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• 1. Jnt,odurtio.i

In two recent j)apdrs I.?) we have gwen the syi.1r’etry breaking patterns

for SLJ(n) syiimetric field tieories with scalar fields in the adjoint or adjoint

and funcbiicntal repr’scntati’s. Theories with S0(n) symmetry ne also of

consi clerable interest, particularly because of their topological ly non-trivial

solutions3,and so w€ would also like to have the exact form of the symmetry

breaking for them. ln this paper we find the breaking patterns for models with

scalar fields in tI:a adjoini, fundamental or adjoint and fundamental representatiot

We will consider a general potential of the form

-,e4trc -çQ41ll)+ç{tr’t+ ttrc tX(H,H)2+(H,H)trc4 + j(H, hII) (1 l)

where • and H are in the adjoint and fundai,iental representations of S0(n)

respectively, and (H,H) is the inner product for the fundamental representation

(see section 2). With the dàfinition

n In-fl
a = ç ior n even (odd) (1.2)

our results may be cuirqayi’od as follcws:

Pure Fi’ndamental - S0(n) S0(n-l)

Pure Adjoint - S0(n) + SU(o) x IJ(l) for b>0

+.SO(n-2) x IJ(1) for b<0

Adjoint and Fundamental - This depends on whether n is odd or even.

n odd : S0(n) + SU(a) x U(l) for b>0, 6>0

StJ(o-l) x UCI) for b>0, 6<0

S0(n-4) x U(1) for b<0

n even :S0(n) + SU(a-l) x U(l) for b>0

+ S0(n-4) x U(l) for bcO

We also find a non-trivial renormalization group behaviour for the last

case, since radiative corrections can change the sign of b. As in the case

of StJ(n), we believe that this reflects a real physical effect, namely that

the shape of the effective potential seen by a particle depends on the energy

of the particle, but does not affect the mass spectrum of the theory since this

is defined specifically at zero meomentum.



The uapcr is orgatafled as follows: In section two we establish the

notation and take care of some rnI.hematical preliminaries. In sections

three and four we find the symmciry breaking for the pure fundamental and

pure adjoint cases respectively. The case with both adjoint and fundamenta1

scalars is considered In section five, and the renormalization group equations

for all cases are given in section six.

2. Preliminaries.

In this section we give a brief description of the structure of SO(n)

and some identities satisfied by its generators and we also give an explicit,

non-standad basis for the generators in terms of nxn matrices. The first

part of this section is based on the work of Cvitanovic4.

The group SO(n) has generators V, irl.... n(n-l)/2, which may be written

as nxn matrices Tb satisfying

trT’O , trT’T &j , [TU,TuJ:CLjKTK (2.1)

Tàtt = (2.2)

atrT’T3T’ (2.3)

where rcpeated indices are summed over. Cijk is completely antisymmetric in

i,j,k and there is no symmetric three-index object. One can define a completely

symmetric four-index object

L j-rK’4)
tnT T i 1 j (2.4)

Syn

4 (ajjj SLju
(n’-n t9)

where diaKtO and Si,jjcAt (ij5kL â;i/3 (2.5)

A useful identity which will be needed in calculating the radiative

corrections to the theory is the formula for the symmetric contraction of

two d’s:

{Lp1 dnnt4 = L -i1a(n.-l SLjti ai.jxj (2.6)

S.



3

In eha: foil ows we shall need an cxpi cit basis for the generators.

There are several possibilities, the most common choice being the set J-jj

of all pure imagina y anti symnetric nxn matrices, This has the advantage

of familiarity but the disadvantage of having no diagonal elements, We shall

instead use the Spheri cal basis (s), consisting of all real nxn matrices

antisym1otric about the anti-diagonal. The definition of this basis varies slightly

deoendin on whether n is even or odd, so we shall first consider n odd.

Let n = 2a+l. Then the generators are Gg, a,b -a a, and

r- ç c r b

,, j o - o G (2.7)

) wIiee. (2.8)

The diagonal elements are Gg, a=i . . .a. If we define Cab as the matrix with a 1

at the a,h entry and zeros elsewhere, we have

)cr

For 80(3), for example, the generators are

( J , G ( ( (2.10)

The elements of the fundamental representation are written in this basis

as complex n-vectors

HT (ky) ...,k1 (ko,kl)...kVV wkr k k (2.11)



‘1
1.

The I nvai a; u inner product is gi van by (!\ fl) /TKB where K is the mtri x

wi h ! S d ong the anti di agonal

1

K = K (2.12)

‘I
Then (HH) h + h1 + •..

+ J2
(2.13)

For even n everyUiing goes as above with a=n/2 and the index 0 omitted,

3. Fundamental__Representation.

We shall first consi der the case of a single multi p1 et in the fundamental

representation. The results in this case are well known • but we i nd uc!e them

for the sake of comp’eteness and to show how they come about in our basis.

The pocntiai ii; this case is

V = (H,P) + .. (H H)2 (3l)

The ml ni mum i s achi eyed when

(Hmin, Hmin) (3.2)

Suppose n is odd. Then from eq. (2.11) we see that we can choose Hfl•-jfl such thai

h 0 fr a.#0 (3.3)

Since the S0(n1 ) potential is simply 3.1 with the index 0 omitted, we see the

remai ning symmetry is SC(ni

If n is even the situation is slightly more complicated. Since there is no

h0, let us choose Hj such that

k 0 1... (34)



if we heu deHue

(3.5)

we see that these Gs annihilate Hmin and that together with the Gg for

al, lb! <o they generate SO(nl), Thus the symmetry breakdown is SO(n) +SO(n-l)

for all n.

4. Adoint Representation.

We now turn our attention to the case of a single multiplet in the adjoint

representation. The potential in Lhi s case I s

tr + &(tc’) +htr (4.1)

This is minimized by satisfying

+
o

Since this is a cubic equation, can have at most 3 distinct elgenvalues.

if we write it in diagonal form we see from equation (2.8) that the elgenvalues

come in pairs of opposi c sign, so the only possibilitius for them are ±v or 0,

and must be of the form

—‘1

çb0rj
(4.)

()

V.

where thure are n-j vs and (n-2n1) zeroes. Notice that if n is odd then there

must be at least one zero.

Plugging this form for into 4.1 • we find

- fl ÷ y_ V + (4,4)

Ii 9



Miruiming this wiLh icspect to v we find

7 q
\/ -1; (4,5)

i\b

We see from 4.4 that we must have nla+b>O in order for the potential to be

bounded below. There are then three cases to consider. First take a and b both

posi five. Then V is minima.i when n-ja+b is as large as possible and so n-j = n/2

for n even or (n-l)/2 for n odd.

The second possibility is to have a<O, b>- na (n even) or b>- (n-l)a (n odd).

In this case V is minimal when nla+b is as small as possible and so once again

we see ni = n/2 ((n—i )/2) for n even (odd).

The third case is b<O, a>-h/2. Here we want nia+b as small as possible ari.d

so n 1 for al 1 n.

Thus we see that the symmetry breaking pattern depends only on the sign of b.

The ftrm of a L the mi ni mi i s

or V(t0 (oll) (4.6)

} I.)

(-1

b<o ( 0

(4.7)
-

1)

where v i s g i v en by 4 . 5.

To find the remaining symmetry we must find the generators which annihilate

Let us first consider b>O. Then from (2.7) we see

0 o

o t>o1 O (4.8)

The Goidstone husons are of the form , a,b>O while the remaining generators satis

-



7.

which is the definition of the algebra U(a) = U(1 x SU(a).

Fot b<O the Goldstone bosors are G arid G, at<a. The remaining generators

are G and G, tat, lbI<a. These form the algebra SO(n-2) x tJ(l).

5. Adjoint and Fundamental Representations.

We now turn our attention to the case where there are two scalar field multiplet

one in the fundamental representation and one in the adjoint representation.

The potential is given in eq. (1.1). The results differ slightly depending on

whether n is even or odd, so we shall first consider the case where n is odd.

Then we can put the fields at the minimum in the form

Vr

, HT=(bt,O,...,lho,t,...,k,)/V5 (5.1)

.vr.

Define Attr01 = 74vt , (5.2)

Then the potential can be written as

3j[:
(5.3)

2. 2. ‘4 ‘4 a

Let us minimise this with respect to h0. We find

3L h.(vZ÷X&+x.cA)t 0 (5.4)

This has two solutions, h0=O and AB =v2-2czA. If we take the second solution, we

have

Vt -r jyA r)At..L(&- S)At +LI Vt4v)h,I (5.5)
tj

If B is negative, this is unbounded from below as that +, which means we have

chosen the wrong solution to (5.4). For positive B the minimum of (5.5) is

attained when thatO. Then the potential is of the same form as the pure adjoint
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model considered in sectcon 4, and we see, using 4.6, 4.7 and 5.4,

,h0=Lktrzya. (5.6)
-

\,: 0) ‘i =
= (53)

-
-

Now let us consider taking the first solution to (5.4), i.e. h0=O. Then

minimizing the potential with respect to IhI yields

V ...iJ,-?tnjA v t1(ct-fL’\At (5.9)
a’ ‘1’ ‘1 2I

vA

If we now minimize (5.9) with respect to v0, we obtain

v [Xca.+6) - X,sñ - cacctp)vt
-

Qa.- ao(acc+p)) v

Plugging this into 5.9 again yields a potential of the form (4.4), and so

we see

be v= V:=...=41 116ttp)P],3_t?s0ch_04)v1}/DLcr)

{[.wr-occp tLJJpLt [(o—i)ap. (+)b]vz}/1kr) (5.12)

= { b(ra.b)vt — (513)

where )d,(rtu÷6) ‘icckirectp) —(wcL.t6)jg’ ÷ct.pa
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For b<O we find 4 ...
= v2 = 0, and v1, v and IhI2 are given by

equations 5.11 - 5.14 with ci rephced by 2.

There are thus t’o cases, depending on whether h0 or h is non-zero.

(There is actually a third carte, correspniding to the v0=0 solution to the

minimization of 5 9, but one can shou that this is only a local minimum and

so we have riot included it here). Explicit calculation of the potential shows

that the absolut’ minimum is given by the ha=O solution for b and s both positive

and by the h0=0 solution in all other cases.

lhus we have the following field configurations at the minimum:

b>o, p0 p 4 .
, HT=(o,...,9hoA...,o) (5.15)

>o, ,<o Ø= , H 0, kr)/i (5.16)
1i

v.

..s
Va

-Va.

1)4:0 0±
-v10

,HT:(k’.,O,...,O,hj/i1 (5.17)

a

Vt,.

The symmetry groups of the minumum field configurations can be seen by

inspection (or by using the procedure given at the end of section four), and

we find the results given in the introduction.

If n is even everything goes as above with the index 0 omitted. This

means that there is no analogue of eq. 5.15, and so the minimum for b>0 is of

the form of eq. 5.1G (with the zero eigenvalue of . omitted) for all B.

b
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6 One-loop_Rerormal i zati on Croon [quati ons.

The ore-loop ienormali:’ation group equations for our model can be easily

calculated using tlt. offective potential technique of Fujimoto, O’Raifeartaigh

and Parravicini6. Defining

t.c T’ (6.1)

we have

V.-. 4Ø’_’’(I4fj) t&(t)ltjauØ;gskØ2 +)(K,I1)2 (6.2)
2% If If

4

2(2n-l)
where a = a-y’;b and dijkl is defined in eq. 2.4.

We can think of •.j and 11a as formin3 one n(n+l)/2 component object e.j.

Then the one-loop rononnalization group equation for V is

j_ t.r(V”) where (6.3)
69 ir

The equations for the various coupling constants are obtained by matching

coefficients of • and H Using the identities given in section two, we find

a + stlXr1tIXn-3’
5Z

t t ¶ft2fi-ff (6.4)
cit (rntIf)t flt-At’I

Li = uâ$ +b&-aXjwiios!à.b’ ta1 (6.5)
Lt

. ItiJtc2 4. ‘Itn—Occp ttri-flp’ t(nt8))’ (6.6)
Lt

(hJ.a)ctci + j(n-z)Lj t F t Rc4’ t (6.7)
Ott 2%
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4ui (PJo.)R.,t4 + (6.9)
ott

i cn-z)pjA +cntz)A..rt
6t

w;ere t = (1/16n2) gnu and N n(n-l)/2.

The most interesting feature of these equations is that they can change

the sign of b and thus the effective symn.etry of the potential. From (6.5)

and (6.8) we see that if a=O at some t=t,, then the renormalization group will

not change it as t varies and since the chang2 in b is proportional to b itself,

b can never change sign. For non-zero B, however, the B2 term in 6.5 can caue

b to change sign. We interpret this as meaning that the effective shape of the

potential for interarting particles is momentum dependent. The symmetry propertie!

of the vecuum are Llaaibiguuus, however, because they are defined at a particular

value (zero) of the momentum.
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