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if : genates a flow on F which has been lifted from hhen Z
where is the prolongation of the generator of the flow on

In this case (a /ie nrn) generates a classical projective action

on along with the “induced s-transformation”.

There a number of ways of associating geodesic first integrals with

proj active actions on F , however the Noether—Hamilton—Cartan theorem gives

a cie cut result: 2 oca a unon E(E can be ouncJ UC!L
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Such vector fields are called CcLiVLcLrL Jme’tLe- and they are all

projective actions on L. . When , is just a

-‘,ynmeLe, that is, one given by the classical Noether theorem,

The classical isometry (Killing vector) is such a Noether symmetry:

\/

- —--a )
So are the homothetic actions

()d

Notice that homothetic actions give universal geodesics first integrals

not just null ones. (The complete list of Lie and Noether symmetries

appears in [1.)

The Caftan symmetry corresponding to the Killing tensor first integral

—cW \U iS

- +

The interesting feature of this /‘LttLn9. moon on is that

(Crr o
(c.f Q for Killing vectors).

Conformal Killing tensors don’t fit into the scheme because they

don’t generate universal first integrals, however, an attempt to find a

quadratic analogue to the homothetic constant of the motion yields

(essentially uniquely)

F s S L - u t,a

where is a Killing vector and H is symmetric and tracefree

with
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3.

The correspondi ng Cartan symmetry has local co—ordinate components

2—sL,
and

This is called a /zorno.tJLCLLC ac1ion on F because

or
(3)U’r)= r,t’)-rc(r,p)

‘ftLy -u5.L
by analogy with q & G W& for the classical homothetic

- ,n1 O\
motion. Notice that the “homothetic constant” it I )VV ) is now a

constant of the motion.

Remarks There are lots of results, new and old, which are readily

accessible using this sort of tangent bundle geometry. We have had some

success relating projective actions on 6’ with global Jacobi fields

(solutions of the equation of geodesic deviation), the’ Raychaudhuri

equation [t] and in defining conformal motions on E” to correspond to

conformal Killing tensors. I hope to explore some of this structure for

particular metrics in the near future.
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