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1 Introduction

The hard-sphere Boltzmann equation and the Benney

moment equations.

John Gibbons

School of Theoretical Physics,

Dublin Institute for Advanced Studies,

10 Burlington Road, Dublin 4, Ireland.

Abstract

The collisionless Boltzmann equation for particles interacting

via short-range forces is shown to be equivalent to the Benney

equations, which describe long waves in a two-dimensional fluid

with a free surface. These systems may also be derived rom

the nonlinear Schridinger equation, if multiple scales are

introduced and a random phase approximation is employed.

One of the most peculiar integrable systems of nonlinear evolution equations

is that of Benney[1], describing long waves in a perfect fluid with a free surface.

Although the system has long been known to possess an infinite set of polynomial

conserved densities, there has, as yet, been little progress made towards the

solution of its initial value problem.

In the present paper, it will be shown that the Benney equations are equi

valent to the Boltzmann equation for a gas of particles interacting via pnwerful

short—range forces (idealised as ‘hard spheres’), and also that they may be

derived from a crude approximate treatment of slowly modulated periodic solutions

of the nonlinear Schrdinger equation.

In section 2 of this paper, the Hamiltonian structure of the collisionless

Boltzmann equation is considered. Associated with any finite—dimensional Lie

algebra there is a natural Poisson bracket; the Poisson structure considered here

is a natural generalisation of this(Kirillov) Poisson bracket, being associated

with the single-particle Poisson bracket algebra. The Poisson bracket is also

expressed in terms of the moments of the distribution function.

In section 3, the basic results about the Benney equations are reviewed;

particular attention is given to the approach of Kupershmidt and ManinF2l.

Then, in section 4, it is shown that these equations are equivalent, with

some restrictions, to the hard-sphere Boltzrnann equation. The methods of

Kupershmidt and Manin, described in section 3, are applied to this case, and

extended, to determine Riemann invariants for the equations. The method is

illustrated by considering the case of a beam of particles.

In section 5, it is shown that multiple scaling of the nonlinear Schrödinger

equation, in a random phase approximation, leads to the Benney equations; the
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results are applied to the case of a slowly modulated monochromatic beam. 2 The collisionless Boltzmann equation

Finally, in section 6, various extensions are considered. The relationship

between the methods of Kupershmidt and Manin and the scattering problem for the The exact N-particle distribution function, F, of a many-body system with

nonlinear Schrödinger equation is described in an appendix. Hamiltonian

• L4 (2.1)

satisfies the equation

(2.2)

where
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and F is given by

tJ
ç() -(t)) jt)) (2.4)

If we average over an ensemble of exact distributions, then (2.2) becomes

p -‘) (Fr Vc’i)’’

(2.5)

If we then ignore the correlations between the particles, which is permissible as

N becomes large, we find that the averaged distribution function, denoted



subsequently by f(x,p,t), satisfies the system of equations:

tr -
D( cj)

(2.6)
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This system has a first integral which is the average of (1)

cx) Vx )5

(2 7)

This may be interpreted as the Hamiltonian of (6) provided we can find a suitable

Poisson bracket between functionals of f. An appropriate bracket is given by

where C is the usual single—particle Poisson bracket:

,KJ
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space together with the single-particle Poisson bracket (2.9). Since this

algebra is infinite-dimensional, the construction is less natural than that of

Kirillov; however (2.8) makes sense for reasonable physical cases.

The moments of f , defined by

()
(2.10)

are of some interest; the Hamiltonian (2.7), for example, may be written

4) Vx-’ p

(2.11)

The Poisson bracket (2.8) of two functionals of the moments alone is given by

O tJ (+w- (t-’)

l(
)

(2.12)

This form of Poisson bracket also arises in the study of the Benney equations,

which will be discussed in the next section.

A particular case of (2.6), with which we will be concerned below, is the

‘hard-sphere case. Here the potential \(x — x’) tends to a -function; if

we were concerned with exact distributions, the resulting equation would indeed

describe perfectly elastic particles. However, for the neglect of correlations

in passing from (2.4) to (2.6) to be valid, the range of the force must decrease

as the number of particles increases, in order that each particle always interacts

with many others, and only then may inter-particle correlations be neglected. Only

in this sense is it reasonable to talk about a ‘collisionless’ hard-sphere gas.

The Boltzmann equation for this system is

(2.8)

(2.9)

If f is the exact distribution function, then (2.8) is the natural N—particle

Poisson bracket.

Mathematically, (2.8) may be considered as an analogue of the Kirillov

Poisson bracket which is defined for finite-dimensional Lie alqebras F3]

Here however the relevant Lie algebra is the space of C functions on phase
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3 The Benney equations

(2.13)

and its Hamiltonian is Benney, by expanding the Euler equations for an incompressible fluid in a
(dl l.

— ) small parameter, the ratio of the depth of the water to the length of the waves,

(2.14) obtained the following system of equations describing long waves beneath a free

surface:
One very reasonable restriction of any Boltzmann equation is to consider a beam of

particles:
- à k

) (?x)) (2.15)

o
The Poisson bracket (2.12) reduces in this case to: d

(3.1)

He also introduced the moments

(2.16) ç (3.2)

which also arises in the study of the Benney equations. and showed that

(6) ()—l)

13\t +3( (3.3)

He then showed that the equations (3.3) possess an infinite set of conserved densities;

Miura[4] extended his argument and established that these conservation laws could be

written in local form. Kupershmidt and Manin discuss the Hamiltonian structure of

(3.3); the Poisson bracket is the same as (2.12).

In this formalism, the Hamiltonian of (3.3) is the same as (2.14); indeed

the moments of the hard-sphere Boltzmann equation do satisfy the system (3.3).

The conservation laws are most easily derived by constructing a generating

function for the moments;

(3.4)
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and then solving the following equation for

- )

(3.5)

Here is uniquely defined as a formal series for large ; if tA is

bounded, this will converge to an analytic function for i)f large enough. Then

is shown to satisfy a conservation equation, and the coefficients in the series

expansion of JA are conserved densities. On imposing the restriction on (3.1)

that the flow should be irrotational, that is, that iA should be independent of

the following ‘reduced’ system is obtained

+ f&?- O
ii .)t

This is derived from the Hamiltonian density

(3.6)

(3.7)

together with the Poisson bracket (2.16). The system (3.6) is also obtainable from

the hard-sphere Boltzmann equation (2.13) if a beam of particles is considered.

4 The hard-sphere gas

Since the apparently distinct systems (2.13) and (3.1) generate the same

moment equations, it is worth checking to see whether they can be transformed into
Cr,)

one another directly. Comparison of the two definitions of suggests the

introduction of the new variable

,p,t) A
- cO

(4.1)

If we now regard lÀ as a function of , rather than vice versa, we indeed

obtain the system (3.1) from the equation (2.13), by means of a (reverse) hodograph

transformationt5]. However, there are several differences; in the fluid system it

would be quite reasonable for to change sign at some point in the fluid;

this would,however correspond to a singularity of the distribution . On the

other hand, it is perfectly reasonable to expect , considered as a function of

not to have compact support, but merely to decay rapidly as 00

In the fluid model this would correspond to infinite vorticity at the boundaries

0 and Jr,. . With these reservations, the systems may be regarded as

equivalent. The methods of Kupershmidt and Manin may be applied, with few modif

ications, to the Boltzmann equation. The generating function for the moments

becomes

p
- (4.2)

which is essentially the Hilbert transform of ; since is rapidly decreasing,

and it is predominantly the asymptotic behaviour of for large which is of

interest, the manner in which we treat the pole of the integrand is irrelevant,

though the principal part seems the most reasonable choice. The variable /.4. is
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This derivative is positive for large real , and thus is a well defined

implicit function for large real . In fact the whole of the curve defined by

(4.3) is of importance, although it is the asymptotic behaviour of for large

\ which gives the conservation laws.

Now, differentiating with respect to time in (4.3),

--r

Ap àpP P
a

-

P1,

.oo t1

There are two possibilities now; we can either work with a fixed value of )
giving a conservation equation for jk , or, alternatively, we may consider the

points (/J(\) such that the derivative (4.4) vanishes, and then the are the

Riemann invariants[6] of the system, while their associated (_/AL are the group

velocities with which they propagate.

By way of illustration, let us investigate the reduced system, considered,

in the Boltzmann picture, at the end of section 2, and in the fluid case, at the

end of section 3:

defined in the same way as before:

- (4.3)

Clearly

Thus

+

___

Qq

( fl-?

(4.4)

(4.7)

k
at

Similarly, we get

oX

k(,t) 5(p-))

tA ãi’o
c’Z ax (4.8)

0

Clearly

(4.9)

Hence the curve (4.3) is defined by:

(4.10)

L.4Jf&

(4.5)

(4.6)
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This gives us that the Riemann invariants and group velocities are: .

5 The nonlinear Schrodinger equation

14f

The equation

(4.11)

t (51
Hence

has an infinite set of conserved densities, polynomial in and their

—

— (4.12) derivatives. The first few are:

yO)

If one of the invariants is constant, then only the constant solution will remain
(

single—valued for all time. —44—1—

This approach bears some similarities to the results of Flaschka, Forest, (5.2)
2) L1

and McLauqhlinr7], who consider slowly modulated multiply periodic solutions of I +

the KdV equation. Such multiply periodic solutions are related to hyperelliptic

Riemann surfaces; the modulation equations may be expressed invariantly by 14 — —

requiring a differential form on the surface to vanish. By expanding this form at
These may be compared with the first few conserved densities of the Benney moment

the point at infinity, one obtains the conservation laws; by expanding near the
equations:

branch points, one finds that the branch points are themselves the Riemann

invariants. H
Just as the study of the deformation of a complex curve yields different

descriptions of the modulation equations for the n—gap KdV solutions, so are the ,

ft I ‘J (5.3)
Senney equations described by studying the deformation of the curve defined by M V

(4.3). This similarity is not fortuitous; the Benney equations may be derived by t) p) 3
considering the deformations on long space and time scales of multiply periodic

solutions of another integrable system, the nonlinear Schrdinger equation.
Thus one is tempted to make the identification

(5.4)



In section 2, to derive the Boltzmann equation,

ations between particles; analogously, we here

(5.1) by its average, giving:

Now is slowly varying, and it is thus appropriate to introduce multiple

length and time scales:

a1
13

(5 7)

6 is the ratio of a typical wavelength to the length scale on which the

vary. L , introduced in (5.5), should be intermediate between these

two scales. Now (5.6) becomes, in zero order,

tk t t

—15—

of (5.8) will propagate on the (x,1)

depending on and its conjugate

f(x ,k, ti), must satisfy

- O (510)

which is just (2.13).

Although the approximation which gives (5.6) is generally very crude, there

is one case where it is quite accurate; this is when we consider solutions of the

form

-

l(;,,)
+ t,)

(5 11)

The modulation of such solutions is adequately described, to first order, by the

reduced Benney equations (3.6). Since the Benney system has solutions which

become multiply valued in finite time, one may conclude that the ansatz (5.11)

breaks down in general, and that slowly-modulated single-gap solutions will be

connected, via ‘shock’ regions, to 3-gap solutions. The final description of such

a solution should be quite complicated.

which is linear in 4’ , with dispersion relation

-14-

However it is fairly obvious that this is not very useful; if, though, we

consider slowly varying multiply periodic solutions, we may average over many

periods, and then the will be moments of the (suitably normalised) power

spectrum of Thus we take, for some appropriate 1._

- (5.5)

It is well known that a normal mode

scale like a particle with Hamiltonian C4)

momentum, . Hence the power spectrum,

it was necessary

replace

to ignore correl

on the right of

(5.6)

where

(5.8)

(5 9)
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6 Conclusions
Appendix

This paper has had several main objects. The first was to describe the

Hamiltonian structure of the Boltzmann equation, and to set up a framework for

discussing more general integrable many-body problems The form of the Poisson

bracket (2 12) suggested the relationship between the hard—sphere gas and the

Benney equations and the second object of this paper was to exploit this conn

ection to study the Benney equations further Finally the relationship between

the nonlinear Schrodinger and Benney systems tends to suggest why the latter
We

equations should be integrable how they might be integrated of course is a

much more difficult problem It is perhaps significant that the two—dimensional

Benney system arises from multiple scaling of the one dimensional NLS

An obvious extension of the present work is to consider other integrable

systems the Calogero-Moser gas[8] whose particles interact via an inverse-

square potential, can also be studied by the methods described herelo]. A related

approach is to consider some integrable differential equation, such as the deny-

ative NLS

t cL: (6.1)

and, by applying the methods of section 5, generate an integrable mechanical system

and the associated moment equationsrlol.
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(‘ 1k ç 4) --‘)

‘S.’
(A.4)

i’i
In the random phase approximation, we replace ‘r) I by the express

ion cPJ.k) , where is the power spectrum, normalised as in

section 5. Then

,

L —- dx

(A.1)

consider the eigenvalue problem (where .. (4’ ,cj1 i,

(A.2)

Taking the Fourier transform, we get

)k-)
(A.3)
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