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Abstract

Using concepts developed in string theory, Cohen, Hoore, Nelson and
Polchinski calculated the propagator for a relativistic point particle.
Following these authors we extend the technique to include the case of closed
world lines. The partition function found corresponds to the Feynman and
Schwinger proper time formalisms. We also explicitly verify that the partition
function is equivalent to the usual path Jength action partition function. As
an example of a sum over closed world lines, we compute the Euler-Heisenberg
effective Lagrangisn in a novel way.

Introduction

The quantization of the free relativistic point particle is permps"the
wost basic system with constraints studied in physics [1]. 1In this paper we
follow the string motivated techniques developed by Cohen, Moore, Kelson and
Polchinski [2] for considering the bosonic point particle. The usual action is
proportional to the world line path length and is analogous to the string
Nasbu-Gota action [3). Alternatively, a world line metric can be introduced to
obtain a more tractable expression in analogy to the Polyakov action [2,3].
These two actions are knowm to be equivalent at both the classical and quantum
level [3,4]. Considering the reparametrization invariance of the Polyakov-like
action, as in ref. [2], the partition function can be reduced to a sum over
embeddings and a single parameter. This parsmeter is analogous to the set of
modular parameters of a Riemann surface in string theory {5,6]. The dependence
of the partition function on this parameter is shown to be different for sums
over open and closed particle world lines because of the presence of a
diffeomorphism zero mode in the latter case. The parameter in these two cases
plays the role of the fictitious “proper time™ in the Feynman [7] and Schwinger
{8] proper time formalisms. It is explicitly demonstrated as a check on the
normalization prescription that this partition function is equivalent to the
original path length action partition function. As an example of a process
involving closed world lines, we compute the Euler-Heisenberg effective
Lagrangian [8] for a boson interacting with a constant external electromagnetic
field.

The Relativistic Point Particle

We begin by reviewing the definition of the free relativistic Euclidean
point particle Lagrangian (in d dimensions) which is analogous to the
Nambu-Goto Lagrangian of string theory [3]. The action S is proportional to
the path length (proper time)

) \ ° 2 “1
STx, 1 = - S.(*’) at (2.1

where tisa parameterization of the path. In analogy to the Polyakov string we
can introduce a metric g(t) along the world line and define an alternative
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Polyakov-like action, 5S¢ {3,2]
'
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where e ={§' 1s the “einbein*. It is straightforward to show that

S3Urne) 2 5 11, 8] = STy (2.4
where € is the induced einbein
~ - o (;\1 )‘lt
&= - (2.5)

and hence (2.1) and (2.2) describe the same classical system. Alternatively,
solving for the equations of motion one finds the constraint e=e.

Both S and Sq are reparameterization invariant under t—ys(t) with
ds/dt 3 0 where }

AU - ES(XEY)
l o) &% Ak
e o d=oe()

(2.6)

This transformation must however respect the boundary conditions on the world
line. Thus for an open path s(0)=0, s{1)=] whereas for a closed path
s{t)=s(t+1), The parameter c = Se(t)dt remains invariant and can be used to
label diffeomorphically inequivalent metrics. It is analogous to the set of

modular parameters of a Riemann surface in the Polyakov string formalism [5,6].

The quantum theories are now defined by the partition functions

Z o+ () e € -9 (2.7)
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We now exploit the reparameterization invariance of Sg to extract s
formal diffeosorphic volume factor in (2.8). We change variables from e(t] to
c,f(t) where f(t) is the reparameterization which transforms e(t) to c (2].
From (2.6) we find

fee) ecq) = < (2.9)

The Jacobian J for this change of variables is most conveniently coaputed
in the target space of einbeins 5%\ {5,2]. We find the equivalent Jacobian
for the transformation from He to 8¢ ,§ where §tey= 8§ C T s an
infinitesimal diffeomorphism vector field t.e. \r(beY) = J FCTRIT N Wt

We define the normalization for the measure T & (bed) by

{ LaGo) erpl - 5 when' ) = A (2.10)
where the invariant norm is
\
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From (2.9) we find from ref. [2] that
N \
wgewt = be - (eftal e (2.12)
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where O is the Laplacian &Y = 5‘&( e s-k(( £Y) The

diffeomorphism § must obey the boundary conditions !Lo) = L0 for
open paths and § (t) periodic for closed paths (the diffeomorphisas of (0,1]
and Sy respectively). For closed paths, % = constant corresponding to global
rotations introduces a zero mode of & . This will imply, as shown below, that
different Jacobians occur for closed paths and open paths. The normalization
for the § integral is
- X -
f Lty erpC-p 0L W) \ (203

where the invariant norm is
\
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since $ transforms as a vector.

We now substitute {2.12) into (2.10) and integrate over Sc and § to
obtain J. The Be integral contributes (Z'L)!. The integration over L4
depends on the boundary conditions. For open paths we Fourier expand
-2y = 52 & o sin ( AT e Ay0 Then we obtain (using (2.13))
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The determinant is easily evaluated by S function reqularization (see
ref. [2]). The reparameterization invariance of (2.12) has been exploited here
to choose the gauge e = c. The Jacobian J is therefore a constant for open
paths.

In the case of closed paths % s periodic so we can expand %=
¥, waorg(L®edThe zero mode by modifies (2.15) 5o that we find a
contribution.

\
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where L is a regulator for the by integral. Using S function reqularization
again we find det"'\- ¢ since n¢0 modes also contribute. In this case the
Jacobian J~c”'.

The original partition function (2.8) can now be re-expressed as

.- &ou 3V, (B erp (-S4t v, ) 2

5.

where Yy = S[dfl is & formal diffeomorphic volume factor which depends on

¢ [9]. An analogous problem arises in the string case where the volume factor
depends on the moduli (6], As for the string case [5,6] we define the physical
partition function as

2 - Wedlat (=5
f\" S \’b “‘ S

o
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The appearance of the volume term Vp can be traced to the choice of
normalization in (2.10). This point is discussed further below in section J.

It is satisfying to note that (2.18) now concurs with the Feynman proper
time single particle formalism for 2 bosonic field theory [7] where ¢ is the
“proper time" variable. This was i1lustrated in refs. [2,9] where the correct
propagator was calculated. In addition, the Jacobian J introduces the required
¢ dependence for open and closed paths. For closed paths c also plays the role
of the proper time in the Schwinger formalism for evaluating determinants [8.

As an example of a sum over closed paths we calculate the effective
action for a boson in an external electromagnetic field. The action is
modified to include a reparameterization jnyariant interaction with the
external field potential ch‘i.’_) so that

o

\ .,
Z'A - S a._:; &{)q.r'\ 01-((‘53* g«"‘r"r)“7 {2.19)

We can re-express I as

T
2 - Tae o0 (A
TR = &)«r 4Y,e\ X, 07 {2.20)
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where
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where © :xct is the "proper Euclidean time" and all paths begin and end at
fquation (2.21) describes the evolution of a quantum mechanical system with
Hamiltonian H = }(P-A)2 over a time c. Thus Zy becomes

Z, = (4= &7 T ™)

- o D awC
= ¢ S % e 1_((.? LN L)
2 Te o (R- AY 4wt (2.22)

Iy represents the interaction of a single bosonic particle with an external
field and therefore exponentiating we recover the standard result for a bosonic
field i.e. explZy) = det((p-l)zwz).

In the case of a constant external field R, = K %v%pv | Tpo
constant, so that the trace can be explicitly calculated to give the
fuler-Heisenberg effective Lagrangian [B8]. Alternatively we can compute (2.19)
directly since the X integration is Gaussian. This is performed in the
appendix.

3. The Quantum Equivalence of S and Sq.

We now demonstrate that the physical partition Function of (2.18) is also
equivalent to the path length partition function Z. This equivalence will be
shown by adopting an explicit Feynman prescription for the einbein path
integral. The correctness of the physical partition function prescription of
(2.18) will be demonstrated. We begin by stating the result

ere (-5t D) = M) erg (Saty, eawd)
where the w measure is normalized to

g‘:—""j ewe ( Sy ot (e = 3.2)

corresponding to *’_3 O in (3.1). To prove {3.1) we note firstly the useful
integral identity

-
a P, '
> <5 e

where a,b 7 0. This identity follows from

-
T

SML u.((-“l@lﬂ‘&)\ = \5F , *T° (3.4)

°

which can be shown by differentiating with respect to L
arbitrary finite partitioning tg, ... tn

To prove (31.1) consider an
We then express the action S as the

of the interval (0,1} with tg=0, tp=t.
Riemann sum to find ( [~ AL N —ki )

e{-((,—Sj = Lim ¥ e$g(-mb;\c<(%i-:ﬁ{)t)ul) (3.5)
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v, = (D;*"Y./D;E (3.5) becomes
~ My T -t v LN
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: < T ok i
- 11 N
2 (el ey (—Sq Ty, e )
3.6)

with the normalization of (3.2). The path integral measure [dw] has been
explicitly specified by a standard Feynman prescription. Under &
reparameterization both Sg and S remain invariant and hence the measure is also
invarfant. This can be seen directly at the discrete level since &

reparameterization corresponds to a repartitioning st - §s of the
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interval [0,1]. The integrand and measure are then clearly invariant under the
discrete form of (2.6).

"+ 4e can now change variables to c and f(t) as before. The Jacobian for
the transformation is again computed by working in the tangent space. The
invariant norm for ®w i

A
v - t e M *
(IR SRR\ So Stk L SSe\W P

with normalization

{ atsan ,4((-;2\\'“\\‘) = %,‘ (3.8

1]

where k is some constant chosen for consistency with the normalization {3.2).
Defining the Jacobian J_ by (3 (ve] = Su EYCTANY N I we find, by an
argument similar to that above, that T, ~3Lc)/\lv . Transforming to C
and f in (3.1) we obtain

z -~ % "-S.cjf (a6 () e (-39

= 2'\3\
(3.9)

Therefore the path length partition function I is equivalent to the
physical Polyakov-like partition function. It is interesting to note that the
normalization (3.2} is automatically consistent with the physical definition of
the Polyakov partition function of (2.18). This suggests that the natural
definition for the normalization of the tangent space measure U INEXTDY
should be 1ike (3.8).

Finally, we note that since the invarfant norms | 3w % and W beWl
are proportional, the Jacobians ¢y and Ve¢3w must also be proportionat.
Likewise, had we defined g as a sum over all metrics glt) then, since

L by = 1N be W\ , we again find the same Jacobian in transforming to
c and f(t).

wowledgeuents. 5.5. would like to thank H. Yabuki for his remarks on closed

loops in quantum mechanics.

Appendix

Euler-Heisenberg Effective Action.

In this appendix we will calculate the effective action from (2.19) in
the case where €pu is constant so that P = Y Fu€po We begin by
Fourier expanding the periodic coordinate as Xf* S o; engl ek O
The action of (2.19) becomes (with e=c)

a L 1 a =8 L= o™ & \
Lo i)(lﬂ O Oy~ KL Oy &y Vo
S 3 e T (1)

We can now calculate (2.19) by expanding in Gru using the Feynman rules of
Fig. 1.

Expanding (A.1) we find that only even powers of F contribute. In
general to O(Fzr) we find only one connected diagram which contributes

. e e
2@l <€) ZL.’:: 3 (¢ =D

oy, ~ LQE (A.2)

relative to the O(Fo) contribution. The factors are respectively, 8
symmetrizing factor for 2r identical F sources, & combinatorical factor for th
number of ways of connecting 2r vertices to give Fig. 2, & Lorentz index trace
and a momentum suw over propagators and vertices. For simplicity we assume &
constant electric field only so that wriFry = 2(-1" €27, Suwming over all
connected diagrams we find

- 1
7 () saon = ‘ﬂs(}j‘_‘_ )
= v« el

(A.3)

where S(r) is the Riemann zeta function. To derive (A.3) we use the relatior

L (l‘_.jlt Sy = § CAmxGEEw) A
«

=1
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:.The contribution from all disconnected diagrams can row be found by
exponentiating (A.3). Therefore the partition function (2.19) gives us

Loz s (e (e NCT(a st
o © O uikeh) » (A.5)
where
C s
el tey, = Sy exe -5 S % ae)
o
(A.6)

-4
s T

where all paths begin and end at Y\r-."(r Therefore we find that Igy is {with

c=2s and L9 the volume of space)

PN

-

N -

Zew = L g _ét_‘.( = -\ e
\%x

A (A.7)

(W ° ST SeES
which is the standard result for a boson {8]. The fermionic result is easily
found by also including a spin term which contributes an extra factor to the
Lagrangian of | 'Fr.‘, Spv . Tracing over the spin we obtain the fermionic
result [8].
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Figure Captions

fig. 1. Feynman Rules for the propagator and vertex.
£2r).

Fig. 2. The unique connected Feynman graph in 0(
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