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Alrstract

A summary is given of recent work illustrating the use of
dynamical group and algebya concepts in analysis of coexistence of
competing many-body effects. The group SU(4) ~ SO{6) cncompasses

coexistence of superconductivity, charge densily waves and magnetism.

Symmetry-~breaking in many-body systems is known to be
associated with the appearance of a nen-zexo supeoctation value of
some order parameterl. For example Ferromagnetism breaks the rota-
tional symmetry (broken 0(3)) with spontaneous non-zero value of an
axial vector. TFerroelectricity breaks 0(3) with non-zero value of
a polar vector. A not obvious case is superconductivity which
preaks SU(2), or "“gauge® symmetry. In this connection it is useful
to recall a distinction introduced by Wignerz between "geometrical”
synmetry which relates to the synmetry of the physical domain of the
system, yggfagi“dynamical" symuetry which relates to the formal
symmetry of the equations of motion for the system.

In the present work we extend the notion of symmetry-
breaking to coexisting (or competing) order parameters. We find the
dynamical symmetry of the eguations of motion and then we demonstrate
that different kinds of symmetry-breaking (i.e. different sub-
symmetries) correspond to different competing order parameters. We
consider bLelow a mean-field Homiltonian for simultancous supercon-
ductivity, charge density wave, and magnetic order parameters. We
find3 the explicit dynamical group for the Hamiltonian is SU(4).
However, we argue the aloebraic structure 'is more cgencral than
mean-field approximation.

First we recall the meaning of an order parameter for a
material system.  Let d be some guantum-mechanical operator, whose

value <0> in some state of the system is an obscrvable. If 20> = 0



dered state cof high symmetry G. If <0> # 0

the system is in a disor

state of broken symmetry G(0), with

the system is in an orde
G « G(0). We are intecrested in spontancous symmetry breaking so

" . . . . . A~ ~
“O> ¥ 0 with no applicd field. ‘Some examples are <u> # 0 where u

is the operator for atom displacement: this is the displacive phasc
N ke

~

transition; <M> # 0 where M is the total magnetic moment due to an

magnetic ion lattice producing a system magnetization; a spontanecous

Yhband" magnetism could be accounted for by < i, - p, > 0 where
: 7 + 4 1

‘he density operator for band electrons with spin up, and 64 for

P

is
those with spin down.

Our guestion is whether two (or more) operators O, and O2

1
. A
can have non-zero expectation values in the same state: (OT> # 0,
/02> # 0. Two examples of competing orxder parameters relevant to
our interest are:
. . i .!. ~
Pair Operator: 0
at Dperato:s ak$ a_ 1
with <0y> # 0 signalling superconductivity;
. . T ~
Charge Density Wave Operator: a a =
harg sity Wave Operator: ap, oy @y, 02

with <67> =0 signalling charge density wave Q is a fixed (external)
veator.

The competition between these order parameters can be under-
stood physically beginning with a simple free-clectron model. If a
tlormal - Superconducting transition occurs there will bce a gap (24)
opennd at the (former) Fermi level., This gap can impede the Peierls
interaction between electrons which is needed for formation of a
charge density wave. In an analogous fashion the existence of mag-
netic order {i.e. an internal magnetic field due to free—clectron
band magnetism or to cooperative magnetically ordered sublattice
effects) will act to break the Cooper pairs needed for superconduc-

tivity. Various microscopic thecries have been introduced to investi-

gate these effect5.4 0f overriding significance is that coexistence
of superconductivity and charge density wave has been experimentally
observed,s and also coexistence of superconductivity and magnetism.6
A serious limitation of the previous theories is that any
symmetry is not menifest, and in fact seems hidden.  Tor this recason

Lalia we examined a mean—-field (or reduced) Hamiltonian. = The

major physical phenomena are known to be describable in terms of this
‘Hamilionian, although for more guantitative description fluctuations

. N 4 . Co . . . RED
should be added. In the pairing approximation we write H as .a

6}

sum of a "free” part involving single particle band encrgics Ty

d

s a BCS pairing term with SC gap parametoer A} plus a CDW density

o
“

-7
A

sERN
fluc on term with a fixed "external' CDW specified by given wave
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=T +u U

I S - Mk =
Cocfficients in egn. (2) are given by

= (=Re (& + A'), = Im (A + A"), & + et)

s
pusig

w. = (=Re (A - &%), = Im (A - BD"), € - c')

e = (Re (v = '), - Imly = v}, 0)
.t,lf = (OrO, Re (y + Y|))
Wy = (0,0, ~ Im (y + v

The commutators of the ten matriccs<§, W, E]’ E7, T}, U.3 close

when augmented by the additional five: ﬁg' Tm' Um' m=1,2.

Lenee the dynamical group of M‘,, and tlus of H((k) is locally

SU(4) or SG(6). Note in passing that a Hamiltonian including

¥
/

sSC, CphwW, and magnetic spin density effects can be expressad, in

-{irld approximation, in a form consistent with SO(6)

symmetry. We are investigating this and will report on it else-

e .  _ _RED . i . T
whove. The dynamical group of H is the dircct product
of the individuval SO(6)V groups for each K.

Blsewhere we showed3 that in the physical case for super-

conductivity plus charge density wave (sc-Ccpw), y = v', and
& .
A = A' = A '. Then the effective physical Hamiltonian H(k) is an

clement in the reduced dynamical group SO{5). It then follows that

unitary operator Vk can be found which transforms

jo]

: ool oy ;o 1t (kY = a . .
H(k) » vy H(k) V) = HU(K) = Ay Sgp b W o

Here Ak and p re c-numbers. We can express Vk in terms of genexr-

a
ators L, = (84W) in the two SU(2) subalgebras of S0(5). Then

4 7

Vv, = exp(2i¢lm2) exp(i¢+L+/a) exp(i¢_L_/a)

; . ' ~1
tan 2¢l = 2y {e'-r) ;



and

tan ¢, = 20{(c + ¢') * {(c - n,vm% fﬁw\muzw

Write T = 1 V| as the unitary operator which transforms Hepn Then
wA LS il

the eigenstates of mwmc can be obtained by operating on those of
Y H'(k) by T. An important eigenstate is the "coherent® ground state

_mv;Om H which corregponds to the filled Fermi sea wmv. it is:

Tt _

H = S f ‘ = & >
o de =T e = T aal o

i
k
We test for the occurence of superconductivity or charge density

waves in state |g> by examining matrix elements Aﬂ_iw_mu~ and

P las  resoectis e U R | . - T
/@_ON_@\ »rmmw(fw<mw< where OH = oAy W!W+\ and ON = mw_v Ay

{iiote k' = k-0 for k > 0, and k¥ + Q for k < 0). ©Using the

expression for T we find (with both A and vy non-zero):

<gl0)1g> = 1/2 (cos™¢, sin ¢, - sin®¢, sin ¢ _) )
<g|0,|g> = 1/2 sin 245 {sin(4_/2) - cos (¢,/2) (B)

These expressions give, for each k, the values of the respective
order parameters in terms of the Bogoliubov angles. For a given
state k we may obtain "phase boundaries" of parameter values

between regions of vanishing and non-vanishing order parameters.

Thus SC is guenched when (A) vanishes, that is on the hyperbola of
5.2 2
o e L N ’ 2Y A .
parameter values ({y,A4) et e 1 for given k.
e(e'~ ¢) o
Similarly the CDW disappears when ( B) is zero, on the circle
. i 2 2 '
(cr hyperbola) vy~ + A7 = ge'.

In Fig. 1 we give a group-subgroup chain illustrating

descent in dynamical symmetry from the general S0(6) case, where

the parameters A, A' a2nd v, v' are complex and distinct.



= v -
s0(5)] -2 A-~9—v{[ U(2)
S e = B
R cow
80(6\1«35514£— v SO{S)L/’_
General SO(Z,')»»liw—iwé—me S50{(3)
case :
2xBCS BCS

Let us now return to.consider the problem of coexistent

nagrnetic ordering. If we examine the set of 16 operators X, .
o prd l]

defined earlier, whose closure defines SU(4) we find amongst them:

Antiferromagnetic Pairing O, = a

It isg natural to consider <83> # 0 as the signature of Antiferro-
magnetic {(band) ordering. Thus the original dlgebra contains the
possibility of ccexistence of two or possibly all three collective
phenonena: superconductivity, charge densiﬁy wave and magnetism.

At the time of writing we have not yet obtained the eqguation of the

o

"phase boundary" for antiferromagnetic order: this is in progress.

2 velated algebraic approach to cosxistence of SC-CDW and

S

magnetism was recently proposed by one of us,” and we summarize here.

‘Write 15 generators Xij of SU(4) in the Cartan-Weyl canonical form:

h

g0 hgiep,eay 012}

su(4) - {hl"h

The algebra 8U(4)is wank 3 so the three mutually commuting operators
are designated hj‘ We can identify each of the hj with a conserved

guantity in the disordered phase as
~
hl v N {number operatox)
h2 v P {linear mcmentum)

h3 v A {"anomalous" number) .

Now construct the centralizer of hl’ i.e. the subalgebra of all
~

opervators commuting with N. This subalgebra ¢ (N} has the structure



¢ () £ w(l) @ s0(4) -
where U(1) is the Abelian algebra«generateé by ¥ and S50(4) ~ (SU({2) x
sU{2) is a “charge dengity wave" subalgebra. We may interpret the
elenents e in this subalgebra as the CDW order parameters. It can
be shown that the expectation value of e, in an eigenstate of the
initial Hamiltonian vanishes (i.e. no spontaneous ¢ - CDW ordering
in the digordgred state) while in the ordered state <eﬁ> # 0. The
entralizers @ (P) and € (A) have been identified with thg super-

conducting and band antiferromagnetic dynamical algebras respective-

Elsevhere- we shall report on the elaboration of a dynamical
algebraic formalism to discuss thermal effects and self-consistency
as well as selection rules for transition pfoccsses.

A major ﬁerit of the djnamical algebra approach is that it
reveals the underlying group structure of the coexistence problem
apart from dctails of magnitude of the interactions.

This work has been supported in part by grants from PSC-BHE
{CUNY Faculty Research Award Program) , NSF, and the Research Com-
mitiee of the Open University. J.L. Birman thanks Prof. M.h. Markov
and Prof. V. Man'ko for hospitality and smocth arrangements, and

the Academy of Sciences USSR for support during the Conference.

References

’
1. ®. Boccara, "Symmetries Brisses"

Herman et Cie Paris 1878;
N. Bocdara, (ed) "Symmetries and Broken Symmetries" IDSET,
(Paris) (1581).

2. EB.P. Wigner "Symmetrics and Reflections® U. of Ind. Press,
Bloomington, Ind. (1967).

3. JI.L. Birman and A.I. Solomon, Phys. Rev. Lett. 49, 230 (1982) .

4. K. TLevin, D.L. Mills, S.L. Cunningham, Phys. Rev. B10, 3821 (1974);

i

G.5. Grest, K. Levin,; M

_T. Nass, Phys. Rev. B25, 4541, 4562(1962);

T.K. Lee, Y.A. Izyumov, J.L. Birman, Phys. Rev. B20, 4494 (1979).



R. Sooryakumar and M.V. Klein, Phys. Rev. Lett. 45, 660 (1980}
and Phys. Rev. B23, 3213 (1581} .

See the papers cited in M. Tehikawa, Contemp. Physics 23, 443
(1982) .

A.T. Solemon and J.L. Birman, Phys. Lett. 88n, 413 (1982).
J.L. Birman and A.I. Solomon (to be published) .

A.T. Solomon (Ann. New York Academy of &Science, in praess).



