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DIAS-sTP-80-32 1. Introduction

: 2 Let (§ }'?\) be a static ('aewo) purely magnetic (Aoso) finite energy
On Monopole Systems with Weak Axial Synmetry¥® g ' )

S

(¢9)
¢, 80(3) Yang-Mills-Higzs system satisfying the first~order Bogomolmny field
by o

. R equation in Euclidean 3-space E(3
P. Houston and L. O'Raifeartaigh, 4 ° uclidean 3-space E(3),

. . . v -~ - >
Dublin Institute f e D DD
ublin Institute for Advanced Studies, ‘ 'Bv'.D é , where BR=v XA +-:7_ Ax A '.bgs\‘lﬁv A,‘ y (1.1
10 Burlingtoa Road, Dublin 4, Ireland. 4
" with boundary conditions .
'3 : o : " : .
-~y a a i o i
Abstract B0 y é 2> C4£0 , as’ Xl o v ; (1.2)

== ! . . R :
Let (Q)A) be an SO(3) Yang-Mills-Higgs system which is a real- ¢ Here ' X and A denote outer-product in space and isospace respectively, ¢

. v » . 3 I3 3 -Q
analytic, static,finite-energy solution of the Bogomelny field equations is a constant »  and we  suppose that (A} &) are real analytic. The real

.
e et = rrnio = e e = et o = ¢ e g et e ot

T2 -~ > :
% =D @ . We show that the zero-set of the current j:@xﬁb@ is of analyticity is not' a strong assumption because it hag been shown  to hold(in at

3 . I3 . % - '3 . ; . 3 3 3 . i3 N
dimension at most one. Using this property of J we obtain the curious result least one gauge) for solutions of (1.1)(1.2) which satisfy duite mild conditions

that if the system is axially symmetric, in the weak sense that all local

- concerning the Sebolov norms of the fields.

. . ; . . . 3 . ~'F R
scalar gauge-invariants are axially symmetric, the topological charges must i In some previous papers we have shown( ) that if the system (A, ‘t) is
ba locared on the axis of symmetry and must be of equal magnitude anl alteraate Po 0 axially symmetric m%he strong or convent:onal( ) cense that there exists a local
sign. In particular, if the charges are of uniform sign they must be concentrezted (scalar) isovector (W(x) such that for any local(scalar) isovector )\(0 we have
at a single point. The fact that the charges of spherically symmetric monopoles

D M) = W) A M) where Dy =xDy-yos , (1.3)
are bounded by unity is obtained as a corollary. It is also shown that a
wmaster-potential for the invariant fields that was found earlier to exist for then the topological charge distribution must be as stated in the abstract. It
(5) . i ; G
systems with additicnal symmetry, exists as a direct consequence of weak awiai- has also been shown that if the strong axially symnetric system is mirror-
sysmetry alone. symmetric (symmetric with respect to reflexions in planes through the axis of
symmetry) then it admits a (scalar-isoscalar) masterpotential W(x) £rom which
invariant fields such as (ﬁ' 5) and L"D‘#Q ;Dwﬁ) can be obtained by
differentiation. (Bracket denotes inner product in isospace).

*%  Talk presented at the 1980 Conference on Differential Geometric *athods

in Mathematical Physics, Clausthal, Germany. ; The truther sux':prlsmg nature of the result concerning the charge~-distribution

raises the question as to whether (l.1) is really the most general definition of
axial symmetry and whethier the results would 'still hold under & weaker definition.

" Acecordingly, the purpose of this note is to reconsider the situation under what

. : ) !
i
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“would seem to be the weakest reasonable definition of axial symmetry, namely,

that local gauge-invariants such as the inner-products

(8,8), &=, (3,73, , X=18,8), .

be independent of the azimuthal angle . (Here the space indices ara expressed

?

in eylindrical coordinates to avoid a sﬁurious Q’-d;pendence).

It turns out that, for real analytic fields satisfying (1.1) and (1.2),
weak arial symmetry actually implies strong axial symmetry so that the previocus
?results still hold: Furthermore, it turns out that the result fgr the charge~
distribution can be obtained more or less directly from weak axial symmetry, and
that the masterpotential W exists even without the hypéthesis of mirror-symmetry.
The role played by W also becomes much clearer. .

In order to establish these results it is first necessary to establish

that the zero-set Z(ﬁj of the current

) ~> B
T = 3,18 )

is located on a manifolé which is at most l-dimensional i.e. consists of at most

isolated points and analytic curves.  This parﬁicular result is indeperdent of
.axial symmetry, and in the axially symmetric case it implies that ctts) can lie:

on at most the axis of symmetry and symmétrical rings around the axis.

Finally for completeness we derive as a simple corollary the known result
that a spherically symﬁetric monopole must have unit charge and derive also the
single equation for the master potential which is sufficient,to close the system

of field equations in mirror-symmetric case. In the latter derivation we use

mirror symmetry omly im the weak form AN

((8%%&\.__ o. | ‘ .6y

—y—- -

2. Zero Sets of the Higps Field and the Current. '

<>
We commence with the result that the zero-set X(:r) the current J is at

most l-dimensional, ‘and it will be convenient to consider also the zero-set of
s
the Higgs field @ , although from the definition of °J ~ the zero-set of &
: =
is contained in A(T) . Ssince @ and J are real analytic their zero-sets
are analytic submanifolds of E(s) , and hence what we have to do is eliminate

¢ :
E(S) itself and 2-dimensional submanifolds. As mentioned before, the results

are quite general(independent of axial symmetry) and in the(weak)axially symmetric

. icase they reduce the possibilities for :((:Y) to the axis of symmetry and isolated
]

symmetrical rings around the axis.
¢ In the case of the Higgs field we first note that the boundary condition
(1.2) excludes E(ﬁ) itself, and requires that any 1= and 2-dimensional sub=-
manifolds be closed. Next using the Bianchi identity \%% = QO we obtain from (1.1)

the usual second—brder field equation
D% =0,

. (2.1)
for the Higgs field, and from (2.1) we obtain at once the equation

A(E,3) = 233 33) 20 C@.a)

for (@’é) . Since (2.2) shows that (@.Q)is a subharmonic function it follows

that k@'(ﬁ)

‘in the interior, and hence vanishing throughout E(%) , in contradiction te the

cannot vanish on a closed 2-dimensional surface without vanishing

iboundary condition. Thus the zero set of é} consists of at most isolated points

6)

cand analytic closed curves In particular, in the axially symmetric case it
reduces to at most isolated points on the axis of symmetry and isolated rings

. around the axis. (The whole symmetry axis is excluded by the boundary condition).

PN ._’

In the case of the current g the space E(%) itself is excluded for
-

a different reason, namely, that if J  is identically zero the gauge and Higgs

field completely decouple and it is well~known that there are no mon-trivial finite- '
energy solutions for the decoupled system. Now suppose that f? vanishes on an

i,

v



. w’- . - 3 . »
analytic 2-surface /. .. The results for @ show that z contains finite

elements O2 on which (@,&)# ©O . But from the Bianchi identity and the

field equations (1.1) we obtain after some algebraic manipulations

= >

- - D D S -3 g ' '
DT-0 ™ T =-3,F @ T TAeIT] ST

and it is easy to see that this equation implies that on R®Z  the normal
= >
derivative to J can be expressed as a linear combination of J and the

tangenhtial derivatives to :} , with coefficients which are smooth on ST

{(and may be functions of ? ). Since, by iteration, the same will be trueiof

the normal derivative of any order, énd :3 is real analytic, it follows that
.

:J:: cannot vanish on 2. without vanishing on a finite 3-volume containing

e and hence vanishing throughout ¥ (3).  Thus in the non-trivial case the

- )
zero-set 'zLT) of J can be at most l-dimensional i.e. can consist only of

" isolated points and analytic curves(not necessarily closed). In particular, in

N
the (weak) axially symmetric case the zero-set of '3- can consist of at most

points on the symmetry-axis and isslated rings arouad the axis.

S

-o-

3. Orthonormal Triads in the Complement of 'Z(?Y)

The reason that we need to locate the zero-set ’2(3) of ;} is that
in the complement Eh) = E(B)—'Z(T\ we can construct orthonormal triads of
isovectors &nd use them to implement the weak axial symmetry. In this section,
we give the construction. First we note that since 'Z('b') is at most l-dimensional
E (3) is connected, though not necessarily simpiy-connected. Now let ¥ be
any point of : ~E (3). Then at P , and by analytiecity, in ;1 finite neighbourhood
N of P , we have :52-# Q .- But then in N  we have @# QO , and for at least
one component, &  say, of ? we have J £ O '« Furthermore from the definition

= v
of 9 we have (§,3)=0 . It follows that in N  the isovectors

U:)‘z Q/l&l 'y W= T/Sﬂ and \,\)3: W AW, , in N (3.1)

-
form an orthonormal triad. The triad(3.1) formed with fixed®component T ot J

may not be extendable to all of Eb) . because might vanish at finite
- “~ ~
distances from P . But since O # O in £ (3) and E(3) is connected,

“~
it is clear that E('b) can be covered with overlapping neighbourhoods N . each

2

with at least one triad. As we shall see in the next section this result’is

~ .
sufficient to implement real axial symmetry in E(’S) , and that is all that we

i N -~
shall need. Note that the W § are real analytic and single-valued in E(a) since

they are quotients of functions which are real analytic in  E(3).

"

Hers and throughout the components of J ars understood to ba expressed in

I

cylindrical coordinates.
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4. Implementation of Weak Axial Symmetry on  E (3)

Using the triad (3.1) we can construct the isovector

|
=77 Eaﬂb(uﬁ,mqf*"awc in N , Where b, =1,2,3 . .1

Now let )(x) be an arbitrary axial-scalar isovector (spaca-tsnsor isovactor whose

s'pace-indices are expressed in cylindrical coordinates). Then X (x) has the expancion

)sb(.\ = (h)c_(i),)\(x)) W, {x) in N ) %.2)
and since by weak axial symmetry
3q(ua,k)gv‘rtw“,>)= O in N, (4.3)
we obtain at once from (4.1) the relation .
: - DA = win, Mx) in N, (4.4)

Equation (4.4) shows that the vector \4(1) implements the ¢ovariant derivative
~ i
Dy in N . To extend it to E (3) we note that if W, is any alternative

. . L [ .
basis e.g. for a neighbourhood N , and W is the isovector comstructed

!
as in (4.1) from \Wa , then from (4.4) we have

\N\-w,\)= (0] ir; N[\N'.

v

(4.5)

Thus we have

y

B i "
or W= W in NON ., (4.6)

[m‘-w, \.OA\= (e]
Equation (4.6) shows that W is unique and basis-independent in Nm\)"a result
that can also be verified directly from (4.1) using weak axial symmetry. Since
E (3) can be ‘covered with overlapping neighbourhoods N , it follows that WS
and eq. (4.4) extend to all of E (3) as required. Note that W will also bLe

real analytic in E (3). ‘In particular W will be uniqué or single-valuved in

£ o).

.

¢

~N
From (4.4) on -E (3) it also follows (for X: W,y ) that

Fre AW, = (D0 o W, on B, vhere Fa;,‘[’bc >;5\= i-’;ﬂ?k. %.n

~
and since the Wa are non~degenerate on E (3), we then have i

£k .

~
We shall refer to equations (4.4) on £ (3) and (4.8) as the equations of weak

Diw = Fi\? = Qu‘,&@% . on

‘axial symmetry., With these 'equations in hand we turn to the topological charge

B P PP

o e St

distribution.

PR

(4.8)



5. The Topological Charge

The general expression for the topological charge contained in a volume

¢

\7 with smooth surface S on which §¢ QO 1is well-known' ‘to be

Qwﬁ—.gs&;dué shere = (3 F))= (4 08,20),  =EME, G

is the Maxwell field projected out of F;‘S by Ct) . In thé axially symmetric
case g\) is independent of & and hence if we choose V to be a volume of

revolution we have
‘ . -‘- :
Qv = hwggiwd"“\“’ = 2 %‘C%;de’ vy

where the line integral is along a curve C in s orthogonal to the azimuthal

direction. The precise nature of ¢ depends on the topology of S and will
be specified later. Now from (5.1) we have, in particular,
§—;w = (¢, Fy) + (¢, ¢,209). ‘ (5.3) :
Hence using the equations (4.4)(4.8) of weak axial symmetry, we héve
Fio = (220) (08, 4alu, @),
= W(b;w) * l'D;¢, \A\ = V(dl,w) ) on E 3). (5.4)

~N
Suppose now that the curve C tiesin E®) except possibly for the end-points

%y and X, . Then (5.4) can be used in the integral (5.2) and we obtain the

closed expression ,

Q, = %Ll %lxi)]

for the topological charge QV‘ contained in V .

where

g = B (doowbo) (5.5)
XX,

It is well-known that the topological charge as defined in (5.1) must be
located at the zeros of d}_ . From our results on these zeros, we see that in
the axially symmetric case the charges can be located only at isolated points oa-

the axis of symmetry and on rings around the axis. Our first step will be to show

that the rings are not possible,so that the charge must be located only on the axis.

(s.2)

v

¥

6. Elimination of Rings of Topological Charge.

To show that rings of topological charge are not possible we let R be
a ring of zeros of @ . . From the results on 'Z('J).‘, R, is isolated in
: !g(S) and hence can be surrounded by a torus of revolution whose surface
lier entirely in E (3). Letting the volume V' of the previous section be
such a torus, the curve C must be a circle in "S which loops the torus in
the direction orthogonal to the toroidal axis. Then, since C is closed and
(’w, 4) s single-valued in E (3), the expression (5.5) for the charge

inside the toxrus yields zero, as required. Thus the rings are eliminated and

" the charge is located only on the symmetry axis.

v ..

S
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7. Limits of W, D and W on the Axis of Symmetry

In order to determine the charge distribution on the symmetry axis(z-axis,
P "
say) we shall need the limits of b.),\é and W as j)—? O , and hence we

cansi?er these limits in this section. First from (4.4) we have

f
[ 8)] =\ 8| = y(b&\ﬂbﬁl\ in E® , (7.1)

: - ;
and since A and @ are real analytie throughout E (3) we then have

‘ﬂ\\*"h§.)=o.

f:o (7-2)
Next from (4.8) v)e have N
|Vidt | = 12l )] s (IR HED s W) ia B, 7.3)

. - - ->
where K¥ is the maximum of (B, B) in E(3). since B  is non-trivial and

is real analytic, we have O<K < o0 , and hence on integrating (7.3) along a
L
straight line between any two points X and X, imn € (3) we have

wWix) ¥ K2 . RIT-X)

Wixe) v vt

where R, xwax(f,f,), ' R 2

Keeping = f, fixed and letting P> Q we see from Cauchy convergerce that g,.)z(x)
has a finite limit as ¢->0, Than by letting X= (3,3) and o= (3, §)

we see that

Y - Y i
‘j;’i:o * (7‘.3 " {7.5)

where the finite value v s independent of z. Equations (7.2) and (7.5) give
the required limits.
~
Incidentally, we note that since W, @ is real analytic in ~ E (3), it

must be periodic in % , and hence, since from (4.4) we have

2 2 ~ 2 -
wHwag)= e (‘"’A‘Q) > Vg (w,B) ’ as §=20, ©(7.6)
the constant M in (7.5) must be an integer. - In the next section M will be

identified with the topological charge. )

8. Charge Distribution on the Symmetry=-Axis.

To determine the charge distribution on the z-axis, we let the volume
of the previous section be any volume of revolution which lies inside all rings
of zeros of @ and cuts the z-axis at just two points ’5/‘ and '5; where

EI)_ # O .. Then, apart from %, and 4, » the surface of V lies entirely

~
in E (3) and the curve Q is 3 curve joining q, to 1., with all its

~
interior points in € (3). From (5.5) we then have for the charge in

Qy= J:;;{Qr(%l) - QT(’SQ)_X where Q:(’$ \: EE L(‘S y 8. (é.l)

" 'But from the limits obtained in section 7 we have for @v‘. o,

WAy = Bt (wa)t = B [wetwer] = B W e W o
- g;o ! f:o f:o .
where m" is independent of z. - It follows that

Qv=91tm ‘ (8.3)

But since the volume \V may contain any number of charges, and two successive
charges of the same sign would yield Qy=%¥3adn , eq. (8.3) impliea'that the
charges must be of alternate sign and of the same magnitude. ' “

In particular, if the charges are required to have the same sign then there

can be only a single charge(of arbitrary magnitude).
3



9. Equivalence of Weak and Strong Axial Symmetry.

The results for the charge-distributions were obtained using only the
weak axial symmetry eq(zations (4.4) and (4.8). ‘However, for completeness and
for the discussion of the masterpotential, we wish to show that for analytie
fields satisfying (1.1) and (1.2) weak axial symmetry actually implies strong
axial symmetry i.e. eqs. (4.4) and (4.8) can be extended from NE (3) to E(3).

. For this purpose we note that eq. (4.8) can be integrated along any
~
E (3) to yield

curve | from Xg to X in

wix) = wpl(wlxa\, 1_\7) ¥ §F€a.f¥‘nﬁ’><}ldx; . , 9.1)

where Wg denotes the parallel transfer of W(xX,) along 0 with respect to
-

the connection A . The value of Wix) is path-independent because the

dntegrability condition for (4.8) is just (4.4) in € (3) in the special case
) -
is replaced by the components of B .

-y ~>

But now since P\. and ©

when A

are real analytic throughout € (3) and the
~ ~

complement U3 = ELS\-E('S) consists only of points and curves (so cthat € (3)

is connected) eq. (9.1) defines an analytic extension of W) as W ->%(y

~

Furthermore, for any )\(x\ which is real analytic in £ (3) eq. (4.4) then
extends analytiecally to E (3), and this is just the condition of stromg axial
symmetry.

Note that the result would not nécessarily hold if Y (3) contained a
2-dimensional submanifold 2 because ¢  would necessarily disconnect Aé (3).
Then {x) would not necessarily be path-independent and the values of w(x)
obtained coming from the two sides might not agree. This can perhaps be seen more
- clearly by considering the infinitesimal version of the above proof. First we

note from (7.4) that WQ" remains uniformly bounded as XA~ 'Z(T) and that

by recycling this result into (4.8) ) and all its finite derivativesars uniformly

o0 )
bounded as R-=> 'X(T) . Thus & has a smooth( C 1limit) as X -9%['5) . ot

-

But if X(J) contained a 2-dimensional ¥. » the smooth limits on either side of

E might not agree. When ,:(('3) is at most one-dimensional, however, the

~values as X5Z(I) are independent of the direction of approach and so W  has

a limit which is unique as well as smooth when X-=2 ﬁLtS) « The gngly:icity
of the extension follows by differentiating (4.8) again to obtain the elliptic -
equation
Dw= T,
(9:2)

Since the coefficients in this elliptic equation are analytic the smooth

solutions must be anglytic as required.

10. The Existence of the Masterpotential W .

We wish to show that the existence of the masterpotential W found in

previous papers(s) is a direct consequence of axial symmetry condition (1.3).

_ Inserting the field equation (1.1) in (1.3) we have °

"o

- Dw o= kDR , (10.1)
and taking the imner product of this equatiom with W we obtain
oo 2 k"
VoWt = A6 Yy (w,§) - P T (10.2)

But eq. (10.2) is just the Cauchy-Riemann-type equation which was used previously

to deduce the existence of a masterpotential W such that

2W W 2 2

— = (W —_— = \J\] =

@ré '§) ’ 03’ w > & § 4 (10.3)
and thus the result is established and the role of W . clarified. Note that

(10.1) is itself a type of covariant Cauchy-Riemann equation and hemce might be

of eome use in seeking explicit solutions of the field equations.
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11. “Field equation for W in the Mirror-Symmetric Case.

It is known that when the system is mirror-symmetric the field equation
for W contains only the fields wv , %=\§] and %:lhg&) which cceur
. o
in (10.3) and hence this equation and (10.3)HformAclosed system. We therefore

wish to derive the field equation for W directly from our present resylts.

From the second-order field equation (2.1) for é@ we obtain
s .
Ak = (B . (11.1)
i
But from the normalization of ¢) and the mirror-symmetry condition (1.6) we have

@)"Dad‘;) =0 and ‘kbwé ,—33.;6))2'- o} (11.2)

respactively, where Ag=( ) . Hence D, has a component only in the
! EXN

‘direction of the vector

G o= g = lu,e) = W= d - (1.3)
and

DNt L O (Y T N ut

Bei*= ?“‘b*@ YoTEe ¢ AR (11.4)
where

Rre WY e Ma= U -p EJPVPQ\, . (11.5)

Hence from (11.1) we have

?

k- (5« £ a6

and this is the required equation for W. Of course, ws must use (11.5) and

(10.3) to maks it explicit in W.

12.  Corollary for the Spherically Symmetric Case.

12)

We wish to show here that previous results , which state that a

sphierically symmetric charge distribution must be of maximum strength unity
can be derived as a simple corollary to our present results. First we note
that the results for Y (J) imply that a spherically symmetric cH;rge DUST

be located at the origin. Then since spherical symmetry simply extends axial

gymmetry to all three axes , we have from (1.3)
- - ‘ S
L)\+w I\>‘ =0 ) : (12.1)
-
where L is the angular momentum operator, k is any scalar isovector and

- hl} is our previous W . But from (12.1) we have

(TN ea B - @30

it
o

(12.2)
and hence

= s
\EK&'Y/\—:’ \h\ = \; A)‘ or ‘3(‘0 W) = IS 5 (12.3)

since the A\ _ are non-degenerate in E(&) -0 . But this means that for
each fixed * in E(3)-0 the :3 form a canonical set of generators for the
isospin group. Furthermore since they act only on the 3~dimensional space of
the X's they can generate only the trivial or 3-dimensional representation.

»

Thus

W w2 and Wy uds L i (12.4)

But then from (5.5) we have for a volume \7 enclosing the origia

Qp = (¥l = Hwdl < 1wl = |, | (2.5

which is the required result.
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