of familiarity but the disadvantage of having no diagonal elements. We shall
instead use the "Spherical" basis(57, consisting of all real nxn matrices
antisymmetric about the anti-diagonal. The definition of this basis varies slightly

depending on whether n is even or odd, so we shall first consider n odd.
Let n = 20+1. Then the generators are Gg, a,b = -o...0, and
a c ~ e ¢ c ¢ b
16y, G, ] : Scb G ~6ad Gy 48, Gz -d.z Ga (2.7)
z b ( Q)T - R
GE =T UL : Gb " Ug where  a=-a (2.8)

The diageonal elements are Gg, a=l...o. I we define ey}, as the matrix with a 1
at the a,b entry and zeros elsewhere, we have
b
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For S0(3), for example, the generators are

-l | o o -
G = O;} Glh(qox 6 - Oi\ (2.10)

The elements of the fundamental representation are written in this basis

as complex n-vectors

T | | ,
H = (%\g by fﬁi}n,jh‘,.“,hml/%i where by = N (2.11)



4.

The dnvariant inner product is given by (A,B) = ATKB where K is the matrix

with 1's aiong the anti-diagonal,

t\
| |
=gl o . } (2.12)

2

Then (H,H) = h2 + Ih1% + L.+ Ihgl (2.13)

For even n everything goes as above with o=n/2 and the index 0 cmitted.

3. Fundamental Representation.

We shall first consider the case of a single multiplet in the fundamental
representation. The results in this case are well known, but we include them
for the szke of completeness and to show how they come about in our basis.

The potential in this case is
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The minimum is achieved when
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Suppose n is odd. Then from eq. (2.11) we see that we can choose Hpin such tha!

W
>
—
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hy = Vo n  hot O for a0 (

Since the SO0{n-1) potential is simply 3.1 with the index 0 omitted, we see the
remaining symmetry is SC(n-1).
If n is even the situation is slightly more complicated. Since there is no

ho» let us choose Hyip such that

ir\{i, = ‘L"‘J:Zj?*/;‘,\ [ lhg,,: O —f@r‘ o= I . O"—l (3~4)
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we see that these G's annihilate Hyip @nd that together with the Gg for
jal, bl <o they generate S0(n-1). Thus the symmetry breakdown is SO0(n) +S0(n-1)
for all n.

4, Adjoint Representation.

We now turn our attention to the case of a single multiplet in the adjoint

representation. The potential in this case is
. 2 :
Vo= ot tegt o+ a(trdr) ¢ both g (4.1)
~ g =
This is minimized by ¢, satisfying

-’-/u} ¢0 4 ‘CLQ% tr ef); + lL(,Z"og = (0 (4.23

Since this is a cubic equation, ¢, can have at most 3 distinct eigenvalues.
If we write it in diagonal form we see from equation (2.8) that the eigenvalues
come 1in pairs of opposite sign, so the only possibilities for them are v or 0,

and ¢ must be of the form

¢O = ._.L. ~‘\/O‘

where there are ny v's and (n-2ny) zeroes. HNotice that if n is odd then there
must be at least one zero.
PTugging this form for ¢g into 4.1, we find

Vo= aAn VARV (L!"‘\l, VAR h_rj;_l”\/l’ (4.4)
* 4 4
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Minimizing thic with vrespect to v we find

Vi b Vs it (o 1) (4.5)
W&Ab ‘ %@‘\maﬁg }

We see from 4.4 that we must have nja+b>0 in corder for the potential to be
bounded below. There are then three cases to consider. First take a and b both
positive. Then V is minimal when nja+b is as Targe as possible and so ny = n/2
for n even or (n-1)/2 for n odd.

The second possibility is to have a<0, b>-na (n even) or b>- (n-1)a (n odd).
In this cese V is minimal when nya+b is as small as possible and so orice again
we see n1 = n/2 ((n-1)/2) for n even (odd).

The third case is b<0, a>-b/2. Here we want nja+b as small as possible and
so ny=1 for all n.

Thus we see that the symmetry breaking pattern depends only on the sign of b.

The Torm of ¢ at the minimuin is

o -1 3 ol
4 < Q' £
byo g2 M 200 = &\_d o ewa) er v Y edd) (e
A & N - V2, N
A \ [ \ g
Foo )
beo ¢ =V Go = v | , (4.7)
V3, V2 ° :

where v is given by 4.5. ,
To find the remaining symmetry we must find the generators which annihilate
¢g. Let us first consider b>0. Then from (2.7) we see

[qi’a; C’z:_g = O &,h>0 o¢ &,b’;O

( vav G, @ <0, b0 or ad bio (4.8)

- - - I .. S
fhe Goldstone busons are of the form Gg, a,b>0 whiie the remaining generators satisf

© L C . « 48 . 3
LU{S (jf_ - é’c%ﬂ C’Jx. S ‘S)c:,(;Q_. é’b : . : (4.9)



Ule) = U011 x SU(a).

which is the definition of the algebra
: a o : .
For <0 th“ Goldstone bosons are G, and Ga5 lal<o. Tne remaining generators

o : . ,
are Gg and Gb, [bj<o. These form the algebra S0(n-2) x U(1).

5. Adjoint and Fundamental Representations.

e now turn our attention to ithe case wheare there are two scalar field multiplet
one in the fundamental representation and one in the adjoint representation.
The potential is given in eq. (1.1). The results differ slightiy depending on
whether n is even or odd, so we shall first consider the case where n is odd.
Then we can put the fields at the minimum in the form

.
_Vf-.'
: . T %
(;D:{/‘(: '"\/1 I H =(ha'101“‘1“5‘h010/ L\ﬂ‘)// (5.1)
by OVi
( . |
[*al -
Define A= trg* = Z‘ Vi B= ) = ke Ik (5.2)
L=
Then the potential can be written as
'"’/mn. 2 -2 - 'ﬂ- < y 2} }z
Vs s A - 8+&A+lﬂ‘+«ﬁb{hgéﬁ v Ve g {5.3)
e bR 4 Y y o
Let us minimise this with respect to hy. We find
. h =72+ )8 +2aA)= O (5.4)
ého
This has two solutions, hy=0 and AB = 42-20A. 1 we take the second solution, we
have
< 2
Vo= “”‘*iA}L 1@?*)Af;L(& Jeg? )A +Q'A\Qfggvg}%rf (5.5)
f) '\\ [ ;\ Yy L=t 4

If B is negative, this is unbounded from below as |h,l| +«, which means we have
chosen the wrong solution to (5.4). For positive 6 the minimum of (5.5) is
attained when |hy|=0. Then the potential is of ihe same form as the pure adjoint



model considered xn section 4, and we see,

using 4.6, 4.7 and 5.4,

by o VSV LV = dd max b = (beoa) vt - asmepd
Nbroa) -1 Nbrea) - Yox?
3 kA
E<o ViEe =V 20 VD dpteax2 b (bea) 2 el
Nbra)-Hu? %(bnx)mwmz
Now let us consider taking the first solution to (5.4), i.e. hy=0.

minimizing the potential with respect

Mhol = 7722 - p 2

to |h,| yields

Xf: ,yﬂ ~>%fL~:«1f\A TAV‘V’ +%Qf“i¢>
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IT we now minimize (5.9) with respect to vg,

V;’['}\(&’rw - L;LQH?)"] - }\/

Plugging this into 5.9 again yiel
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we obtain

vt - (A 2K 2%+ f) )§ A

L2

{00 -Gt ppl s - [ach - ] V‘}/Dw)

%[&(fﬁ)“ﬁ'féklp& ”[Uﬁq)gg +{Am+§)&yV*}/9gr\

we see
DY VAR SV AVAS

Vo=

!hfr::{bifﬁdk)lfl- bLA@a+§)k5h/§wﬁ
where D{F)z )%(raﬁb)-ﬁw

b(swaf§)~iaua+g)gl +a,§2
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ds a potential of the form (4.4), and so
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For b<0 we find v 2 and Ihc{d are given by

~equations 5.11 - 5.14 with o reploced by 2.

P

.“)
= .. = VE L =0, and vgw], v

There are thus fwo cases, depending on whether hg or h, is non-zero.
(There is actually a third case, corresponding to the vg=0 solution to the
minimization of 5.9, but one can show that this is only a Tocai minimum and
so we have not included it here). [Explicit calculaticn of the potential shows
that the absolute minimum is given by the hg=0 solution for b and g both positive
and by the hy=0 solution in all other cases.

1,

Thus we have the following field configurations at the minimum:

- \
.
bso, p>0 $= Vp ] , H=(o..,0h, 0..0) (5.15)
Zo,
{
"
Ly \
=%, ¢ ) . -
%J:“!Oi %3’({3‘ ¢\:.~_L | H =({$\a‘;ol "IO h(;)/ﬂvli (5.16)
/2. i *V‘O i
\‘/"
"y
Ver
, RVE ;
b0 ¢= L —%Ho :H :uiuof ;0;h9ﬁ5(5j7)
V2, .
o
Vi

The symmetry groups of the minumum field configurations can be seen by
inspection (or by using the procedure given at the end of section four), and
we find the results given in the introduction.

If nis even everything goes as above with the index 0 omitted. This
means that there is no analogue of eq. 5.15, and so the minimum for b>0 is of
the form of eq. 5.16 (with the zero eigenvé]ue of ¢ omitted) for all g.



6. One-Toop Renormalization Group Lquations.

The orne-Toon rerormalization group equations for our model can be easily
calculated using the effective polential techaique of Fujimoto, 0'Raifeartaigh
and Farrav7u1n1(6). Defining

@L et T" (6.1)
we have
Vo= '*/:Jlif'si”a»z;f.L(H, H) « fﬁ ()" « g“tméﬁé" 4% A +) (H,H (6.2)
e gt (1, H) ¢ poid; (H,TTH)
where @ = a - nz—n+4b and djji7 is defined in eq. 2.4.

We can think of ¢; and Hy as forming one n(n+1)/2 component object 4.
Then the one-loop renormalization group equation for V is

v 'r-ll\t?‘ . i AN
/,(,‘L E..i_i\‘.\’,/ =g ,,WL, i_. - {\K\’l } Wl\i‘, e ’\/:_ } = L _}{.,_..-. (6 .
ApAe 64T 35,08,

The equations for the various coupling constants are cbtained by matching
p 3 g
coefficients of ¢ and H. Using the identities given in secticn two, we find

0
nd
L

dit = (Nee)d® ¢ elorala-s) B e st ¢ Bup ¢ Hoao) p 6
di (P-ney ) ‘ | A&

Ab - wdb ¢ Lan-Yo-singy) Bovapt o
d’t = -+ Y

Ap = NS+ H-D%p + (n-0 B ¢ e e) X o
At |

Jw = [N+ A) a4 %&ﬁ“l)é:fg e {nra)y Ao )\[ v Bt Lii%l '8
STy .



maplienrburang) (6.8)
{S‘\]%é.\i fh S *~\ﬂ0’.,-£~;3)“)/‘* (6 9)
Lt = (a0 zF,« LA ey AT (6.10)

ot

where o= (1/16:%) 2nu and N = n(n-1)/2.
The most interesting feature of thesz equations is that thay can change

Eay
T
i

the sign of b and thus the effective symmetry of the potential. From (6.5)

m—
¢]

and (6.8) we see that if 8=0 at some t=ig, then the renormalization group wiil

not change it as t varies and since the change in b is proportional to b itself,

b can never change sign. For non-zero B, however, the 6% term in 6.5 can cauce

b te change sign. We interpret this as meaning that the effective shape of the
potential for interacting particles is momentum dependent. The symmetry pronewtief
of the vacuum are unambiguous, nowever, because they are defined at a particulay
vatue (zero) of the momentum. ’
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