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iCy) traceT,(sY). (2.4)

Let {nl,..,,nr} be an orthonormal family of normal vector fields on W;

the set {n1 (y),..
. ‘rY } is an orthonormal basis for T. (We can

construct such a family by taking the components {f1 ,fr} of f with

respect to an orthonormal basis for IR” and applying the Gram-Schmidt

process to {grad f1 , grad fr})• Then

S(vw) =,1n(y)(v.grad w)(y)•n(yh

=
-•1nj(y)(v(y).n(y)w(y)), (2.5)

since nj(y).w(y) = 0 for j=l,...,r. Thus

r
i(y) - . n(y) trace [P(y)n(y)] (2.6)

j=l

1n(y(div flj)
- k.(nk(y) )n(yH. (2.7)

In the case of a hypersurface (r=l) the expression (2.7) can be written

j(y) = H(y)n(y), (2.8)

where H(y) is the mean curvature at y of the level surface through y and

L n is the orienting vector field, while (2.7) yields the computationally

useful formula

j(y) = - n(y)(div n)(y). (2.9)

The covariant derivative (vg)(y) of a function g : W ÷IR is defined

by

(vg)(y) = P(y)(grad g)(y), (2.10)

and the Lapl ace-Beltrami operator by

(g)(y)=trace((v2g)(y)). (2.11)

It follows from (2.10) that
*



(Ag)(y) = trace {P(y){grad(P(y)grad g(y))}]= trace {P(y)g(y)]

- (grad g(y).nj(y)) trace [P(y)nç(y)]. (2.12)
j=1

Rewriting (2.12), using (2.6), we have

trace [P(y)g’(y)] - j(y)(grad g)(y), (2.13)

an identity which will prove useful in the next section.

§3. Brownian Motion on a Submanifold

Let V = f(c) be as described in §2. We claim that a process X

with f(X0) = c and

dXt - j(Xt)dt = P(Xt)dBt, (3.1)

is a BM(V), a Brownian motion on the submanifold V = f1(c); here B

is a BM() a Brownian motion on

Now X is a diffusion, since it satisfies an Ito equation; we have

to show that its generator is and that it remains on the surface for

t>O. Let g be an arbitrary C2-function g : W ÷, and apply ItO’s formula

to the process g(X)

dg(X) = (grad g)(X).dX + trace [ght(X)d<XXT>].
(3.2)

From (3.1) and (1.1) we have

d<XXT>t = P(Xt)dt, (3.3)

-io so that

dg(X) = dNt + i(Xt).(grad g)(Xt)dt + trace [g”(X)P(Xt)]dt (3.4)

where

dN.1 = (grad g)(X)P(X)dB. (3.5)

Thus

dg(X) - (cj)(X)dt = dNt, (3.5)



where Nt is a continuous local martingale; we conclude that is the

generator of the diffusion X. It remains to show that X remains on

V = f1 (c) for t>O. Let g =f3,j=i,.. .,r; then

dNt = (grad fJ)(Xt)P(Xt)dBt = 0

since (grad fJ)(y) is orthogonal to and

(vfJ)(y) = P(y)(grad fJ)(y) = 0,

for the same reason. It follows from (3.4) that dfi(Xt) = 0 for j=l,..,r.

Thus X stays on V = f1(c) for t>0 since it starts there.

Remark: The equation (3.1) for Brownian motion on a submartifoici of

Euclidean space was given by Baxendale [6].

§4. Martingale Characterization

The description of Brownian notion on V = f1(c) given in §3 suggests

the following

Martingale Characterization of BM(V):

A process x on with f(X) = c is a BM(V) if and only if X is a

semimartingale such that

(1) dXt -
j(X)dt = dMt, where M is a continuous local martingale.

(2) d<XXT>t = P(Xt)dt.

We have to show that, given a semimartingale on d satisfying (1)

and (2), there exists B, a BM(), such that

dMt = P(Xt)dBt. (4.1)

Let be a BM(lRd) which is independent of X, so that

d<T>t = 1 dt, d<XT>
= 0, (4.2)

and let be a process on such that B0=0 and

dBt = P(Xt)dXt + P’(Xt)dt;

then by (2) and (4.2) we have



d<T>
= Pxtdt + P’(Xt)dt = 1 dt. (4.4)

It follows, by the martingale characterization of BM(d), that is a

BM() and, by (1), that

P(Xt)dMt = P(Xt)dBt. (4.5)

It remains to show that P(Xt)dMt = dMt. Consider the process N on

such that Nn0 and
r

dNt = P (Xt)dMt. (4.6)

Then

d<NNT>t = P(Xt)P(Xt)P (Xt)dt = 0, (4.7)

so that NNT is also a continuous local martingale; but NNT is non

negative so that NNT is constant almost surely, and so dNt=0 and

dMt = P(Xt)dMt = P(Xt)dBt. (4.8)

§5. Examples

(1) persurfaces in

In this case, r=l and

j(x) =__—H(x)n(x), (5.1)

where H(x) is the mean curvature of V at x, and n is the orienting

normal vector field. Then a BM(V) is a martingale in the ambient

Euclidcan space if and only if themean curvature of V vanishes identically.

(Compare (7]).

It follows from (3.1) that, if X is such that

dXt -
(d-l)H(X)(I )dt = P(Xt)dBt, (5.2)

then X is a BM(V). It follows from the martingale characterization that

an alternative equation for BM(V) is

dXt -H(Xt)n(Xt)dt = dtfl(Xt), (5•3)

where is a BM(so(d)), a Brownian motion in the Lie algebra of the



orthogonal group SO(d), since d<XXT>t = P(Xt)dt; see [2].

(2) The unit sphere S2 in 2

In the special case of S2. the unit sphere in 1R3, we take n(x)=x,

the outward normal at x; then the pri nci pal curvatures are both equal

to -1, so that j(x)=-x. The projection P(x) onto the tangent space at

x is given by P(x) = (l-xxT). Then (5.2) yields the equation of Stroock{7]:

T
dXt + Xtdt = (1 - XtXt)dBt. (5.4)

On the other hand, (5.3) yields the equation of Price and Williams [1]

dXt + Xtdt = Xt x dBt. (5.5)

(3) Curves in d

Let s x(s) be a C2-curve in , parametrized by arc length; then

the tangent vector t(s) at x(s) is given by

t(s) = (s) (5.6)
ds

and

(s) = k(s)n(s) (5.7)
ds

where n(s) is the principal normal at x(s) and k(s) is the curvature.

Then

j(x(s)) = k(s)n(s), (5.8)

and

P(x(s)) =t(s)t()T. (5.9)

Now let b be a BM(IR’) and put X = x(bt). Then X is a process in

beginning at x(O) and

dx d2
dXt = -(ht)dht + x(bt)dt =t(bt)dbt + k(bt)n(bt)dt, (5.10)

so that

dX.L - j(Xt)dt =t(bt)dbt. (5.11)

It follows from (5.11) that



d<XXT>t = t(bt)t(bt)’dt; (5.12)

using (5.8) we have

d<XXT>t
= P(Xt)dt.

By the martingale characterization, it follows that X is a Brownian

motion on the curve s + x(s)

§6. Martingale Representation

Let X be a Brownian motion on V = f(c) starting at x, and let Y

be defined by Y=O and

dYt = P(Xt)dXt, (6.1)

so that dYt is the tangential component of dXt. Let X be another

Brownian motion on V = f(c) starting at x, and let be defined by

Y=O and

dYt = P(Xt)dXt. (6.2)

Suppose that is adapted to the filtration of X; then we have the

following

Martingale Representation: The processes Y and Y are relatedhy the

ItO equation

dYt = CtdYt (6.3)

where

(1) for each t, C-i- is an orthoqonal transformation such that

Ctn(Xt) = n() (6.4)

for each unit normal vector field n on V.

(2) the process C is X-predictable.

Let {n1 ,nr} be an orthonormal set of normal vector fields on

V; let {bl,...,br} be a set of independent BM() - processes indepefldent

of both X and X so that

d<X1b> = d<X1h3> = 0, i,j=l ,r, (6.5)

and



d<b1b>= (6.6)

Then, by the argument in §4, the processes B and such that B00=Q

and

r . r

dBt = dYt + z n(Xt)db3, dBt = dYt + . n(t)db3 (6.7)
j—l j=l

are both BM(IRd) and X and X satisfy

dXt - j(Xt)dt = P(Xt)dBt, dt - j(Xt)dt = P(t)dt. (6.8)

Moreover, B is B-predictable so that, by the martingale representation

theorem for BM(d), there exists a B-predictable process C of orthogonal

transformations on such that

dBt = CtdBt. (6.9)

Hence, from (6.7), we have

r . r
CtdYt + Z Ctn(Xt)dbJ = dYt + • n(Xt)dbJ; (6.10)

j=l j1

Forming the bracket process of both sides with the process bk, using

(6.5) and (6.6), we have

Ctnk(Xt)dt = nk(Xt)dt, (6.11)

establishing (6.4), and (6.3) follows by subtraction. It follows from

i (6.4) that C can be chosen to be X-predictable.

Special Cases:

(1) For a hypersurface (r=l); taking n to be the orienting vector field,

the map x + n(x) is the Gauss map.

(2) Specializing to 2, the unit sphere in , we have n(x)=x and we

recover the result of Price and Williams El]:

Let X and X be BM(S2) - processes starting at x; suppose that

is adapted to the filtration of X. Then the tangential increments dY

arid d are related by the 1t6 equation

dYt = CtdYt (6.12)

where (I) for each t, C is an orthogonal transformation such that

CtXt = , (6.13)

(2) the process C is X-predictable.

9
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