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§1.  Introduction.

In a remarkable paper [1] some twenbty years ago, A.L.S. Corner showed
that cvery countable reduced torsion-iree ring is the endomorphism ring
of a countable reduced torsion-frec sbelian group.  Thisg has been the
starting point for many investigations of the so-called realization problem
which may be stated as follows:
Given an algebra A over a commutative ring R, when will A be the endomorphism
algebra of an R-module G which belongs to some suitably restricted class '; .
Complete characterizations of such algrebras A have been obtained in the case
where R is a complete discrete valuetion ring and '{ is the class of torsion-—
free reduced R-modules ([10]) and also in the case where R =~ and ’; is the
class of separcble p-groups ([9]) or section 109 in [8]). Such characterizatior
are, inevitably, much too complicated to lend themsclves rcadily to applicatiocns
Consequently Corner [2] tackled the realization problem for primary abelian
groups fvon a different angle He sghowed that a suitably lerge class of

rings A Could be realized, not as a full endomorphism ring, but rather that

e

the full endomorphism algebra would be the split extension of the given ring /
by some ideal whose presence was unevoidable; in the case of primary groups
this idesl being preciscly the ideal of small endomorphisms ([2]).  This idea
was subsequently extended to large primary groups in [5] and a similar type
of result was produced in [7] for torsion~free modules over a complete discrete
valualtion ring.

The results of Corner [2], Dugas and Gobel [5] and Dugas, Gobel and
Goldsmith {7] are all capsble of translation into results on endomorphism
algebras in a suitable gquotient category. Thus, for example, if " is the
category having primery abelian groups as objects, and morphisms
Hom _- (G,H) = Hom (G,H) / Homg (G,H), where Homg (G,H) consists of the

)
small homomorphisms of G intc H, then Corner's result is that if A is a

ring whose additive group is the completion of a free p-adic module of at
most countable ranlk, then there exists a primary group G with E )(G)

When dealing with mixed abelian groups‘(or more generally mixed R-modules]),
there is a natural category in which to work viz. the category Walk (RWalk).
The objects of gWalk are R-modules and its morphisms are given by

Hemy (G,H) = Hom (G,H) / Homy (G,H), wvherc Homt (G,H) consists of the
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R—homomorphisns of G into H with torsion image (sce [11]). Recently Dugas [3]
has shown that each torsion-iree reduced ring A is the Walk-endomorphism ring
of a mixed abelian group G. The groups G so realized are all of large infinite
renk even when the ring A is of comparatively small cardinality.

Our approach will be to construct a (non-trivial) full embedding of the
category of torsion-free reduced R-modules into the category pWalk, where R
will be a principal ideal domain. As a consequence of this full embedding we
may immediately 1ift established results from the category of reduced torsion-Irce
R-modules to the category pWalk. A typical, but by no means exhaustive, list of
such results is contained in Corocllaries 2.4 - 2.6. VWe note, in particular, that
many of the results in the forthcoming paper of Dugas and Gobel [6] can now be
established immediatcly. It is, by now, standard to use such realization results
to exhibit a wide range of pathologies and so we desist from such repetition.

Ve conclude this introduction by noting that all unexplained terms may be
Tound in the standard works of Tuchs [8]; our notation is in accord with [8]

with the exception that maps are written on the right.

§2. 'fhe embedding theorem.

Throughout let R be a principal ideal domain. We begin with an arbit
reduced, separable torsion R-module T and T' any pure extension of T by G/R
1
such that T is also separable and reduced. Thus we have a pure - exacl seguence

of R-medules

() 0O—> T 5 T - S Q/R 3 0

which will be fixed for the rest of the section. Note that provided T has no
torsion-complete p-component Jp such a sequence exists (see Corollary 68.5
in [8]). A
Now, if X is an aribtrary R-module, then (#) yields another pure-exact
sequence (see Theorem 60.4 in [8])
(*y) O—>T %X ~->T' % X-— Q/R%X-—50.

Since Q/R % X is canonically an epimorphic image cf Q %X we can form the

pullback H(X) of (#y) with respect to this canonical epimorphism 7 x. This

yields the following diagram

Ty
00— >T 0 X JH) - 53Q % X ——30
3 /
x hx
hod N/

O 3T 30X =D P e X =2Q/R X X -0
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(i) ﬁ(x) is reduced, non-—-gplit and of the same torsion-free rank as X.
(i1) ONX)) 5 T3 X,
(iii) H(%)

(iv) UT(X) = X and TI{(X)/UH(X) = T G X.

Proof: TFor X ¢ R et T(X) = H(X) and for £: X-»Y let H(F) = H(f) +

Homg (H(X), H(Y)). The only assertion still to be verified is that H is a

full embedding. By Propesition 2.2 UH is naturally eqguivalent to F which is

the identity functor on Rf. Therefore we may identify X and UH(Y).  Consider

the homomorphisms h : Hom(X,Y)—*Hom(H(X), H(Y)) and u: Hom(H(X), H(Y))- -Hom(X,Y¥
induced by H and U respectively. Then hu is the identity on Hom(X,Y), thus

h is monic and u is epic. Turthermore Ker u = Hom (H(X), H(Y)) since ngH(X) = 0
implies that Im g is torsion as an epimorphic image of the torzion module
H(X)/uH(x) = 1" %

because UH(Y) r H(1H{Y))

o %, On the other hand, if Im g is torsion, then g(UH(X) = O

e

il

0. Thus we conclude that the mep £ 1=+ H{Lf) is an
isomorphism and H is a full cmbedding.
Remarks: (a) An alternative way to construct the functor H is the following:

Let M = H(R), a mixcd module of torsion-{ree rank one. Then it is readily sccn

that the functors H and M %~ are naturally equivalent. (b) As indicated in

[
=
ot
g
)
N

hove proof  E(H(X)) is the Spl%t extension of E(X) by Homy (H{X), H{x) I,
u

i.e. there are ring homorphisms E(X) 2 E(H(X)) JEQD) such that hu = idgy
and ker v = Homg (H{X), H(X)).
Cerollary 2.4. Let R be a principal ideal domain. ~If A is a countable rcduced

W

i, ' . . L
torsion-Iree R-algebra then there are 2-°° countable mixed R-modules M; with

Mj/t(M;) divisible, Ey(M;) £ A and Homy(l;, Mj) =0 for i #£ j.

Proof: By an unpublished extension of ‘a well-known theorem oi Corner [1] there

exist countable reduced torsion-free modules with E(X;) = A and HOH!(Xj)ij =0
for i #£ j. Now Theorcm 2.3 yields the assertion by choosing an appropriate
torsion module T, for example an unbounded countable direct sum of cyclics.

In the finite rank case Corner's result gives

Corollary 2.5. Let R be a principal ideal domain and A a countable reduced

torsion~free ‘algebra of finite rank n. Then there exists a reduced mixed

module M of torsion-Tree rank 2n such that M/t(1) is divisible and Ey(M) = A,
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If R is a principal ideal domain and not a complete discrete

valuation ring and A is any cotorsion-Iree R-algcbra, then there existas &

reduced mixed R-module M with M/t(M) divisible and Ly(M) = A.

€,

Proof:

This is a consequence of Corollary 5.4 in [4], which encures the existenc

of & cotorsion-Ifree R-module X with E(X) = A.
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