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Abstract

The dynamical group for a one-dimensional model of a

many-electron system exhibiting a charge-density wave is

obtained The corresponding Lie algebra in a physical model

is U(2); it is used to obtain the spectrum and coherent ground

state, and to define a corresponding order parameter.
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Many intermetallic compounds of the form A3B, knowi as i3—

tungstens, undergo a structural transformation in their crystalline

lattices from the cubic to the tetragonal state [11 This

phase transition is often referred to as a martensitic

transition, after its observation in the iron—carbon system

called martensite. This structural transition was predicted to

occur in one-dimensional systems by Peierls [2], in recent times

the effect has been much studied in quasi—one—dimensional conductors

such as the organic TCNQ salts [3]. The aspect of the phenomenon

which interests us in this note is the occurrence of a charge-

density wave (CDW) having wave vector Q =
2kg, where kF is the

Fermi surface wave vector, a simple model incorporating an impressed

wave of this nature is exactly solvable, and lends itself to a

group theoretic treatment It turns out that for the

model we use, the spectrum—generating Lie algebra is

not semi-simple, but for a model with real and constant

coupling it is essentially U(2) However, it is straight

forward to obtain the spectrum and generalized Bogoliubov

transformation The coherent ground state is also easily obtain

able, and gives rise to the appearance of a non-vanishing order

parameter in the CDW state.

Our starting point is a Frohlich—type hamiltonian

describing lattice electrons interacting with phonons

= ka

e(k) a. ak +

qa

qbq a+qa aka + h c
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The akG are the destruction operators for electrons in the

Bloch state of wave-vector k and spin a (a = + or +) having

corresponding energy e(k), bq is the phonon destruction operator

and the electron-phorion coupling constant. The CDW assumption

is that the dominating term in the interaction is with the phonon

of wave vector Q, and we neglect all other terms. In the spirit

4

of the BCS [5] and Bogoliubov [6] (superfluid He ) linearisation

tricks, we replace the remaining phonon operator bQ by its “average

value” —a c—number—

Q,k bQ <Qk bQ>
=

to obtain the reduced hamiltonian

Hred a akG + k ak+QG akG + h c ) (1)

where the summation is over wave vectors k and spin a

Just as in the superfluid cases where this type of replace

ment destroys a conserved quantity (number) and gives rise to a

corresponding order parameter in the superfluid phase, here too

we have destroyed momentum conservation and expect to see a cor

responding order parameter appear in the CDW phase

Determination of the spectrum-generating algebra (SGA) is

achieved by decoupling the reduced hamiltonian (1) into a sum

of commuting terms

Hred H(k)

k
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The SGA for g, will be of the form

g
k

in the sense of a direct sum of Lie algebras where each is

isomorphic to a fixed Lie algebra (which we often loosely refer

to as the SGA of This process is analogous to that carried

out for superfluid systems [7]. This decoupling is achieved as

follows: We assume that only states for which Iki < Q = 2kF

can participate in the reduced hamiltonian (1). This leads to

kF

= H(k)
(2)

kF

where

H(k) = H(÷)(k) for k [O,kF]

and

H(k) = H(k) for k c [kF,O).

[Note that we have now implicitly taken a linear model with this

domain of k.]

Here

H(÷) (k) = L(±) (k) + V() (k)

with

•1• t
E() (k) = e(k) (ak+ ak+ + a._k4. a..k)

+ (kQ) (aQ akQ+ + a(kQ)4 a(kQ))
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The interaction terms are

V() (k) = Y_Q 4+ akQ+ + k
a (kQ) + ak+ + h C

and

V(_) (k)
= 1(k+Q) ak+ a_k_Q+ + k ak+Q+ ak+ + h c

Having achieved the requisite decoupling, we now note that

the terms in H(±) (k) can be written as hermitian bilinear forn-s of

the four operators A(±)i(k)I i = 1,2,3,4,

{A(+)1(k)K A(÷)2(k)I A(÷)3(k)I A(+)4(k)}=

{ak+, ak+, akQ+ a(k(Q)+}

Since the 16 operators X =. A A generate representation of

the algebra gY..(4,R) [8) (we have dropped the (±) suffix and the

explicit k dependence in our notation — these remarks are clearly

true for both + and - sectors and all k)we see that the SGA of

H is a subalgebra of U(4) ,,)gebra of the hermitian elements of

g2(4,R). We may determine the subalgebra in question by choosing

an explicit 4 x 4 representation of

= e (1,] = 1, 2, 3, 4)

where each e. matrix has elements
iJ

(e..) = 6. 6.
1] Qm i2. jm
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In this representation, each H(k) of the sum in (2) is given by

a 4x4 matrix

H
H -

_y,* _?

with

= E(k), E = c(k-Q), =
=

for k6[O,kFJ

E £(k), ‘ (k+Q), y= , y’ = y*(k+Q) for k[_kF,O)

(3)

Define the matrices

L = 1/2 x

K = 1/2t x T3

S = 1/2 T0X T3

in terms of the Pauli—spin matrices

{To ‘ ‘‘ _

and note that H above can be written

AS+a L+b K (4)

where
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= 6 + 6’, a =((a — a’), — (S — 5’), 0)

=((a + a’), (13 + 5’), (c — 6’))

(with y E a + ±5).

Since

[L,L.1 = i e L
1 j ijk k

[L. Kj e. K
1, j ijk k

K.,K.j = ie. L
1 j ijk K

and

[S, L j = [S, Kj = 0

We have in (4) explicitly described H as an element of the

U(l) e SO(4) algebra generated by (S,L,K). Thus the SGA of this

CDW model is g
=

and U(l) SO(4).

Since under automorphisms of this algebra the terms

2 2
A, a + b , a b

are invariant, diagonalisation involves transforming

H ± RHR1 = ?S + pL3 + ‘ K (5)

where

= 6+6’

2 + = 2 ( Iii 2
+ I ‘‘‘ 1 2) + (e —6’)

2

= I1 — Ii’I

When account is taken of the symmetry of the electron-phonon

scattering term in the original Fröhlich hamiltonian, we see that

in a physical model y = y’, and so there is a degeneracy of the

spectrum.
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The corresponding energy spectrum has the form

1/2 ( + c’) ± 1/2 [4II2 + ft
- )2J1/2

where the k—dependence of the above quantities is given by (3)

Note that at the Fermi surface k = kF where c = the

corresponding energies are

EF ± H’I

showing an energy discontinuity of magnitude 21i1. (Whether or

not there is an energy gap in the sense of a forbidden range

of energies depends on satisfying the inequality, for constant y,

Max ft + ‘) Mm (E + ) < 4tj

For a model with s(k) 1/2 W (1— cos k) this condition is

W cosk, < 2)y.

The Bogoliubov transformation is related to the transformation

T in Hubert space which corresponds to the matrix R which implements

the diagonalisation (5), R may be readily obtained for the U(l)@

SO(4) hamiltonian (4); however, it is more instructive to exhibit

it for a simplified model in which y is real. In this case our

hamiltonian becomes

H = XS+pJ

where

p (2y, 0, E—E’) ; J=(K1, L2, K3)

and so H has the SGA: U(l) G SO(3) ‘ U(2), whence T involves



• .... . .. .. . . . . . . .
. t . . . .

..

•_9

. .
• •: :

. :

only a single rotation angle Explicitly, the diagonalizing

rotation in the 4x4 representation is given by

R = exp(2i J2) . . . .

.. L..

where

tan 2+ = 2y/(e—s’); .

: : :••

this corresponds in Pock space to . :
.

•:

.

T(k) = exp +k 4+ ak_Q+ + a_k+ a_(k_Q)+ - h.c.}

(for k > 0; an entirely analogous expression with Q + -Q holds .
,.•..•.

for k < 0), where we have explicitly put back the k dependence ..

in the second expression to emphasize that the corresponding • •.

transformation on the reduced hamiltonian (2) would be given by
•.•

ted +
ted r1

where .

.

.
. .

..
.

k ••

••r=]IP T .

The Bogoliubov transformation is precisely that unitary transform—

ation on the operators Sa
in tens of which Hred is (unchanged •

. .

and) ‘diagonal. This clearly has the form • :

ak+
+

ak+ T = cos k ak+ + sin k ak_Q+ (Ic > 0)

with similar expressions for the other operators. •

•:
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Coherent states are obtained by the action of elements of

the dynamical. group corresponding to the SGA on a fixed state [9];

the most important example is the ground coherent state g>

corresponding to the Fermi sea: If> .

where . . .

if> = 11 a 10;
- kF<k<kF

a=+,4.

for vacuum state jo>.

We conclude by exhibiting the appearance of an order param

eter in the ground state g> of the CDW phase, as we expected

at the beginning. First note that the operator akU ak_QU vanishes

in the normal (Fermi—sea) ground state;

<fi akU ak Qa If> = 0 .

However .

<gJ aka —Qa > = <. T&J aJQ T if>

= <fi nk
— %—Q;a if> cos sin

= 1/2 sin 2+k for kt[OKkF]

where is the number operator in state kcx.

We deduce that the relevant order parameter for characterizing the

CDW phase is < akC >, (where Ic’ = kQ for Ic = ± ici).
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Elsewhere [10] we discuss the dynamical group of a mean-

field model of coexistence of superconductivity and charge

density waves, work is also in progress to include magnetic

effects in the dynamical group formalism.
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