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Abstract: We treat a model of an interacting anisotropic

superfluid fermi system, and describe the associated

spectrum—generating Lie algebra. This algebra is

a direct sum of algebras isomorphic to so(6),

Subalgebras correspond to the BCS model of super

conductivity (so(3)), and superfluid Helium Three

(so(5)). The spectrum, and so—called unitary

states, are expressed in terms of invariants of the

algebra.





o Introduction

The method described in the following pages to treat a model of

an anisotropic superfluid fermi system is based on a similar

treatment of an interacting system of bosons given previously by

the author (Solomon 1971). The common strategy adopted is as

follows. We first write down a model of the interacting system

in which we introduce the superfluidity behaviour as a pairing

of opposite momentum (but not necessarily opposite spin)

operators We then use a Hartree—Fock approximation to obtain

an essentially linearized hamiltonian (This linearization is

achieved in the boson case by the Bogoliubov approximation in

which the lowest—momentum—state creation and annihilation operators

are replaced by a c—number.) The linear, reduced hamiltonian is

then expressed as an element of a Lie algebra g — the spectrum—

generating algebra of the model.

It turns out that in both boson and fermion cases g is the direct—

sum of isomorphic Lie algebras labelled by the momentum suffix k,

g

so that the algebraic treatment of the model is essentially governed

by the In the case of interacting bosons, we have

so(2,1)

while in the case of interacting fermions, one obtains

so(6)
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When the latter case is specialized to spin—singlet pairing (S = 0)

the BCS model of superconductivity results, for which

so(3)

while if one specializes to spin—triplet pairing (S = 1), a model

for superfluid Helium Three results, for which

so(5).

The next step towards diagonalisation is to choose the lowest

dimensional faithful representation of the Lie algebra the

hamiltonian is then expressed as a matrix N which is 2 x 2 in

the Helium Four case, and 4 x 4 in the Helium Three case. The

rotation which effects diagonalization is an automorphism of

the Lie algebra, which we may call the Bogoliubov transformation;

however there is no need to perform this rotation explicity.

Instead we may make use of the following invariants

n
tr M n = 1,2,3,...

of which there are only 9 independent ones associated with a rank—2

Lie algebra. For the rank—I algebra so(2,I) of Helium Four (or

so(3) of the BCS model), this means that the single invariant tr N2

leads to the spectrum immediately In the case of the rank—2

algebra so(5) of Helium Three, the two invariants, expressed in

terms of tr N2 and tr N4, give the spectrum in general. The

unitary states, which have a degenerate spectrum, correspond to

the vanishing of one of the invariants
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As the common strategy in both the boson and fermion cases

involves diagonalization of the hamiltonian to obtain the energy

spectrum by going to a small dimensional faithful representation

of the spectrum—generating algebra, we first exemplify this

process by treating the simpler boson case.
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1. Superfluid Boson Model

We take as our model the weakly interacting boson system described

by the hamiltonian K =
H, where

k

Hk = ekak + 2
pq

vkap÷kaq_kapaq

The operators ak and a represent the annihilation and creation

operators for a Helium Four atom of momentum k; they obey

[ak,?1
= kk’

Ek
is the energy of the atom, and Vk is the Fourier transform of

the two—body interaction potential; they satisfy

Ek = Ek Vk = Vk

The model is rendered tractable by the assumption of macroscopic

occupation of the k = 0, zero—momentum, state; this enables one to

treat the a0 and a operators as the ordinary c—number /, where

N is the number density of k = 0 bosons This is the assumption

which gives rise to the superfluid character of the model. With

this simplification the hamiltonlan reduces to Hd, where

red I + + I ++

= + NVk) (akak + akak)+v(aka + akak)

red
We now exhibit HR as an element of a Lie algebra by defining the

following operators:
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=
-
-(aja + %a_k)

(k) ++
Y = 1/2(aa_k — a.a_k)

= F<ak + a_ka_k + I)

These operators obey the following commutation rules

[X,Y] = —iZ CY,Z) — ix [Z,X] iY

(on suppressing the momentum superscript It), which are the commutation

relations of the real Lie algebra su(I,1) so(2,1). (The symbol i

appears on the right—hand side as a result of the physicist’s

preference for Hermitian operators.) This then completes the

initial part of the strategy outlined in the introduction, namely to

express the hamiltonian as an element of a Lie algebra g. In this

case

g

where each is isomorphic to so(2,1) or, equivalently su(1,1).

In terms of the generators of the reduced hamiltonian may be

written (up to a c—number additive constant) as

ed
sbkx + c1z @k - k’ %

= N+ Ek)

The form of the energy spectrum may be obtained by a rotation — about

the direction — and this corresponds precisely to the Bogoliubov

transformation (Bogoliubov 1947). However, there is never any need

to perform this rotation explicitly, as we mentioned in the Introduction,

where we also noted that the final part of the general strategy for

obtaining the form of the energy spectrum involves diagonalisation
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in a low—dimensional faithful representation of the Lie algebra.

In the present case we may choose

1]

[
ij

as a suitable representation in which, suppressing the k dependence

for typographical simplicity, the reduced hamiltonian is represented

by the matrix M

c b

—b —c

The single independent invariant in this case is

2 12 2
trM =-(c —b );

(this would correspond to the Killing form in the adjoint representation).

We may therefore diagonalize to (c2 — b2)Z when c2 — b2 is positive,

and for c2 — b2 < 0 to (b2 — c2), The former case corresponds to

a repulsive potential, and tells us that in the original infinite

dimensional representation the diagonal form of the hamiltonian is

( + 2NVkEk)Z’

Since the spectrum of in the only allowed infinite dimensional

representation (Solomon 1971) is the natural numbers, this gives the

well—known discrete excitation spectrum of superfluid Helium FourS

The repulsive case gives the continuous spectrum of



2. Superfluid Fermion Model

Recognizing that superfluidity in fermion systems arises as a

consequence of pair formation in opposite momentum states, we take

as our starting point a model hamiltonian in which only those

pairing interactions occur:

H = Ekakak + VkktaakSak,Sak,
k,k ,a,S

The fermion annihilation and creation operators ak and obey

the anti—commutation rules

[ak,a,]+
= kk’S

where k,k’ are 3—momentum labels as before, and the additional

suffices c, are spin labels which may be either up(+) or down(4-)

We may reduce this hamiltonian to exactly solvable form by using

the following linearisation procedure; for any two operators A and

B we have the identity

AB = (A — <A>)(B — <B>) + A<B> + B<A> —

where the numbers <A>, <B> are the expectation values in some ground

state. To the extent that we may ignore deviations from this ground

state we may approximate

AB A<B> + B<A>

(where we have suppressed the additive c—number <A><B>). Applying

this process to our model hamiltonian leads to the reduced approximate

hami 1 tonian

= (2 1)
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where

1 + + I + + 1*

Hk = 2 Ekck + akak) ÷ V(ka,)aakS +
jV (ka,S)aka.k,

cx aS

(2.2)

and

V(k,a,5)
=

Note that the summation in is over spins only, and that the

reduced hamiltonian Hred has decoupled into a sum of independent

(commuting) Hk’s — just as in the boson case treated previously.

We may he ef r t ac mdi iduall suppre s n the -

subscript for ypogra hical nvenie. when esira ) and s a

consequence, the spectrum—generating algebra we obtain for Hred

will simply be a direct sum of isomorphic algebras associated with

In order to identify the spectrum—generating algebra associated with

the reduced h miltoni Hred we introduce operators A. defned

by

(A1,A2,A3,A4)
= (a+, a+, a, a+)

wher have ppr d th momentum md k. Th perat s

b he u u I f n omm tat on tion
i

[A., A]
= ..

(i,j = 1,2,3,4)
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We can now define a set of sixteen operators by

X,, = ADA. (2,3)
1J 1]

which are seen to satisfy the commutation relations

[X.,X1= kXi (2,4)

this is a special case of the general result obtained in Appendix A

The commutation relations (2,4) are the defining relations of

g(4,R), the Lie algebra of all real 4 x 4 matrices, as may be

readily seen by choosing the following basis of 16 independent 4 x 4

matrices e. with (r,s) element given by

(e) = (r,s,i,j = 1,2,3,4)

so that each matrix possesses precisely the one non—zero entry 1.

Clearly the e span all real 4 x 4 matrices, and satisfy

[e,ekl= -

Since the set (2,3) exhausts the operators occuring in the hamiltonian

(2,2), we see that the spectrum—generating algebra associated with

Ilk for each k is a sub—algebra of g2(4,R); more precisely, since from

hermiticity only the real combinations US., where

Ukk =
Xkk (k = 1,2,3,4)

UkX1+Xk (k<4)

Uki(X1Xk) (k<4)

can occur, the required algebra is a sub—algebra of u(4),the real
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algebra of unitary 4 x 4 matrices generated by the

We now write H. in terms of the generators X..;
k ij

H = e(X11 + — X33 — X) + (VX14 + VX13 + VX24 + VX23 +

hermitian conjugate)

where we have again suppressed the k—dependence (as well as an

additive constant c) and written

V(k,a,f3)
=
V for a, 5

Following the strategy outlined in the Introduction, we now go to

the 4—dimensional representation X.. = e..; so that
1] 1J

H = )‘m. .X. is represented by
1J 1J

m. Ce..
1J 1J

where the matrix N of coefficients (M) = m is given by

M= E÷V (25),

where E= [: _:i and V= ]
The 2 X 2 matrices H and V are defined by

Ic 0

[0 E

and

V

V=
++
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Since N is traceless the spectrum—generating algebra associated with

this anisotropic fermion model is a subalgebra of su(4) so(6),

we now show that it is indeed so(6). We may write the general 4 x 4

complex matrix V in terms of Pauli matrices T, i 0,1,2,3 as

3

V = (a + ib )t (a ,b real)

=0
1 1-I I lip

so that, in terms of the generators T, U and E defined in Appendix B,

the potential matrix V is given by

v = aT bJJ + a0E1 — b0E2

with a E (a0,a), b E (b0,b), The kinetic energy matrix is

E= eE3.

Thus the hamiltonian matrix M includes the generators {E., T., U.}

of Appendix B, since, for example,

[T ,T ] = ie S
i j ijkk

[E ,U.] = iW.
I i

this set closes on the 16 generators {E,S,T,U,W} of so(6)

Therefore, in the language of the Introduction, the spectrum—

generating algebra for this model is g, where

g
= k

and each so(6).
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luidHeliumThreeModel

Both the BCS superconductor model and the

superfluid Helium Three model are obtained from the fermion model

of the preceding section by specifying the spin transformation

properties of the potential matrix V Thus, we obtain the BCS

model when V is a spin—singlet, and Helium Three when V is a

spin—triplet, It is more convenient to apply the involutive auto—

morphism of Appendix C when considering these transformation

properties, as under the spin operator a takes the simple form

S (This is not the Bogoliubov automorphism,)

[,V]=O;

Applying [p(a), p()J = 0;

that is [, V’l = 0, putting V’ = (V )

In general V’ = a’T — b’U + aE1 — bE2 (Appendix C)

so in the spin—singlet case a’ = b’ = 0, and V’ becomes

= aE1 — bE2

using the commutation relations of Appendix B.

In this case the hamiltonian matrix N’ associated with U’ is
5 vs

N’ = c + aE1 — bE2

The operators {E1,E2,E3} generate the so(3) subalgebra of the BCS

model, This algebra has a one—element Cartan subalgebra which we may

take to be that generated by E3 The Bogoliubov transformation in

this case is therefore the automorphism sending

M’—’ BE3 (3,1)
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where the coefficient E is here given by an expression similar to

that in the boson case of Section 1, but now with positive invariant

form

E = CE2 + a02 +

‘2 ‘2 2 2 2
Since a0 + b0 = a3 + b3 IvI , we obtain the well—known energy—

gap expression

E = CE2 + A2) A
=

The automorphism (3.1) is reflected in the Fock space hamilton

(2.1) by the diagonalization

Hred ( + A(n, +

where
= akak, tk = Ak.

Spin—triplet pairing: We assume that this is the case for Helium

Three superfluid, V behaves as a vector under the spin operator a,

or, equivalently, V’ behaves as a vector under S We then have

a triplet potential

V’ = —

bV (a = b = 0).

T

The hamiltonian matrix (2 5) then becomes

EE3 + a’T — b’V
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It is shown in Appeçdix B that the seven operators fE3,T.,U.}

close on the so(5) sp(4) algebra generated by {S.,T.,U8,E3};

this is therefore the spectrum—generating algebra of the triplet—

pairing superfluid Helium Three modeL

It is sometimes convenient to specify the potential V’ by

the single complex vector d = a’ + ib’; we have

d = a + ib —b + ia2 (V— V)

d = a + ib = b1 — Ia1 =
— (V+++ V)

d = a + ib = a2 + ib0 = (V÷ V++)

Without enlarging the so(5) algebra, we may accomodate an external

magnetic field term h in the potential VT corresponding to an

additional term h.S in Vr Similarly, a “density fluctuation?!

term

ff(x)p(x - y)(y)d3xd3y

in second—quantized field operator form could also be added;

but as this corresponds simply to a pE3 term in the hamiltonian,

we shall subsume such a term in the energy E,

We therefore note that the most general superfluid Helium Three

model in the context of the so(5) algebra is given by the hamiltonian

matrix

M = EE3 + a4T - bU + h.S

in our 4 x 4 matrix representation, after applying the automorphism

(and dropping the primes and k—summation).
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4. The Spectrum and Unitary States

In the previous section we showed that the spectrum-generating algebra

of our Helium Three model is so(5). We can now employ the strategy

outlined in the Introduction to obtain the spectrum in terms of the

two invariants associated with this rank--2 algebra

For each momentum k, the model hamiltonian is represented by

M=eE +a.T—b.U+h.5

(where we

We define the following two invariants:

(4.1)

By definition the Bogoliubov automorphism sends the hamiltonian

element to a Cartan subalgebra; in this case

M i—AE3+jiS3

where we have chosen as Cartan subalgebra that generated by

{E3,S3}, and I, i are real numbers.

— 16 —

have included a magnetic field h) which is

I
ET0+h.T

M
2

(a-ib).T

(a+ib) .‘r

ET0 +

I

12 tr M4 - = (a x b + Eh)

(a2
=

+ (a h)2
+

(bh)2



Explicitly,

M —* (4.2)

—X+ii

—?—1J

with

2 2
II = ) +

22
12 = A i

The corresponding diagonalization of the Fock space hamiltonian Hd

is

Hred {(I + 2I)nk+ +
(1

- 2Ink+}

The energy spectrum has therefore the form

Ek = (E
+ )

(±)
where the energy gaps are given by

(±) =a2+b2+h2±2I

(all the quantities on the right—hand side being functions of k)

The energy spectrum is degenerate with a single energy gap when the

invariant 12 vanishes; this is the case for one of A or i vanishing,

in which case the square of the matrix N (4.2) is proportional to

the unit matrix. These give the so—called unitary states. This

occurs (for E 0) when

a x b + Eh = 0,
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In the absence of a magnetic field, an equivalent condition in terms

of the complex d—vector defined in the previous section is

*
d x d — 0.

This is the form of condition given by, for example, Leggett (1975).
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5 Conclusions

We have shown that an anisotropically paired fermi superfluid

can be described by a model hamiltonian which has an associated

dynamical group 11 so(6)k Imposing spin—zero pairing reduces this

k

to the BCS model with corresponding group II so(3)k, while the

k

Helium Three case, with spin—one paIring has II so(5)k for spectrum—

k

generating groupS Since, for each k, the Helium Three spectrum

is determined by the rank—2 Lie algebra so(5), this leads to two

energy gaps; for unitary states — when one of the two associated

algebraic invariants vanishes — we obtain a degenerate one—gap

spectrumS The inclusion of additional terms in the model hamiltonian

matrix (4J) — such as a term in the generators W of Appendix B

corresponding to a spin—gradient coupling term

J (x)aV(x) dx

would enlarge the spectrum—generating algebra to so(6) and thereby

introduce an extra energy gap in generaL

It should be noted that this is a zero temperature model, and so no

attempt Is made to describe the superfluid transition which is

accompanied by a loss of (phase) symmetry; however, just as in the

boson case of Section 1 where the two physical properties of the

system (replusive potential and atractive potential) are reflected

in the two conjugacy classes of the so(2,1) spectrum—generating algebra

( class and class respectively), one might expect that the various

physical states of superfluid Helium Three would be associated with

conjugacy classes in so(5) That this is indeed the case will be

shown elsewhere
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Appendix A Representations in terms of fermion operators

Suppose {A} is a set of n fermion operators,

[A, A±]
=

(r,s = 1,2,...,n).

Let {J} be an n x n matrix representation of a Lie algebra g

[J , J ] = c
a S

with matrix elements (3 ) , structure constants c
ars aS

Then a straightforward calculation shows that

X = A(J)A

r,s

is also a representation of g.

Further, if the 3 are hermitian (use structure constants ic’ ) then
a aS

so too are the X
a

We may reproduce the example of Section 2 of the text by taking for

{J} the n x n matrix representation {e..} of gl(n,R)

(e ) = ó c5
ijrs irjs

Then X. A(e..) A
r ijrss

r,s

that is X. AiA..
1] 1]
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Appendix B Representations of the algebra

From the Pauli spin matrices t (i 0,1,2,3)

r 1 r 11 r .i rl
ii —11

= [ jJ T1
1 j

T

[. J
T3 —1

we may define a 4 x 4 representation of u(4) by

J xr
1.R)

with an analogous representation in terms of fermion operators,

following the method of Appendix A. The central element
=

x

corresponds to

+ + + +
X00 = A1A + A2A2 + A3A3 + A4A4

which is (essentially) the total momentum operator. The other 15

elements {J13, J10 J0 i,j = 1,2,3} generate su(4) It is

convenient to separate these 15 generators into 5 triples;

{E , S , T , u , w }
1 i 1 1 1

with

E =-t X

i 2i

S. -T XT.
i 20 1

T =—- x
1 21 1

U. T X T.
1 22 1

W =—T XT
i 23 1
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The S. may be chosen to play the role of generators of spin

(see Appendix C);

[S., S.] = ie. . S
1 j ijkk

[S,T]=ie T
1 j ijkk

[S., U.] = le.. U
1 j ijkk

[S., E.] = 0.
1 3

The other commutation relations mayalso readily be obtained. The

15 elements generate the full so(6) (“‘ su(4)) algebra of the

anisotropic fermi superfluid model with Cartan subalgebra

{E3, W3, S3}.

The symplectic algebra sp(4) u(4) n sp(4, C) consists of 4 x 4

matrices of the form

A B

+
B A

where the 2 x 2 complex matrices obey A = A+, B = B (B transposed).

It may be readily verified that the subset

{J, i 2; J02} = {r. x r, x 2; = 0,1,3, i = 1,2,3}

has this property. This subset generates a 4 x 4 representation of

the 10—dimensional symplectic subalgebra sp(4) so(S). The

generators are clearly isomorphic to

X X = 0,1,3 i = 1,2,3}
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which may be rotated to the isomorphic set

fT < r., T3 x To; P = 0,1,2 1 = 1,2,3}.

We may rewrite these generators in terms of the previously defined

triples

{S., T., U., E3}

which therefore generate an so(5) subalgebra. This corresponds to

the superfluid Helium Three subalgebra. A maximal abelian subalgebra

(Cartan subalgebra) is {E3, S3}.
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Appendix C

We may write the spin operator a (for suppressed momentum index k) as

a=cr +a
— ——

with

+
a + = a

and
+

a — = aTa

(where the + and suffices refer to momentum +k and —k)

In terms of A defined in Section 2, we have, by explicit

evaluation

G A(- T3 X

1,]

a2 = A(+ T3 X T2L.A.

1,J

a3 = A+(!T
XT

) A
i,j i 2 0 3 i.j j

Therefore the spin operator is represented in the 4 x 4 representation

of Section 2 by

j= (W1, W2, S3)

As this representation is not particularly convenient for calculation,

we define an involutive automorphism

so(6) so(6)
2

=

g —+ RgR1

where R = exp (E3 + S3 — W3)



This transforms the generators of so(6) as follows:

E —+ (T3, U3, H3)

S —+(W, W2 53)

T —*(u2, —U1, E1)

! —(—T2, T1, H2)

2’
W3)

Under the automorphism , the spin operator transforms to S,

(a) = S.

The potential matrix V a,T b.U + a0E1 b0E2

becomes

(V) = a, (I) b. (U) + a (E1) — b0 (E2)

= a’ ,T — b’ ,U + aE1 bcE2

with

a9 = (—b2, b1, a0)

= (a2, —a1, b0)

b’—b— a3,
0 — 3’
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