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A String Motivated Approach to the Relativistic Point Particle Introduction
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Abstract

Siddhartha Sen

School of MathematicS

Trinity College, Dublin 2, Ireland

and

Michael P. Tuite

Dublin Institute for Advanced Studies

10 Burlington Road, Dublin 4, Ireland

Using concepts developed in string theory, Cohen, Moore, Nelson and

Polchinski calculated the propagator for a relativistic point particle.

Following these authors we extend the technique to include the case of closed

world lines. The partition function found corresponds to the Feynman and

Schwinger proper time formalisms. We also explicitly verify that the partition

function is equivalent to the usual path length action partition function. As

an exle of a sue over closed world lines, we coçute the Euler-Heisenberg

effective Lagrangian in a novel way.

The quantization of the free relativistic point particle is perhaps the

most basic system with constraints studied in physics Ill. In this paper we

follow the string motivated techniques developed by Cohen, Moore, Nelson and

Polchinski 12) for considering the bosonic point particle. The usual action is

proportional to the world line path length and is analogous to the string

Nau-Goto action 131. Alternatively, a world line metric can be introduced to

obtain a more tractable expression in analogy to the Polyakov action 12,31.

These two actions are known to be equivalent at both the classical and quantsm

level 13,4). Considering the reparmrtrization invariance of the Polyakov-Iike

action, as in ref. 121, the partition function can be reduced to a sue over

eeddings and a single parameter. This parameter is analogous to the set of

modular parameters of a Rie.ann surface in string theory 15,6). The dependence

of the partition function on this parameter is shown to he different for sues

over open and closed particle world lines because of the presence of a

diffeomorphism zero mode in the latter case. The parameter in these two cases

plays the role of the fictitious ‘proper time’ in the Feynman Ill and Schwinqer

181 proper time formalisms. It is explicitly demonstrated as a check on the

normalization prescription that this partition function is equivalent to the

original path length action partition function. As an exaimle of a process

involving closed world lines, we coqxite the Euler-Heisenberg effective

Lagrangian 18) for a boson interacting with a constant external electromagnetic

field.

The Relativistic Point Particle

We begin by reviewing the definition of the free relativistic Euclidean

point particle lagrangian (in d dimensions) which Is analogous to the

Nau-6oto Lagrangian of string theory (31. The action S is proportional to

the path length (proper time)

me.. (4.:: ‘ t (2.1)

where tisa parameterization of the path. In analogy to the Polyakov string we

can introduce a metric g(t) along the world line and define an alternative



folyakov-like action. Sg 13,21
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where e Is the “elnbein. It is straightforward to show that

‘ \ -r1
(2.4)

where is the induced einbein

F..

(2.5)

and hence (2.1) and (2.2) describe the same classical system. Alternatively,

solving for the equations of motion one finds the constraint e.

Both S and 5g are repara.eterization invariant under t—vs(t) with

ds/dt ) 0 where

‘

e.Llc)

(2.6)

This transformation most however respect the boundary conditions on the world

line. Thus for an open path s(0)=0, s(l)-l whereas for a closed path

s(t)s(t.l). The Parameter C e(t)dt remains invariant and can be used to

label diffeomorphically inequivalent metrics. It is analogous to the set of

modular parameters of a Rlemann surface in the Polyakov string formalism (5,61.

The quantum theories are now defined by the partition functions

Z t i. .-s) (2.7)

We now exploit the reparameterizatlon invariance of S to extract a

formal diffeomorphic volume factor in (2.8). We change variables from clii to

c.f(t) where f(t) is the reparameterization which transforms alt) to c

From (2.6) we find

‘
L4) eC) = C.. (2.9)

The Jacobian J for this change of variables is most conveniently coqxitec

in the target space of einbeins a.bC.\ 15.21. We find the equivalent Jacobian

for the transformation from St. to Sc, where b4 C. çtb’h) is an

infinitesimal diffeomorphism vector field i.e. b’s 3

We define the normalization for the measure C ,*.( bc.’ by

S to.($c’l aln.?( — (2.10)

where the invariant norm is

(2.11)

From (2.9) we find from ref. 121 that

$C. - t? ô.t. (2.12)

C1. 0

where is the Laplacian % €. t ‘) The

diffeomorphism most obey the boundary conditions Lo) 1L) for

open paths and (t) periodic for closed paths (the diffeomorphisms of (0,1)

and l respectively). For closed paths. 1 constant corresponding to global

rotations introduces a zero mode of . This will ily,as shown below, that

different Jacobians occur for closed paths and open paths. The normalization

for the integral Is

. s C.. k V’’) (2.l3

where the invariant norm is

ç e

C.— S) (2.8)
(2.14!
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nce transforms as a vector.

We now substitute (2.12) into (2.10) and integrate over Ic and to

obtain J. The S.c.. integral contributes (2e). The integration over

depends on the boundary conditions. For open paths we Fourier expand

_tCi’r Si 2x Oe.sin L Then we obtain (using (2.13))

-w S e (-I OL,... c)

s_st
c_I.

-(1

.c1L4 (-L -)\ .
c_I.

(2.151

The determinant is easily evaluated by S function regularization (see

ref. >2)). The reparameterization invariance of (2.12) has been exploited here

to choose the gauge e c. The Jacobian J is therefore a constant for open

paths.

In the case of closed paths is periodic so we can expand .

‘::_. ‘..rr.fLt.)The zero mode bg modifies (2.15) so that we find a

contribution.

ç dL C.. - _
‘ ! -)

CL.

‘l5

\c_L L)\ ‘- c.:
,

-
2l5

(2. 16)

where I is a regulator for the b0 integral. Using’S function regularization

again we find det’’ c2 since °< modes also contribute. In this case the

Jacobian

The original partition function (2.8) can now be re-expressed as

where V0 (df) is a formal diffeomorplsic volume factor which depends on

c (9). An analogous problem arises in the string case where the volume factor

depends on the moduli 16). As for the string case (5,6) we define the physical

partition function as

ff1 (— s)

SCSc?4r
(2.18)

The appearance of the volume term 80 can be traced to the choice of

normalization in 12.10). This point is discussed further below in section 3.

It is satisfying to note that 12.18) now concurs with the Feynman proper

time single particle formalism for a bosonic field theory 17) where c is the

‘proper time’ variable. This was illustrated in refs. (2,9) where the correct

propagator was calculated. In addition, the Jacobian J introduces the required

c dependence for open and closed paths. For closed paths c also plays the role

of the proper time in the Schwinger formalism for evaluating determinants 1 8) -

As an exaile of a sum over closed paths we calculate the effective

action for a boson in an external electromagnetic field. The action is

modified to include a reparameterization invariant interaction with the

external field potential PbrC’$r) so that

zp -

We can re-express 2A as

where

-. _‘c_

“ a>f’c, c’.çc.. ‘(ov

0

C

(2.19>

(2.201

(“(,c”,o’) —i1 ee(— 4,L”èt) (2.21)

3 9S’4r t(’fLr,1) (2.171



7.

6.

where t ‘ct is the “proper Euclidean time” and all paths begin and end at

Equation (2.2)) describes the evolution of a quantum mechanical system with

Hannitonian H ((P-A)2 over a time c. Thus ZA becomes

ç v—C c

-

2.

C

—ç- (2.22)

ZR represents the interaction of a single bosonic particle with an external

field and therefore enponentiating we recover the standard result for a bosonic

field i.e. exp(Zi det((p-A)2+).

In the case of a constant external field

constant, so that the trace can be explicitly calculated to give the

Euler-Heisenberg effective lagrangian 8). Alternatively we can coexute (2.19)

directly since the 8 integration is Gaussian. This is performed in the

appendix.

3. The Quantum Equivalence of S an.

We now denstrate that the physical partition function of 12.18) is also

equivalent to the path length partition function Z. This equivalence will be

shown by adopting an explicit Feynman prescription for the einbein path

integral. The correctness of the physical partition function prescription of

12.18) will be denstrated. We begin by stating the result

-“st1.p, -
‘-1 (3.1)

where the w measure is normalized to

S C
-‘- c ...1L1J)

(3.2)

corresponding to 0 in (3.1). To prove (3.)) we note firstly the useful

integral identity

which can be shown by differentiating with respect to ‘(

To prove (3.)) consider an arbitrary finite partitioning t0, ... tn

of the interval (0,1) with t0=O, tn’l. We then express the action S as the

Riemann sum to find ( !cZ k.. —t-. )

ç( tSt’C

((1)’t’)

with )r2. )-Ri. How using (3.2) with O.
. .,.:t.

i’er (3.5) becomes

P.
‘1.

1 -.2. v

(_

S (_ s3
(3.6)

with the normalization of (3.2). The path integral measure Idwi has been

explicitly specified by a standard Feynman prescription. Under a

reparameterizatiOn both S and S remain invariant and hence the measure is alsc

invariant. This can be seen directly at the discrete level since a

reparameterization corresponds to a repartitioning ‘ic. — 5..\ of thx

‘I

e, (-)
-—‘w)

(3.3)

where a,b ? 0. This identity follows from

5ö1L
5’) — (3.41

I
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Euler-Heisenberg Effective Action.

In this appendix we will calculate the effective action from (2.19) in

the case where f7.,3 is constant so that ‘$irJ
We begin by

Fourier expanding the periodic coordinate as Z a.’ e4.(L t..inb)

the action of (2.19) becomes (with e=c)

(3.8)

S
(Zt

r r r

We can nom calculate (2.19) by expanding in using the Feynman rules of

Fig. 1.

Expanding (A.l) we find that only even powers of F contribute. In

general to O(FZr) we find only one connected diagram which contributes

‘‘ (tc-)’. c)

,.

(A.2)

relative to the 0(F°) contribution. The factors are respectivelY, a

symeetrizing factor for Zr identical F sources, a combinatorical factor for th

njer of ways of connecting Zr vertices to give Fig. 2, a lorentz index trace

and a momentum sum over propagators and vertices. For sii1icity we assume a

constant electric field only so that Tr(F)
2(_1)r EZr. sumaing over all

connected diagrmes we find

c c.Il.

where’S(r) is the Riemann zeta function. To derive (A.3l we use the relatiO

C ‘s.—o) (A.4)

Interval (0,11. The integrand and measure are then clearly Invariant under the

discrete form of (2.6).

We can now change variables to c and fIt) as before. The Jacobian for

the tranSformatoh1 is again computed by working in the tangent space. The

Invariant norm for ‘b’I is

(3.7)

with normalization

¶5

where k is some constant chosen for consistency with the normalization (3.2).

Defining the Jacobian J,byi1 S,. J”t we find, by an

argument similar to that above, that 3,,, _.3Cc/’1ç, Transformi° to c

and I in (3.1) we obtain

(3.9)

Therefore the path length partition function Z is equivalent to the

physical Polyakov-like partition function. It is interesting to note that the

normalization (3.2) is automaticallY consistent with the physical definition of

the Polyakov partition function of (2.18). This suggests that the natural

definition for the normalization of the tangent space measure -(

should be like (3.8).

Finally, we note that since the invariant norms b’.a and 5k

are proportional, the Jacobians 3(.’ and “J,3v. mist also be proportional.

likewise, had we defined Z as a sum over all metrics g(t) then, since

be kk , we again find the same Jacobian in transforming to

c and 1(t).

Acknowledgements. s.S. would like to thank H. Yabuki for his remarks on closed

loops in quantum mechanics.

(A.3)
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where

K,c1,oo S1r ( C-

(jrsc.)

C .

-.--;__
r’

‘t.’t

The contribution from all disconnected diagrams can now be found by

C000rientlating (A.)). Therefore the partition function (2.19) gives us

(.iL3 -1 ‘-1o>

C. s4c.(’)

(A.5)

(A.6)

where all paths begin and end at Therefore we find that 7EH is (with

c2s and td the volume of space)

(Al)

° s’i s--c

which Is the standard result for a boson 8). The fermionic result is easily

found by also Including a spin term which contributes an entra factor to the

i.agrangian of I c,, 6g.., Tracing over the spin we obtain the fermionic

result 181.
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Figure_CaptIons

Fig. 1. Feynman Rules for the propagator and vertex.

Fig. 2. The unique connected Feynman graph in O(F2r).
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