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3STRACT .

cylindrically and plane gymmetric

Ve present some stat

solutions to the equations of tho quadratic Poincare gauge field

{heory developed by Hehl and coworkers,



1. Introduction,

This paper contuing pome preliminary results in a search for
static, vacuum, cylindrical and plane pymmetric solutions to the cquations

of the guadratic Poincarc gauge (QPG) field theory developed by Hehl and

i3 coworkers (Sece liehl 1970 and Zuaclklor, lichl and Miclke 1980). In &2 a
. brief suvrmmary of the notation is given and the cquations of the QPG
! theory are stated. A solution of the QPG field equations determines

= ©a Riemann-Cartan space-time which fg specified by an orthonormal tetrad
{ield (o», equivalently, a metric) and p metvic—compatible non-symuetric -

connection, In the spherically pymaotric solutions of Dackler et al.,

(1980) mnd Doaekler (1982) the metric hLog the property of satisfying

Yinptein's cguations witl cosmolopicel constant,

naB

= g, C(L.1y

vhere Ra is the Ricci tensor for the sgymmeiric Ricmannian connection

B

defined by the metric and the constant A involves certain coupling

congtents thet occur in tho QPG oquations. Guided by these resultis

we restrict oursclves here to looking for solutions which have this

property. Accordingly, in §3, the complete solution of (1.1) fox

E

stetic, cylindrical and plane symmotric metries is derived and, 4in §4,
£ nuwbey of special solutions to the QPG equations arc derived corresponding
'% 10 the meirics found in §3.

’

2. The OPG vocuum equations,

The underlying space-time is tekon to be a differentiable

3
4

1

"
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moanifold with normal hyperbolie metric g and connection V. It is
assumed that the conncetion ip compatible with the metric in the pense

that

e, m)} = GO, 7y g (V%) (2.1)

for arbitrary vector fields X, Y, 2.

Let ¢ (¢ = 0,1,2,3) be an orthonormal tetrad field so that

g(ca,eg) = nuﬁ = diapg(-1, 1, 1, 1). In terms of a local coordinate
1 i, i .
system {x7}, e = ¢ (), where 3, = 3/ox. The dval basis of
« « i i
one-formg will be denoted by Ga = a:(x)dxi, where e:eg = 52,

end their exterior derivatives (tho cbject of anhclonomity in Nehl's
terminolopgy) may bo written in the form

o

Y H o .
[¢14) ‘quv 6" . 6 (2.2
where ’ .
3 &3 a 3 3
= - = 2 ) 2.3
ﬂuv 7 Qvu : 8[icj]c“ev , 4 b
{ihe square brackels denoting mntisymuetrization.
The connection one~forus muB are defined by
v.e = [ B(X) e (2.4)
X o 2 [
for orbitrary vector field X, so that
g _ o, Bu o 5
v, = - 0 (2.5)
where
v <) = T B [P (2,6)
CU o Ha g
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golutions of (2.17) , (2.18) for which the metric components g, ., = N C.CB
ij af 4
are solutions of Linstein's cquatlions with cosmolopical constant,
R, ., =  hg,. 2,14
i By o (2.30)
vhero Rij is the Ricei tensor foy the symmetric Riemannian connection
definecd hy ng and AH = 1 3K/4£2 (Sce equation (7.5) of Backler
X
ct nl. 1980; where however it is only the + sign that occurs) ., The
first step therefore is to solve (2.19) for static, cylindrical and
plane metric space-tines.
3. Einstein cquations with cosmolopgical constiant.

Concider ¢ static spneo-time which, in addition to the timelike
hyperpsurface-orthogonal Yilling vector field, has two spacelike Killing
fields. ve furthermore asswse that the threc LHilling ficlds are
nutually orthogonal and commute among thomselves. One cen then choosc
{the coordinates so that

2 2u, 2 2 2 2w 2 2 .
as? = = e?Uat? 4 oPay” + ™Mar” 4 ax”, 3.1)
vhere u, v and w arc functions of x only. If the ccordinate lincs of
y (say) sre closed with 0 y< 2 mud —e <z <oy 0 < x <
thoe metric is cylindrically pymmetric with y as the angular, X tho
cylindrical radial and z the longitudinel coordinate. If - < x, ¥, & < ®)

the symmetry may be called pooudo-plenar  (Sce Brounikov and Kovalchuk 1$79).
¥rom the point of view of tho local fiold equations bLoth cases may be
trented gimultancously. For the vacuum field cquntions with zero

cogmolepical constent onc may transform to Weyl canonical coordinates




not possible here,

I

and d

(2.19)

4
+oviwt

2
+outwt

2
4 outy!

u - v, B

a4+ b+ c

1og(goqx + do

are congtents,

with ouly two independent functions in tho metric,

the metric (3.1) yield

A

where a prime denotes differentiation with respect to x.

v -V

where a, b and ¢ are constents of integration, with

Ve distinguish the cases for which A > 0 and A < O,

The general golution of (3.6) is

However this

The functions

(3.2}

(3.3)

(3.6}

3.7

(3.8)

(3.9)
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f oud « are then obtalned from (3.7) by & simple quadrature and hence

u, v, and v arce determined, On subgitituting (3.7) and (3.9) into
(3.2 ~ (3.5) onc obianins
] 2 2 2
a? b+ ¢ = ~8pdqg . (3.10)
Yo thercforce have ivwo subcases: Cnge I (a) for wvhich d = 0, g # 0

(or g = 6, d 37 0) and consoguontly, by (3.10), a = b = ¢ = 0;

Cuace I (b)Y fLor which both g and & are non~zero and, by (3.10),
nocessgarily of opposite sign.
By some munipulation and rescaling of the coerdinates onc

£inally obtains the following forms Tox the functions in the metirvie (3.1

Cape I (a) (d =0, g# 0):
u = v = v = 4x/3. (3.11
£ g =0, d3 0, then ¢qu/3 s roeplaced by - gx/3.
Case T (b) (g # 0, d7 0):
/-
U= [einh(ox) £entC (3.12)
o = [einb(qx) 1GB)3 (3.13)
&V = [sbaneen £ (3.14)
whore
‘ 1(x) = [cosh(qx) - 1]/[cosh(gn) + 1] (3.15)
and
A+ B+ C = 0, Az + Bz + C2 = 3/2. (3,16)

TR




RN R NS

By (3.16) the constants A, B and C may bo cxpressed in terms of a

pingle paramcter p a8 follows:

b 2.0%
A= & 37/[2@pep )], B = phA, c = - (Lip)A. (3.1.7)

IX. A <0,
The goneral solution of (3.6) iﬁ then
£ = logfp sin g(xte)] (3.18)

3
vhere g = (—BA)‘, ¢ ond € nre constants. Again with some

manipulation onc can express the motric in the form (3.1) with

M= [etncen 1e™Y8, (3.19)
& = [stnen 60777 (3.20)
¥ = [min(gx) P R (5.21)
vhere
£¢x) = [1 - cos(ax)]/[1 + cos(ax)] (3.22)

and A, B and C satisfy (3.16).
g Note that for cylindrical symmetry, where y is the mngular
coordinate, the topological implications of rescaling y should be
considered in all of the nbove capcs.

Stationary, cylindrically pymsetric solutions to Bingtein's

equations with cosmological constant have been treated by Krasinski (1975).

7Y ST R sy TR O R T AT T o S T T T YR G P LT T R R
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It 36 casy to verify that Cuse I (n) above is cquivalent to the moetric
(9.3) of his paper, whilo & rather involved coordinate transformation
ghows Cases I () and II  t{o be equivalent to his Type B solutions,
Nowaver, the functions occurring in the Type D metrics of Krazingshi are
considerably more compliceted containing, as they do, scven (constnnt)
poarareters instend of the two poramoters g and p of the nresent

paper.

4, Solutions of the QPG field cguntions.

In this section we present some special solutions of 1ihe QPG
field cquations (2.17) and (2.18). The metric is taken to be of the

form ¢(3.1) and the obvious crthonormal tetrad field,

o 3 3 2 . 3
cidxi = eudt,. c;dxi = evdy, oidxi = c\dz, e;dxi = o, (4.1)
o 1 .2 .2 i
j& chosen wvhere (x, x , x , x ) = (t, ¥y, %, %x). Ye look for

polutions of the cquations (2.17) and (2.18) for which the functions
u, v,and w have the forms given in cach of the three cases described
c o » 2 _ " 2 .
in §2 and A= 35487 dn Case I, A = - 3c/427 in Case II.
On meaking the substitutions (4.1) with the prescribed forms ef u, v and
w in ench case, equations (2,17) and (2.18) become equations for the

torsion components ¥ = - F . In order to have manageable

afy Bya

equations restrictions will elso be imposed on the FGBY which will
be specified when we come to deal with ench case in turn.,

¥hen written out in full the expressions for EuB and

¥

¥ af occurring in equations (2.17) and (2.18) are very long and




unvicldy, A11 the calculetions have been done on & computer using o

IEDUCE programme and a certain dogres of trial and crror was involved.
' As it would be extremely tedious 1o reproeduce the detaills of the

calculations we shell simply deseribo the procedure used and stete the

results

Solution I (a):

Let c: be given by (4.1) with u, v and v as in (3,11},

aby

The only non-zero componentsg of (nodulo the antisymmetry,

u/3.

Qag»\, = —.QBQY Y are then 9030 = - {8131 - . 0232

Uging this as a guide we resirict ourselves to sceling solutions of

(2,17, 18) for which

Fozo T " Vs T VO,
(4.2)
Fian © " ¥y T Fagpy T " Vg, 0 -V

2
and g = QK/422.
Substitution of (4.2) and (4.1),with u, v and w as in (3,11},

into (2.18) yields Just onec indepcﬁdcnt cquation for U(x),
9 . :
Ut 4 qU? = 207U - ). (4.3)

On pubstituting (41.3) into (2.17) one obtains itwo independent

equations,

/
3 2 2
3U‘2 4+ 2qU + QU - U(BU ~ 4qU7 + BQ?U - 2q3) = [o] (4.4)
and
2 3
out? 4 2q(3U - U' - USU~ - 12qU2 + q2U + 2(13) = 0, (4.5)




- 13 -

2
Eliminate U'T from (4.4) and (4.5) to get

vro= U@ - q),

which has

v o= gqsa - e

ee its general solution, where D/ is on erbitrary constant.

" Finally

ono may verify that (vemarkalilyl) (4.7) satisfies all of the

cquations (4.3) - (4.5).

(4.6)

Thus>(4.1) end (4.2), with u, v, w and U given by (3.11) and

(4.7), is a solution of the QPG equations (2.17, 18)

Solution I (b):

Let cg be as 4n (4.1) with o, ', and ¢" given by

(3,12) - (3.15). The only indopendent non-zero componenis of QGG
ayre again QOBO’ 9131 and 9232. Yor this case we have so far looked
only for solutions in which one of the independent components FO“O'
N & 3 - - wvhi 9 ‘e 3 &) iJs16 -
F131 or r232 3s non-zero while all the other independent components
veanigh,
First of sll let
Foao = " Fseo T VO
(4.8)
211 other componenis of FGBY = 0,
2 2
and, as before, g = gr/44L"7, It is found that the only independent
non-identically zero components of TYGB (equation (2.18)) are

° Tl and Tz

. : 0
03’ 13 23" The oguation T

T

03

0 yields

O AT
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ninhz(qx)U" + g sinb{gx)cosh{gxiU' - q2U = 0, (4.9
the general solutlon of which is
LU = (o cosh{gx) + b)/sinh{gx), (4.10)
wvhere o and b are constants of dintegration. The solution )

of (4.10) satisfics « 13 = 0 4f{ and only if a> = 0 and
cither

b = 2q/3, A = 1, B = -3, € = -1,
or

b = -2q/3, A = -1, B = %, € = %,

Yurthermore, with either of thoso two sets of values for the constants

= and X 0 (equation (2.17)) are

o wf

. 2
the cquation T gg

automatically satisficd.
Thus (4.1) mnd (4.8), with u, v and w given by (3.12) - (3.15),

is n polution of the QPG equations (2,17, 18) if and only if eiiher

UGy = 2¢/3sinh(qx), A = 1, B = I, ¢ = -}, (4.11)
or
U(x) = =- 2¢/3sinh(gx), A o= =1, B = %, c = 1. 4.12)
By a similar procedure the following sclutions for the metlric

of Casc I

or

(b) may also be found:
- ¥hyp T 20/Bsinnlax), A=, B=-1, C=i, (4.12)
- FBll = - 2¢/3sinb(x), A=-3, B=1, C=- 3%, (4.14)




z«hﬁ“;;u,’;-,;( ovie i

G

b

- 15 -
her ¥ g eqgunl to zor and

all othex lGBY being ecgun o Yo, T

Fou, = = Voo = 2q/3sinhigx), A = 4, B=13%, C=~1 (4.15)
or

Foop = = Typg = - 2q/3sinh(qx), A=-134, B=-1%, C=1, (4.16)
all other I being equal {o zero,

a f)\;’
Case 11:

An attempt 1o find polutions in this case along the linces

of the preceding exasmple proves te be unsuccessful, Take © ag in
, u v v o o ]

(4.1) with ¢, e and ¢ piven by (3.18) - (3.22) and the torsion

as in (4.8). Proceeding exactly ms before, it is found that (2.318)

ig patisficd if and only if cither

V() = 2q(Zcosqxt+3)/3eings, A =1, B = - I, c=-1% 4.17)
or
U(x) = 2q(Zcosyx-3)/3gingx, A= -1, B = 3, C=14. (4.18)

llowever, on substituting thoso solutions into (2,17) one obtainsg

o . 2
LuB = (2q /3)nu6. (4.19)
po there is no vacuum golution of this form for Case II,
Similerly, further solutiong of equation (2.18) are given by
Figg = - 2¢q(2cosqu-3)/3singx, A =%, B= -1, C=1} . (4.20)
or
Fiqy = ~2q(2cosqx+3d)/3aingx, A= -%, B=1, C=~ i, (4.21)
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all other dudependent Y( being ecqual to zero, and the obvioun
L

By

corvesponding solution for tho casoe dn which all the FGFY vanigh except
3

for FZBZ = - F322. Substitution of these sclutions inte (2,17)

agein yicolds (4.19):

The lack of succegs in finding o vacuum solution for this B

2 2 .
cage, vwvhere A = - 3u/40 instead of +3x/48 as in Casc I, would
peer Lo indicate that, In gencral, the QPG cquations are sensitive to

the gign of A in (2,19) .

I am grateful to Professzor F.W. Hehl for introducing me
to the QPG theery and for several useful suggestions, nlso to
Dr. P, Backler who with Professor Mehl independently checked the

solutions of §3 and Solution I (a) of &4

e 4
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