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§1., Intrcduction

In this talk I will describe an elementary approach to the study

of Brownian motion on manifolds. It arose from reading the paper by

18y
S

BM(RY), Brownian motion in RY:

- Price and Williams [1] on Brownian motion on the unit sphere S2 4in R3.

Their results were generalized to a hypersurface in rd in [2] and to a
submanifold of RY of arbitrary co-dimension in [3]. This approach
regards all the processes involved as processes on the ambient FEuclidean
space; it has the advantage that it lends itself to the martingale point
of view; it has the disadvantage that all the objects of differential

~geometry which arise (covariant derivative, second fundamental form,

Laplace-Beltrami operator,...) must be defined in an open neighbourhood

~of the submanifold. The casual reader is warned that there is already

an extensive literature on Brownian motion on manifolds in which the
differential geometry is treated from the intrinsic point of view;

- Ellworthy [4] is an excellent gquide to this. o

We begin by recalling the following equivalent definitions of

1. A process B on Rd with BO=O is a BM(Rd) if and only if Bt 1is

T
gaussian with E[Bt]=0for each t and E[BgBt] = (sat}1 for each pair s,t.

. T
(Here the superscript T denotes 'transpose', and we regard BcBt as a

. 1inear mapping on Rd; the identity mapping on RY is denoted by 1).

2. A process B on RY with Bp=0 is a BM(RY) if and only if B is a

“diffusion on RY with generator 1a, where a4 is the Laplacian on RY.

3. A process B on RY with By=0 is a BM(RY) if and only if B is a
semimartingale and
(i) dBt = dM{, where M is a continuous local martingale.
(ii) d<BB'>y = 1dt. (1.1)

The equivalence of these three definitions is proved in Ikeda and

-Watanabe [5], for example. The first definition is the most elementary,
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but it cannot serve as a model for a definition of a Brownian motion on

1 a manifold because the gaussian property will certainly not survive if

the manifold is compact. The second definition is.close to Einstein's
~original treatment and will serve as our model; we require simply that
~the process remains on the manifold for all t (almost surely), and that

it is a diffusion whose generator is 24, where s is now the Laplace-
ﬁ““Beltrami operator. The third definition is a version of Lévy's martin-

gale characterization of Brownian motion; it will serve as the model
'kfor our main result and it is the keystone of its proof. '

§2. Submanifolds of Euclidean Space

We shall consider here submanifolds of RY which are level sets of
~—a C%-function f : U »R" defined on an open set U in Rd.  We require that
g the level set V=f_](c) be such that the derivative f'(x) is of rank r

for all x in V; then there is an open neighbourhood W of V such that

13M~f'(y) has rank r for all y in W. The set W is made up of level sets

of f, all having the same dimension. Let Ty be the kernel of f'(y) for :

each y in W; then Ty is the tangent subspace at y to the unique level
“._ set of f through the point y, and we denote by P(y) the orthogonal

’ projection of R4 onto Ty. The orthogoni? complement Tj"of Ty is the

. normal subspace at y, and we denote by P(y) the orthogonal projection
it of R onto Tj. We will say that a vector field v : W kY is a3 tangent
vector field if v(y) lies 1in Ty for each y iqu; and we will say that

it is a normal vector field if v(y) lies in T(y) for each y in W. Given

a pair v,w of tangent vector fields v,w defined on W we decompose the
derivative (v-grad w)(y) of w in the direction of v as

e (vegrad w)(y) = (3W)(y) + sylv,w) (2.1)
Y where 2
o (vow)(y) = P(y) (v-grad w)(y), (2.2)
and
22
1
230 sylv,w) = P(y) (v-grad w)(y). (2.3)

“—hen restricted to V, the tangent vector field vyw is called the covariant-

o, derivative of w with respect to v, and the normal vector field s(v,w)

is called the second fundamental form of the imbedding of V in Rd. e

“> define another normal vector field j on W by

RO : P RN
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: Jly) = 2 tracer (sy). (2.4)

gwuLét {ny,...,np} be an orthonormal family of normal vectgf fields on W;
the set {ny(y),...,n.(y)} is an orthonormal basis for Ty. (We can

“construct such a family by taking the components f],...,fr} of f with

. respect to an orthonormal basis for R" and applying the Gram-Schmidt

process to {grad f!,...., grad f'}). Then

Hea—s

8 Sy(v,w) = 55

= - jg1nj(y)(v(y)-ng(y)w(y)), (2.5)

njly) tlv-grad w)(y)-n;5(y)?

8 since nji(y).w(y) = 0 for j=1,...,r. Thus

Mol
™
>

ily) = - .(y) trace [P(y)ng(y)] (2.6)

j=14J

- -3 3ong(y)eldivong) - 3 (M) nf(ydng (). (2.7)

k
12 In the case of a hypersurface (r=1) the expression (2.7) can be written

a-1

5 H(y)n(y), (2.8)

S il -

where H(y) is the mean curvature at y of the level surface through y and
“—n is the orienting vector field, while (2.7) yields the computationally
useful formula

16
17 jly) = - 3 n(y)(div n)(y). (2.9)
1_3 e L " ,':
The covariant derivative (vg)(y) of a function g: W »R is defined

19 by
20
S (vg)(y) = P(y)(grad g)(y), (2.10)
21

and the Laplace-Beltrami operator A by
22
v (ag)(y) = trace ((v2g)(y)). (2.11)

24 It follows from (2.10) that
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(grad g(y)-nj(y)) trace [P(yIn{(y)]. (2.12)

~Rewriting (2.12), using (2.6), we have

Fo

- 3(ag)(y) = % trace [P(y)g"(y)] - j(y)-(grad g)(y), (2.13)
~an identity which will prove useful in the next section.

§3. Brownian Motion on a Submanifold

Let V = f '(c) be as described in §2. We claim that a process X
S in RY, with f(Xg) = ¢ and

dXt = j(Xt)dt = P(Xt)dBt’ (3.])

is a BM(V), a Brownian motion on the submanifold V

i

f'1(c); here B

is a BM(Rd), a Brownian motion on Rd.

i Now X is a diffusion, since it satisfies an It0 equation; we have
to show that its generator is 3a and that it remains on the surface for
7 t>0. Let g be an arbitrary C2-function g:W »R, and apply Itd's fornmula

12 to the process g(X):

w
™N
~

L dg(X¢) = (grad g)(Xg)-dXg + 3 trace [g"(X¢)d<XXT>(]. (
»From (3.1) and (1.1) we have

d<xxT>t = P(X¢)dt, | (3.3)

19 so that

20 dg(Xt) = dNt + j(Xt)s(grad g)(Xt)dt + % trace [g"(Xt)P(Xt)ldt (3.4)

21
where

22

oo dNg = (grad g)(X¢)-P(Xy)dBy (3.5)

2 Thus

] dg(X¢) - 3(ag)(Xg)dt = dNg, (3.5)
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. where N£ is a continuous local martingale; we conclude that a is the
' generator of the diffusion X. It remains to show that X remains on
vV o= £ 1(c) for t>0. Let g = fd,j=1,...,r; then

3 dNg = (grad £3)(Xg)-P(Xg¢)dBy = 0

“ since (grad fJ)(y) is orthogonal to Ty, and

(vfd)(y) = P(y)(grad fI)(y) = 0,

for the same reason. It follows from (3.4) that dfj(Xt) =0 for j=1,..,r.
7 _ ) R
"7 Thus X stays on V = f ](c) for t>0 since it starts there.

Remark: The equation (3.1) for Brownian motion on a submanifold of

- Euclidean space was given by Baxendale [6].

§4, Martingale Characterization

11

The description of Brownian motion on V = £ 1(c) given in 83 suggests

12 the following

1:i"““i\‘uen"t1'ngale Characterization of BM(V):

b A process X gﬂ_Rd with f(Xp) = ¢ is a BM(V) if and only if X is a

semimartingale such that

(1) dXy - j(Xg)dt = dMy, where M is a continuous local martingale.

Lo (2) deaxxTsy o= P(Xg)dt. :
17 We have to show that, given a semimartingale on Rrd satisfying (1)
and (2), there exists B, a BM(RY), such that
o dmg o= P(X¢)dBy. (4.1)
EAV Let B be a BM(RY) which is independent of X, so that
T d<BBT>y = 1 dt, d<xBT> - o0, (4.2)
22
and Tet B be a process on RY such that Bp=0 and
28
~ A ~ :
24 dBy = P{Xg)dXy + PT(Xy)dBys (4.3)

then by (2) and (4.2) we have



i’ 4 £, £ 7 & 5 10 1 1 e 14 i B
1 4 4] £ £ ol L [ [ [ P
, ' }

| S ' i i i i ] | ! !
w0 { i H H i B i H | H
i i E ! ! ‘ i | : | ! ¢ ! i

. ~!:~T ! ! '; L ‘ v ‘ -
d<BB'> = P(Xt)at + P (Xg)dt = 1 dt. (4.4)

It follows, by the martingale chavacterization of BM(Rd), that B is a
BM(RY) and, by (1), that

. P(Xy)dMy = P(X¢)dBy. (4.5)

5 It remains to show that P(X¢)dMy = dM¢y. Consider the process N on Rd
such that Ng=0 and

L
N dNt = P (Xt)th. (4.6)
8 _ Then
g T g L
d<NH'>¢ = P (Xt)P(Xt)P (Xt)dt = 0, (4.7)
10

so that NNT is also a continuous local martingale; but NNT is non-

" negative so tnat NNT is constant almost surely, and so dNy=0 and

dMt = P(Xt)dMy = P(X¢)dBt. (4.8)

#5. . Examples

(1) Hypersurfaces in Rrd

In this case, r=1 and

3 30 = Llioonx, (5.1)

12 where H(x) is the mean curvature of V at X, and n is the orienting
normal vector field. Then a BM(V) is a martingale in the ambient

19

~Euclidean space if andonly if the mean curvature of V vanishes identically.

5o (Compare [7]). .
It follows from (3.1) that, if X is such that

(d-1)

- dXy - H(Xg)n(Xe)dt = P(Xg)dBy, ‘ (5.2)

22 _then X is a BM(V). It follows from the martingale characterization that
an alternative equation for BM(V) is

I

25 dX¢ - -(—c-i—éilH(Xt)n(Xt)dt = dBgn(Xt), : (5.3)

1
S

~where 8 is a BM(so(d)), a Brownian motion in the Lie algebra of the

G .
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. orthogonal group S0(d), since d<XXT>t = P(Xg)dt; see [27].
L (2) The unit sphere S2 iﬂ_mz
In the special case of S2, the unit sphere in'R3, we take ni{x)=x,

the outward normal at x; then the principal curvatures are both equal
S _to -1, so that j(x)=-x. The projection P(x) onto the tangent snace at
x is given by P(x) = (1-xx'). Then (5.2) yields the equation of Stroockl7]:

-
5 dXg + Xedt = (1 - X¢Xg)dBy. (5.4)
Y 0n the other hand, (5.3) yields the equation of Price and Williams [11]:
RS dXy + Xgdt = X¢ x dBy. (5.5)
REI '

. (3) Curves in Rd

Let s - x(s) be a C2-curve in Rd, parametrized by arc length; then
10 the tangent vector t(s) at x(s) is given by

i1 _dx

t(s) = &%(s) | (5.6)
[ and

dt(g) = Kk(s)n(s) (5.7)
14 dS

where n(s) is the principal normal at x(s) and k(s) is the curvature.
~ Then

jlx(s)) = 3 k(s)n(s), (5.8)
17 : L
and
18 =
7.—(3,” P(X(S)) :t(S)t(S)T. (5.9)

20 Now let b be a BM(R') and put Xy = x(by). Then X is a process in R4

beginning at x(0) and

21

o dXg = gglbg)dby + d—=x(by)dt =t(bg)dby + 3 k(byIn(by)dt, (5.10)
g0 that
T X - J(Xg)dt = tibg)dbg. (5.11)

It follows from (5.17) that

ﬁi‘



© using (5.8) we have

d<xx'>¢ = P(X¢)dt.

- By the martingale characterization, it follows that X is a Brownian
Y motion on the curve s - x(s).

- 86. Martingale Representation

e Let X be a Brownian motion on V = f’](c) starting at x, and let Y
be defined by Yp=0 and -

jco

9 dYy = P(X¢)dXg, (6.1)

10 so that dYg is the tangential component of dXy. Let X be another
Brownian motion on V = f~!(c) starting at x, and let Y be defined by

e Yo=0 and

12 d?t = P(S‘(t)d’kt_ (6.2)

i‘d”'”‘Su;:)pose that X is adapted to the filtration of X; then we have the
1+ following

=

“— Martingale Representafion: The processes Y and Y are related by the

16

It6 equation

b d¥; = CedVy | (6.3)
ip_ where -
(1) for each t, Ct is an orthogonal transformation such that
Ctn(Xt) = n(Xt) 4 : (6.4)
20

for each unit normal vector field n on V.

~(2) the process C is X-predictable.

e Let {ny,....,np} be an orthonormal set of normal vector fields on
s Vs Tet tbl,...,b"} be a set of independent BM(R') - processes indeperndent
of both X and X so that

d<xVbd> = d<¥ipd> = 0, 9,5=1.....,r, (6.5)

2h

vs o and

B
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d<bibd> = 6, ;dt. (6.6)

Then, by the argument in §4, the processes B and B such that BO=§0=O

~and
2 r . . o r 2 .
dBy = dYyi + _Z]nj(Xt)de, dBy = dY¢ + I nj(Xg)dbd (6.7)
4 J= =1
5 are both BM(RY) and X and X satisfy
o dXy - §(X¢)dt = P(Xt)dBt, d¥t - j(Xt)dt = P(X¢)dB¢. (6.8)

; 3 . \
~ Moreover, B is B-predictable so that, by the martingale representation

5 theorem for BM(Rd), there exists a B-predictable process C of orthogonal

transformations on Rd such that

~

dBty = CydBy. : (6.9)

Hence, from (6.7), we have

. ~ r ~ .
Ctnj(xt)db‘] = dYt + = nj(Xt)de; (6.10)

r
Z
. \]z]

CydYy¢ +

- ]

J

- Forming the bracket process of both sides with the process bk, using
(6.5) and (6.6), we have

s
s

-~

15 Ceng(Xe)dt = np(X¢)dt, (6.11)

establishing (6.4), and (6.3) follows by subtraction. It follows from
17 (6.4) that C can be chosen to be X-predictable.

15 Special Cases:

}q (1) For a hypersurface (r=1); taking n to be the orienting vector field,
the map x -+ n(x) is the Gauss map. o

20 (2) Specializing to S2, the unit sphere 1in R3, we have n(x)=x and we

recover the result of Price and Williams [1]:

Let X and X be BM(SZ) - processes starting at x; suppose that X

2o is adapted to the filtration of X. Then the tangential increments dY

and dY are related by the It0 equation

24 d¥t = CtdYt (6.12)

where (1) for each t, Ct is an orthogonal transformation such that

CtXtg = Xt, (6.13)

(2) the process € is X-predictable.

2
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