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Abstract

The exact decay rate for emission of massless minimally coupled scalar fields
by a won-extremal black hole in 2 4+ 1 dimensions is obtained. At low energy,
the decay rate into scalars with zero angular momentum is correctly reproduced
within conforal field theory. The conformal field theory has both left- and right-
woving sectors and their contribution to the decay rate is associated naturally
with left and right teinperatures of the black hole.
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1 Introduction

Recently. it has become clear that a large class of extremal and near-extremal black
Loles allow for a conformal field theory or effective string theory description. Extremnal
black holes often correspond to BPS-states ol an underlying fundamental string theory.
Agreentent between the Bekenstein-Hawking entropy and the counting of string states
for extremal black holes in five dimensions was first obtaived in [1]. However. the
correspondence does 1ot seemr to be restricted to extremal black holes. Tudeed. the
eutropy of near-extremal black holes is often completely described by an effective string
theory [2]-[1].

Ou another front. the decay rates of non-extremal bliack holes liave also heen ex-
amined. This involves studying the absorption of quanta by the black hiole, and then
allowing it to evaporate, via Hawking radiation. back to extremality. In [1}-[9]. the
low euergy scattering cross sections and decay rates for a massless minimally coupled
scalar field were computed for a large class of four- aud five-dimensional black holes.
and agreentent was found with conformal field theory or effective string theory predic-
tious. Iu each of these cases, the result relied on a particular matching of solutious, in
a regiou near the black hole horizon and an asyimptotic region far fromn the black Lole.
For certain rauges of parameters inherent to the problem. this matching agrees with a
conformal field theory description.

Lu this paper, we study the propagation a massless minimally coupled scalar field iu
the background geometry of the (2 + 1)-dimeusional Banados-Teitelboim-Zanelli black
hole [10]. This black lole is described by two parameters, its mass A and angular
momentum J. In addition, the metric has constant negative curvature, and is thus
locally isometric to anti-de Sitter space. The special feature here is that the wave
equation can be solved exactly, without any approximations [11]. This allows us to
determine exactly the range of energy and angular momentuin of the scattered field.
for which the the decay rate agrees with the conformal field theory description. \Ve
find agreement for energies small in comparison to the size of the black hole. and to
the curvature scale of the spacetime; in addition, one is restricted to the zero angular
momentum wave. In this region, however, agreement is found for all values of 1/
and J, and thus the conformal field theory description is not restricted to a near-
extremal limit. Apart from that, we find behaviour similar to that observed in five
dimensious, namely that the conformal field theory Las both left- and right-moving
sectors. The corresponding decay rate is then written naturally in tevms of left and
right temperatures of the black hole.

Similarly to the 5-D black holes, the BTZ black lole is a solution of string theory
(12, 13]. The string scattering off BT Z black holes Las been considered in [14. 15] (see

also {16]).

2 The BTZ Black Hole

Geometrically, three-dimensional auti-de Sitter space can be represented as the SL{(2.R)
group space. Isometries are then represented by elements of the group SL(2, R) x



SL(2.R)/Z,. where the two copies of SL(2. R) act by left and right multiplication. The
BT Z black hole is obtained as the quotient space SL(2, R)/{(pr. pr)). where ((pr. pr))
denotes a certain finite subgroup of SL(2, R) x SL(2. R.)/Z, generated by (pr. pr) [17].
We choose Schwarzschild-like coordinates in which the BT Z metric reads [10. 18]

ds? = — (N2 + f72dr? + (r/o 4 .\"/’(lt);. (1)

with lapse aud shift functions and radial metric
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The metric (1) is singular when r=ry. where
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The M = —1, J =0 metric may be recognized as that of ordinary anti-de Sitter

space; it is separated by a mass gap from the M =0, J =0 “massless black hole”,
whose geometry is discussed in Refs. {17] and [19]. For convenience, we recall that the
Hawking temperature Ty, the area of the event horizon Ay, and the angular velocity
at the event hovizon Qg are given by

T rg—r Ay =2 0 J .
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The BTZ black hole is part of a solution of low energy string theory [12. 13]. The
low energy string effective action is

- o 1
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where ¢ is the dilaton. H,,, is an antisymmetric Kalb-Ramond field. which in three
dimensions must be proportional to the volume form €,,,. and k& is the cosmological
coustant. It was observed in [12. 13] that. in three dimensions, the ansatz

2 .
Hyppp = R =0, k=~¢, (7)

reduces the equations of motion of (6) to the Einstein field equations satisfied by (1). In
fact, there is a corresponding exact solution of string theory, the SL(2, R) WZW model
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with an appropriately chosen ceutral charge describes the propagation of striugs. By
quotienting out the discrete group ((pr. pr)) by means of an orbifold construction. one
obtains a theory that may be shiown to be an exact string theoretical represeutation of
the BT Z black hole 12, 13].

3 The Wave Equation

It has been kuown for some tune that the minimally coupled scalar field equation can
be solved exactly in the backgronnd geometry of the BT Z black bole [T This will
atlow us o deterimine the scattering cross section and decay rate of the scalin field
exactly. Substitution of the mewic (1) iuto the covariant Laplacian

- 1 P \M ey B
0= —=0, \ﬂ.rlﬁ g0, (8)
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leads to the scalar wave equation
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This suggests the ansatz

U(r,t,0) = R(r.w.m)e wHme. (11)

leading to the radial equation for R(r)
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Chauging variables to x = r?, the radial equation becomes
(0 —a )= 2)0 R(e) + 20 — oy — 0 )3, Rla) + K(r) R(x) = 0. (13)
where
; ¢ ,  Jwm o Am?
K(x) = ZIMP (Wrz - + ‘(_) ) (1)

We introduce a further change of variables by delining



T (15)

The radial equation then hecomes

Lo . A
(1= 2)02 R(z) = (1 = 2)0. R(z) + (wjl + 131) R(z)=0. (16)
where
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The hypergeometric form of (16) becomes explicit upon removing the pole in tle last
termn through the ansatz

R(z) = 2“g(z). o = —A,. (18)
We then have

2(1 = 2)d2g(2) + (2a + 1)1 = 2).4(z) + (4 + Bi)y(z) = 0. (19)

Iu the neighbourhiood of the horizon. z=0, two linearly independent solutions are theu
given by F(a,b,¢,2) and 2" “Fla—-c+1,b—c+ 1,2 —¢ z), where

a+b = 2a,
ab = o’ - DB. (20)
¢ = 1+42a.

Note that c = a + b+ 1.

4 The Decay Rate
We chioose the solution which has ingoing flux at the horizon, namely,

R(z) = z°F (. b, c. 2). (21)
To see this. we note that the conserved flux for (12) is given. up to an irrelevant

nornalisation, by

21 .
F="(R'A0.R~ RAO.R). (22)
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where A = rf2. The flux can be evaluated by noting that

]

AL
2

Ad, = 20.. (23)

where X = &y — .. Then. using the fact that «b is real. we find the total finx (which
is independent of z) to be given by

7= 2Ap(w — mQy). (:

[

I order to compiite the absorption cross section. we need o divide (217 Iy the
ingoing nx at indinity. The singularity of (12) av imlinny s such thar e adunits one
solution of the form [20]

e
2 n
w(y) = y* Y cuy” (25)

n=0

where y=¢/r. A secoud hnearly independent solution of (12) at infinity is thew given
by

wp(y) = D duy™ + Aui(y) log(y)- (26)

n=0

where A is a constant. Up to secoud order iu y, we have

wi(y) =y

- ) y* log(y). 27

The distinction between ingoing and outgoing waves is complicated by the fact that the
BT Z-spacetime is uot asymptotically flat. For a tachiyon field, ingoing and outgoing
waves have been defined in e.g. [15]. A naive extrapolation to massless fields is not
sensible as the resulting ingoing and outgoing waves arve given by «, and w, in (27).
which both have vanishing flux. However, we can define ingoing aud outgoing waves
to be complex linear combinations of u; and u, which have positive and negative flux.
respectively. This leads to

R‘IIL:‘_li <1A1£> H““l:_lu<
re

where ¢ is some positive dimensionless constant. which we take to be independent of

(28)

the frequency w. We note the comparison liere with the near region behaviowr of the
ingoing and outgoing solutious in the four-dimensional case (equ. (2.22) in [7]). The
ingoing flux is correspondingly

Fon = 8] 4% (29)

ot



The asymptotic behaviour of (21) for large r is readily available [21]. and we cau
then match this to (28) to determine the coefficients A; and 4,. We find

Fla+b+1)

A+ A, = Fm@:ﬁ
=4, = AT(a+b+1) [log(A_/E) +vla+ 1)+ v(b+ 1) ~ 0(1) = ¢(2)
R o 2 [(a)(b)

a o
L (30)
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where ¢ is the digawuia function. We can estimate the relative imuportance of the two
terms in (30) as follows. Firstly, we note that

& . ) Aw = Q) N
ub:mK( (’,2~ln))A “:IWT ------ . (31)
Using I'(z + 1) = zI'(z). we find
[a+b+1) (w=mQy)ry (W —m?) "
4 = = log(A_ /¢
A= Tai Do or 2 S [l
+ ola+ D)+ +1) = e) - o)} (32)
Furthermore,
4 N _ 4 .
= im (bw =), b= m (6w + 1) (33)

). the difference 4; — A, in (32) is small compared to the

If m=0 and w<< 111111(7';.%

sum A; + .4,. so that

T(a+b+1)

oL Tlexo+l)
T 2T(e+ PG+ 1)

(34)
This approximation means that the Compton wavelength of the scattered particle is
nwch bigger that the size of the black hole and the scale set by the curvature of the
anti-de Sitter space. Note that the logarithmic term in (32) ensures that the term in
braces is finite for all values of ¢/r,. i.e.. all values of Af and J. In particular, the
extreme limit J = £M¢. or equivalently A_ = 0, is well defined. Hence. for m=0 and
w small in the senge defined above, the approximation (34) should be valid. For m # 0
on the other hand. there is no obvious choice of black Lole parameters for which the
term in braces in {32) is small, and hence (34) is modified for m # 0.

Let us consider the =0 wave and assulne w << miu(;'f 1) 50 that (34) is valid.

N
S +
Then the partial wave absorption cross section is given by

!
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Iu order to relate the partial wave cross section to the plane wave cross section g,
we need to divide o™= by w [22]. We find

o e+ DI+ 1) .
P = A Cla+b+ 1) (36)

where we have chiosen e so that o () = Ay for o = 012200 The decay vare ol o

non-extreital black hole s then given I
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where the left and right temperatures are defined by

"y e ] -
= Ax?Cw T Tre Tar

- - ..
Il‘/lh’ = 1}1'1 (1 + :) : (38)

and we have used Ay = 277,

We now compare this decay rate with the conformal field theory prediction. As
explained in [5, 7, 23], in the effective string theory picture such decays are described
by a coupling of the spacetime scalar field to an operator with dimeunsion 1 in the
conformal field theory, both in the left- and right-moving sector. This might have beeu
expected since the WZW-model of which the BT Z-black Lole is a classical solution
contains both chiralities [13]. A caleulation closely analogous to that presented in [7]
shows the emission rate is given by

- 2T, ty . 2Tk :
1 + ,y—hd((f*-‘%() R / S (AR TS B 2 . B
/ ot sinh(2aTrot)| . doc sinh(2aT o~ (39)

Performing the o integrals we then obtain. up to an undetermined numerical constaut.

2

N - W W
C=da¢w ' T Tre *Tu 1r (l + l]‘;";]?) I (] + /I”[};)F . (-10)
where ¢ has been included for dimensional reasons. and a factor I/w accounts for
the normalisation of the outgoing scalar [7]. Hence. the CFT-prediction (10) and the
semiclassical decay rate (37) agree. Note that the above analysis is valid for all values
of M aund J, subject to the low energy restriction. Thus. for the three-dimensional
black hole the CFT description is not restricted to the near-extreme. or near-BPS
limit; we recall that an extreme BT Z-black lole is also a BPS configuration. as shown

~1



in [24].

Note also that supersynunetry has not played a role in the calculations preseuted
here. In the four-dimensional case [7]. supersyviunetry appeared indirectly in deter-
mining the relevant conformal field theory. However. such an analysis fails in the
3-dimensional case. Similarly. i five dimeunsious. bosous and fermions must propagate
ou the effective string in order to recover the decay rates for even and odd augnlar mo-
menta alike. Again. this fails in three dimensions because of the restriction 1 =0. On
the other hand. it has been shown [24] that the BT Z-black hole admits one supersvin-
wetry in the extremal case with M = 0. and two supersymmetries if furthernmore M =0.
I the latrer case. it may he viewed as the gronnd state of (1 1)-adS snpergraviee

A final remark concerns the dualine between the BT Z-black hole and the Dlack
string [13]. This suggests that an analysis similar to that preseuted lLere might go
through for the black string. A question that arises naturally here is how the two
low energy decay rates compare. For the tachyon. the reflection coefficients have been
obtained in [25] for the black string. and in [14. 15] for the case of the black hole.
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