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Abstract

After reviewing the Weizshcher-Williams technique of virtual quanta

for calculation of electromagnetic radiation in bremsstrahlung encounters,

we extend the method to the domain of gravitational encounters and set

up a correlation between collision problems and the corresponding prob—

lem of the generation of gravitational radiation. In

the local rest frame of a relativistic test particle the gravitational

field of a large mass consists predominantly of a pulse of plane—fronted

gravitational waves. We Fourier—analyse this equivalent pulse and con

sider the scattering of the individual frequency components, virtual

quanta, by the test body. The scattering occurs because of the long—

range Newtonian field which gives a Rutherford—like cross section. The

escape of this radiation to infinity, suitably transformed, gives us

the radiative loss of gravitational energy by a rapidly moving particle.

The radiation spectrum and total energy radiated are computed as an

example.

We then turn to the case where one or both of the masses possess

an electric charge, and calculate the total electromagnetic and gravita

tional energy radiated in such encounters. We consider both the case

in which the deflection is principally electromagnetic in nature, and

the case in which the deflection is principally gravitational. The

results are interpreted by considering the predictions of the equivalence

principle, for the behavior of the test particle, and for the behavior

of the virtual quanta. As expected from the equivalence principle,

the total radiation produced is larger for electromagnetic deflection

than for gravitational deflection through the same angle.



I. Introduction

These lectures describe an approximation scheme which is applica

ble to the calculation of radiation processes involving gravitational

interactions and/or the radiation of gravitational waves. This work

was done in conjunctio with Y. Nutku, and the basic reference[l] is:

Matzner and Nutku, Proc. Roy. Soc. A336 285 (1974).

This procedure is an adaptation of the classic method of virtual

quanta introduced by Weizsächer2 and Williams
[31,

which they applied

to classical and to quantum processes involving electromagnetic inter

actions and radiation. A very accesible description of this technique

is found in:
[4]

Jackson, Classical Electrodynami (Wiley and Sons, New

York; 1962).

The classical version of the virtual quantum method is an approxi

mation which is applicable to high speed encounters between (charged)

particles. The approximation becomes accurate as the relative speeds

involved approach C; i.e. as the energy parameter (c a 1 henceforth)

2 -

y (1-v
2

(1.1)

where v is a typical velocity of the system. (In what follows we

will be explicit about the particular motion to which y refers.)

In quantum mechanics the accuracy of the virtual quantum method

is poor when the kinetic energies are comparable to the mass of elec

tion, or when impact parameters become small compared to the Compton

radii of the particles involved.

We shall here be primarily interested in extending the virtual

quantum method to applications involving gravity. The quantum mechanics

limits have little relevance in that case, but other considerations limit

the validity of this scheme in the gravitational case.

We shall see that the difficulties which limit this technique’s

range of validity in the gravitational case are exactly the difficulties

which are associated with the equivalence principle: gravitational fields

can be transformed away and there is no localizable gravitational energy

density. These problems make the virtual quantum method an excellent

model on which to exercise mathematical and physical intuition. The



results in terms of calculated radiation spectra are in the end ob

tained with relative ease, justification in itself of the utility of

the method. Moreover, in the end we will be able to use the results

of these calculations to better understand the principle of equivalence

itself.

II. Electromagnetic Bremsstrahlung due to Electromagnetic

Accelerations; Virtual Quanta.

The virtual—quantum method is best applied in a bremsstrahlung

situation, which we henceforth assume. We also assume that one particle

is essentially a test particle, i.e. it is much less massive than the

other. Thus we consider the deflection of (and subsequent electromagnetic

radiation by) a test charge e, with mass m, moving with energy parameter

y E (l—v2) 2>>l with respect to a very massive charge Q (mass M) . We

assume a hyperbolic encounter with (large) impact parameter b. We

assume for this electromagnetic example that the gravitational interaction

between the masses is negligible.

The approximation divides the calculation into three separate cal

culations which are then joined to find the radiation produced.

1) The small particle (m,e) as it approaches the heavy particle

(M,Q), sees the Coulomb electric field of (M,Q) transformed so

that it resembles a pulse of plane electromagnetic radiation,

with a spectrumd2E/(dwdA) (Energy per unit frequency per unit

area).

2) The small particle possesses a charge, and hence there is a

cross section do(w)/dQ for it to scatter electromagnetic waves

of a particular frequency. This cross section multiplied by

the incident flux of energy per frequency interval in the

equivalent plane pulse gives the frequency and angular spectrum

of the scattered radiation

d E — do(w) d E (2 1)
ddQ — dQ dwdA

m
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This scattered radiation is the radiation produced in the

bremsstrahlung encounter, according to the virtual quantum

method.

3) Since the heavy particle defines a more natural “laboratory

frame” for the observation of the radiation, we consider the

propagation of the radiation out to spatIal infinity and its

observation by an observer there who is at rest with respect

to M. Since we neglect gravitational effects here, this simply

amounts to a Lorentz transformation of the quantity (2.1) to

the rest frame of M.

We now give the details of such a calculation.

In a hyperbolic encounter with large impact parameter b, the

deflection of a test mass (m,e) due to electromagnetic forces arising

from a large mass with charge (M,Q) goes to zero as y*:

0 -±0 . (2.2)
e.m ymb

Hence the small particle moves on a straight line past the heavy one,

in the limit Y°. Thus the frame of the light particle is, in this

limit, a Lorentz frame, and the Coulomb field of (M,Q) can be trans

formed by a simple Lorentz transformation into the reference frame

of (m,e). In the Y° limit, this field appears as a pulse of radiation,

with energy/area/(angular frequency)
[41

2 2 2
— 1 Q (wb\ ,2 (wb 2 3

dwdA —

b2
1 y

where K1 is a modified Bessel function. This spectrum is approximately

constant from zero frequency up to w = y/b, and falls off exponentially

for w>w so that
C
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2
w<w

22 c

dLE it b

dwdA
(2.4)

•0 w>w
C

Since we concentrate on classical systems, we consider that this

spectrum of virtual photons is scattered by the Thomson cross Section

(instead of its quantum mechanical generalization):

do 2 (e’2 .2 2
= e (1—sin ecos

(2.5)

‘i’IIOMSON

where 0 is the polar angle in the frame of the light particle taken

with the pole opposite the direction of niotion and P is the azimuthal

angle taken to be zero in the plane of the orbit. Note that this cross

section is independent of w

The energy produced in the bremsstrahlung encounter is, in the

frame of the light particle,

2 2
dE dE (26)
dwd2 dwdA d2

m
THOMSON

where now the subscript in denotes quantities expressed in the frame

of the smaliparticle in. To obtain the energy in the frame of the large

charge, the “lab” or observer frame, we perform the appropriate Lorentz

transformation. Since dE/dw is invariant under this transformation,

we must simply transform the angles involved. The result is
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d2E -2 -2 d2E do
dwd =

(1-vn3)
dwdA (2.7)

‘I’IIONSON

where on the right hand side the quantity n3 cos 0 , with the pole

in 0 aligned with the direction of motion of the small particle, and

where (to ,O )are expressed in terms of (to , 0 ) by
in in

to wy(l—vn )3co (2.8)

and

n -v
- 3co

n =—cosO = —--- (2.9)3rn m 1—vu.

Of course

p =y’
e

At every angle in the lab frame the spectrum is a Doppler shifted copy of

d2/dtodA.

The total energy produced in the bremsstrahlung encounter is:

{E.M. Rad.; E.M. Defl.}
= JJ dQd

Q22(e / 2 2
11 dn3(l+n)

= ( ) dx K1(x)J)_1 (2.10)

ny7b3 / .(l-vn3)

The integral involving K may be evaluated using tables (e.gJ51)

and equals 3H 32. The integral involving n3 is elementary, and equals

[l+O() j.



From Eq. (2.10) we have than:

22 2

E{E.M. Rad.; E.M. DefI4 _ XL_ (C) 2
(2.11)

In the course of this work we shall have to evaluate several in

tegrals like those that appear in Eq (2.10), In all cases one factor

in the integrand will be an equivalent pulse spectrum which can be

approximated like (2.4) with an upper limit at w = y/b and smooth

simple behavior for w<w. This kind of approximate analysis often

yields much simpler analytic expressions, and allows very simple

estimates of the energy radiated. For instance, result (2.11) could

have been anticipated, up to numerics, by noting that in the frame of

the small particle Eqs (2.4) give

J. A
dw

-

(2.12)

and, still in the frame of the small particle, the scattered energy ap

proximately equals (2.12) multiplied by the total cross section:

2 fe\2
Ett e (2.13)

m b

and a large fraction of this radiation is blue—shifted by a factor -y

in going to the lab frame, leading to an estimate in agreement with

(211) above).

It will be seen that the radiation theory in this problem has,

in the virtual quantum approach, been all pushed into the calculation

of the scattering cross section. Any technical difficulty resides in

that calculation. The scattering cross section used in the example

just above, the Thomson cross section, describes the scattering of a

plane wave by a free charge and has a straightforward physical interpre

tation. The incident wave causes the particle to undergo a particular
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oscillatory motion: this accelerated motion of a charged particle causes

electromagnetic radiation with a characteristic angular distribution.

The reaction to the plane wave and the reradiation of the scattered

flux are local phenomena, directly associated with the particle. When

we use this cross section in the virtual quantum calculation outlined

above, the calculation explicitly makes use of this locality of the

scattering.

Straightforward calculation shows that the radiation calculated

in this manner is, for this electromagnetic case, exactly the

radiation calculated by considering the total accelerated orbit of the

particle (m,e).

III. The Frame Transformation for the

Gravitational Case

The production of gravitational radiation, in the virtual—quantum

approach, must occur by the scattering of an equivalent wave pulse

of £vitaCional flux in the frame of the small particle. It is appro

priate here to give a somewhat detailed description of the plane wave

pulse seen by the small particle.

Our approach, which is similar to that of Pirani, is to project

the Riemann tensor of the large (uncharged for now) mass M into a

Fermi—propagated frame carried with the small mass m. Fermi propagation

corresponds to the physical evolution of the non—rotating frame of an

observer moving with m, so this gives a direct measure of the tide—

producing physical components of the Riemann tensor at the instataneous

position of m. For the case of interest here ( both bodies uncharged)

m follows a geodesic and Fermi propagation reduces to parallel propaga

tion. In general, however, the Fermi propagated frame will be appro—

pr ia te.

Thus we consider the ultrarelativistic motion of a test body of

negligible mass m in the field of a Schwarzschild mass M. We shall

need to know the appearance of the Schwarzschild field due to M for

an observer situated on the test body which is freely falling on a
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geodesic which we have arranged to be arbitrarily close to a null

geodesic of the Schwarzschild geometry. These fields cannot in general

be obtained by one simple Lorentz transformation, since we cannot ap

proximate the trajectory by a straight line even in the ultrarelativistic

limit owing to the fact that light itself is affected by curvature.

In fact, in contrast to (2.2), we have, for gravitational deflection

of the small particle as y-

0 -* (3.1)
gray b

So the procedure of performing Lorentz transformations, as we do in

electrodynamics and as Pirani does in general relativity, must be

abandoned.

The specialization of Fermi—propagation71 to the case where •the

observer is following a geodesic and the introduction of Fermi normal

coordinates which are appropriate for the discussion of the geometry

in the immediate neighbourhood of the test body is due to Synge81 and

Manasse & Misner1. In the following we shall apply the formalism

of these authors to the problem of a test body in a hyperbolic geodesic

of the Schwarzschild geometry. Using the usual local coordinates

centered on M, which we shall write with capital letters, the Schwarzschild

metric is

ds2 =XdT2 -X1 dR2 - R2(d2 + sin2 d2) (3.2)

X=1-2M/R

and for a pu’t’icle following a geodesic in this geometry we have the

first integrals of motion

1 XT’2 -x1 ,2
R2n’2 (3.3)

= XT’
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where prime denotes differentiation with respect to proper time. The -.

geodesic equations now reduce to the quadrature

2
/du2u3u2++y_1 (3.4)

L2 L2

with

U 2M/R and L = L/2M (3.5)

[10] [11]which can be integrated , by elliptic functions.

Since the initial 3—velocity vector and the centre of mass of M

define a plane on which all subsequent motion takes place, we have

without loss of generality taken this to be the polar plane = const.

We want to set up a parallelly propagated frame on such a geodesic followed

by the test particle, which will thus be at rest in this frame. The

time—like direction defined by the tangent to the geodesic, will have

the unit basis vector

e =T’ —+R’—+n’— = —

— (o) T (3.6)

where t is the proper time of the particle and e is manifestly
-(0)

Fermi—propagated. By the symmetries of the problem it is also obvious

that

1
e

= (3.7)

is the desired unit basis vector perpendicular to the plane of motion.

Rather than proceed directly to a Fermi—propagated frame, we shall

introduced an intermediate step where we consider a pair of vectors

—

— i (, (3.8)
e,
,-1)__

÷Yj)
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(2) +
+ N (39)

where N = (1
+ (3.10)

which are time—dependent linear combinations of the pair e(1)e(2)

which complete the desired set. We note that {e(U)}

form an orthonormal basis. Such a procedure is convenient because

are very simply adopted to the symmetries of the problem

and they can be stated independently of the particular geodesic under

consideration, while the final rotation

e(1) COSlYe(1) +sine(2) (3.11)

(3.12)

- (2)
—S1fl7,e + CQSVe (2)

which needs to be performed to obtain the parallelly propagated set

{e}
= {ee(l)e(2)e(3)}

depends crucially on the specific geodesic the test body is following

through the explicit solution of (3.4). That is, ‘Vis deterniined by

the equations of parallel transport:V e(1)
= O5Ve e(2) = 0 which

reduce to (o) (o)

(3.13)
dt
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IV. The Riemann Tensor

We shall now apply the basis of equations (3.6—3.13) to obtain

the appearance of a Schwarzschild field for our observer. It will be

convenient to introduce the Petrov—Pirani notation where we identify

pairs of indices

u’ 23 31 12 01 02 03

A 1 2 3 4 5 6.

and deal with components in the space of bivectors. In particular the

Riemann tensor is a symmetric bilinear form in this space. The raising

and lowering of indices is performed by means of the metric with the

components

gAB
= gg A < v, B <

(4.2)

which has signature zero.

The tensor transformation law leads to an obvious transformation

law for hi—vectors

2( F F() = E(FB (4.3)

and the explicit form of the transformation connecting components ex

pressed in the Schwarzschild coordinates T,R,B , to those expressed

in the orthonormal basis (3.8) to (3.13) can be written out as a matrix:
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N —R’. —Y
o o 0.

sin R2N sin fl

E
B

0 0 0 0
NRsin PNX sin

(4.4)
o o L zJ o

p p Rx

0 0 ----- N 0

R2N P2NX

— p ‘

o o 0 1 0
RN

o 0 0
P sin RX sin

Again in this notation, the Riemann tensor in the original Schwarzschiid

coordinates is given by

2 (M/PX) sin2 , M/RX1
AB

= diag. (—2 MR sin
(4.5)

2
2 M/R3, -MX/R, - (MX/R) sin r)

and using equation (4.5) we find that the components of the Riemann

tensor in the frame defined by e become simply
(ct)

/P Q\
p

=( )
V (4.6)

where P, Q are 3 x 3 matrices

2

M 0 1 0 0 0

—2—3 0 0
‘O 0

0 0 l+3

1 0 0/ (4.7)
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called respectively the electric and magnetic parts of the Riemann

tensor. In this frame we can recognize a time—dependent but Schwarzschild—

like induction field in P. In the limit 2 - , a condition which

holds for all non—radial null geodesics, the pieces proportional to
2

make up a type N gravitational wave with the amplitude

3M2
(4.8)

travelling in the negative 2 direction. We shall be only interested in

the ultra—relativistic limit where the geodesic which the observer is

following is very close to a null geodesic. For such geodesics 9 can be

made as large as we choose and therefore in the subsequent discussion

we shall keep only the leading terms which are proportional to
2

in

the Riemann tensor. The physical components of the Riemann tensor which

the observer measures are given by the transformation of equations

(4.7), (4.8) according to the rotation in equations (3.11 — 3.13). For the

ultrarelativistic limit we find

2
/-cos. . . . . /

p = . . ) + . - sin2V . + sin1

\ . . cos2t9/ \. . s.in2)/ .
(4.9): —

and

/ . . COS\ 7. . .
Q =( . . . ) + ( . . (4.10)

\sl . . / \. sinV . /
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We observe that the time dependences entering these equations

through7,’(t) are not the same for P and Q. Hence, if the 2Ytime—depen—

dence is the dominant factor in the problem, the magnetic—like Q cannot

complement the electric—like P to form a proper plane pulse of gravita

tional radiation. But for the problem of one particle shooting past

another the time dependence of a will turn out to be the controlling

factor, because R changes so quickly that the fields are cut off before

i’has time to change appreciably. In this case the fields will be

approximately complementary (the approximation being better as Z -* )

and we obtain pulses of linearly polarized gravitational radiation.

If, on the other hand, we are dealing with circular orbits where a is

constant and onlyi- varies with time, we do not obtain a pulse of

radiation.

This situation is exactly analogous to the one which is encountered

in the electromagnetic theory. There the magnetic field has the comple

mentary algebraic structure and the same frequency as the electric

field in the case of a particle rapidly shooting past another, but for

circular orbits the magnetic field has zero frequency. As in the

Weizscher—Williams prescription, we let the electric—like P determine

the character of the waves and insert by fiat the associated complemen

tary part Q which is necessary to form a type N plane wave.

V. Frequency Spectrum

We shall now address ourselves to the problem of computing the

effects of incident plane gravitational waves, such as the equivalent

pulse of radiation that was obtained in the previous section, on the

test body. We shall proceed by analysing the pulse into its frequency

components and regard each component as a particle, a virtual graviton,

which is scattered by the small mass as in a collision process. For

this purpose we need to associate an energy density and momentum flux

with these gravitational waves. Since gravitational energy cannot be

localized, the definition of a Poynting vector for gravitational waves

is a difficult problem which can be resolved straightforwardly only in

asymptotically flat regions. To obtain a sensible definition of the



energy flux of a gravitational wave we must require that an averaging

be carried out over distances comparable to the wavelength of the

gravitational wave but short compared to the physical sizes of tile

system under consideration. Furthermore we must demand that our re—

suits reduce to the well—known expressions which hold in the weak field

limit. The definition for the energy flux

dtdA

St St
PAB(t’)

PAB(tlt) dtt dt” (5.1)

where P are the Riemann tensor components is essentially the expression
[12] . .

proposed by Gibbons and Hawking . Definition (5.1) satisfies the

requirements mentioned above and we shall take it as the basis of our

subsequent discussion. Equation (5.1) corresponds to taking the time

average over roughly one period and it is a particularly appropriate

expression for the energy flux in short bursts of radiation of which

our equivalent pulse is an example. Since
AB

is referred to the ortho—

normal basis Co , its contravariant components are obtained by raising

with the 3 x 3 positive definite flat metric. The total energy incident

per unit area is then the integral of (5.1) over all time

=

P(t) dt (5.2)

The expression for the total energy which we just wrote as a time

integral can be converted to an integral over a frequency spectrum if

we analyse the equivalent pulse of radiation into its Fourier components.

We may without any ambiguity carry out the Fourier decomposition using

the proper time associated with anobserver moving on the test body.

We have the Fourier tran&form

PAB(t) dt (5.3)

with the inverse

PAB(t)
et

AB
(w) d

(5.4)
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and by Parseval’s theorem, we can write equation (5.2) as

dE r d2E
dW

(55)

tO

where

2
aE 1
dwdA = P(w) P(w) . (5.6)

w

d2E

dwdA
is the equivalent pulse frequency spectrum (energy per unit

area per unit frequency interval).

VI. The Equivalent Pulse in a Distant

Bremsstrahlung Encounter.

Even though Eq (3.1) shows that there is always some net gravita—

tionalthflection of the small mass, for distant encounters the orbit may

be approximated by a straight line in the asymptotically flat space

(at least for purposes of evaluating the equivalent pulse). Thus:

R2 b + v2T2

2 222
=b +vyt (6.1)

where b Q/-y is the impact parameter and v 1 is the velocity of the

test particle. With this expression for R(t) the solution of (3.13).

is elementary and we find

= V(b2+2)
arctan

/(b2±z2)
. (6.2)

As we have 2. -b

cost(t) (l+t2/b2) (6.3)

and from (6.1) nd (4.8)

3M22 (l+y2t2/b2)2 . (6.4)



It will be noticed that 7, is defined so that ‘zI = 0 corresponds to the

instant of closest approach.

Notice also that cos1 z 0 for (t/b)2>l, while the corresponding

relation for a is a(t) z 0 fory2(t/b)2>l. Because of the explicit

appearance of ‘ in a , cos$ 1 during all the time that a is non—

negligible. These time scales indicate that the highest frequency in

the Fourier transform of coslY is b
1,

while the highest frequency in

the Fourier transform of a is approximately

y/b>>b1 . (6.5)

All this becomes of more than academic interest when we realize

that to obtain the frequency spectrum we must evaluate Fourier integrals

which are typically of the form

p ( ) I a(t)cos2’(t)etdt (6.6)

- r

Because of the difference in time scales, we may set cos’2fr 1, so

that

P
3M2 f et(l+y2t2/b2)_ dt . (6.7)

1
b5v’(271)

This expression is readily recognized as the integral representation

for modified Bessel functions of the second kind

=

w2K () (6.8)

It is approximately constant for all frequencies up to the cut—off fre

quency and then drops off to zero exponentially. The other com—

ponents of the Riemann tensor in (5.6) contain at least one factor

sinl9(t) and are, therefore, much smaller. In the Fourier transform

of the Riemann tensor components which contain a factor of sin2fr all

frequencies except those close to w are suppressed and furthermore the

amplitudes are down by one power of -y compared to (6.8), while the

amplitudes of those containing sin22 are down by two powers of y but
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have a relatively flatter spectrum. We note that in practice the

Fourier transform of the dominant pulse may be approximated by a

step function which terminates at w while the others, being negligibly

small, can be ignored altogether.

The terms with coefficient cost and cos2 in (4.9) and (4.10)

are appropriate complementary electric and magnetic parts for waves

in the 2—direction. Hence where the time dependence of’L9’is slow

compared to that of a as we have in this case, the largest pulses

appear to be plane waves. The other components of the Riemann tensor

are the analogues of the 51l pulse’ which arises in the same problem

in electromagnetism.

The frequency spectrum can now be written down according to (5.6)

and we find

ddA =
M

2

‘2

(w) (6.9)

where we have neglected all except the contribution from the strong

pulse. In the high—frequency limit we have

2 2 -2w/w

2 (M” -— e W>> W (6 10)
dwdA ‘bi

where the frequency dependence exhibits the behavior to be found for

all massless fields. For low frequenieS the frequency spectrum

2 jj’2

i)
w<.<w (6.11)

has the characteristic infrared divergence that frequently appears in

problems involving gravitational radiation.

This low frequency behavior may be compared to the expression

ford2E/dwdA of the equivalent plane wave in the electromagnetic case,

Eq. (2.4). The transition from electromagnetism to gravity can be

viewed as replacing the electromagnetic charge Q by its gravitational

counterpart (iM) and inserting the factor (b)2. This latter factor,
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which strongly suppresses the high—frequency part of gravitational

radiation, is typical of such radiation, as it arises from the tensor

nature of the field. Technically, this is because the energy flux

calculated depends on the integral of the physical object (the Riemann

tensor) for the gravitational case. This amounts to dividing by the

frequency w, i.e. emphasizing the low frequency components. In the

electromagnetic case one calculates the flux by squaring the Maxwell

tensor directly. Since the Maxwell and Riemann tensors transform

similarly (though not of course identically), the difference in

energy fluxes persists and is responsible for the fact that the bulk

of the total radiation is produced in low—frequency low—angular

momentum waves, even though there is very substantial peaking at

high frequencies for large y

We are also left with the difficulty of interpreting this result,

since we need to use it in applying the virtual—quantum approach to

gravitational radiation. Clearly the divergence is spurious, and

clearly it is associated with the non—localizability of gravitational

energy density. We have said that we need to average the gravitational

waves over several wavelengths. But it makes no sense to find a

“localized” effective energy density if we must average over lengths

which are comparable to the system undergoing the interaction. The

minimum size of the system is b, which is the approximate distance

of closest approach. Hence it definitely makes no sense to consider

wavelengths (seen in the frame of the small mass) which are longer than

b. Hence we insert a cut—off lower frequency,

w . = b1 , (6.12)
nun

and arbitrarily truncate the low—frequency part of the spectrum at this

frequency. The low frequency part of the produced radiation will

thus be uncertain because of our inability to handle the long wavelength

part of the equivalent pulse. We hope, however that we have made a

reasonable physical choice in this cut—off. A suggestion of marrR3]

for the low frequency behavior based on the zero—frequency—limit also

supports this cut—off. We should emphasize, however that this is the
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first brush with a cutoff made necessary by the non—localizabiljty of

the gravitational energy, i.e. by the equivalence principle.

VII. An Estimate of Gravitational Radiation

Produced in a Distant Bremsstrahlung

Encounter.

Sections III — VI have been devoted to obtaining just one of the

three steps described in Section II as necessary to carry out the virtual

quantum approximation for the gravitational case. We still must find

the gravitational scattering cross section, and carry out the transfor

mation of the scattered radiation into the frame of the large mass.

In order to provide a glimpse of the direction of this work, and to

allow the exercise of some physical insight (i.e. guesses) we will

estimate the total gravitational radiation in a bremsstrahlung encounter,

given the flux via (6.9) and (6.12), and estimating the cross section

and the transformation to the frame of the large particle.

The total flux per unit area in the equivalent pulse is (for

large y )

U)
C.,

dE -, I d’E

dA j dwdA
dw (7.la)

b

2
M2 c — y2M2 (7.lb)

b2 (1/b) — b3

The cross section for purely gravitational scattering can be expected

to be of the order of the square of the Schwarzschild radius of the

scatterer, i.e. a = m2 Hence

dE 2 m2M2

d2 b3
(7.2)

m
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Finally, the energy scattered into the hemisphere centered on the

motion of thesmall mass is directed so that it is blue shifted by

a factor -y on going to the large mass frame. One thus estimates

E{Grav.Rad.;Grav.Defl.} y3
m2

Expression (7.3) is the grail we seek. Let us return to a more

rigorous path of computation of the cross section and the energy trans—

formation. The path will lead back close to (7.3). The final result

via the virtual—quantum method is given by Eq (9.14).

VIII Cross Sections for Scattering

Gravitational Radiation.

It is important to note that there exist two distinct types of

gravitational radiation which a system such as we describe will give

rise to. The Riemann tensor on which we have based our computation

finds its expression in the physical phenomenon of tidal forces.

Hence if we assign the test body an extension, the relative accelerations

will generate radiation. Such a tidally induced gravitational radiation

can alternatively be described by the scattering of the equivalent pulse

of gravitational waves. In order to model such tidal effects, we might

consider a cloud of particles undergoing tidal distortions in reaction

to the incident pulse of plane waves and reradiating as a consequence

of the changing quadropole moment which is thus induced. Calculated in

linearized theory, this gives a cross—section

a m2(Rw) (8.1)

where m is the mass of the scatterer, R is its radius, and w is the

frequency of the incident radiation. Extrapolating to the case where

the scattering sphere is a black hole, dimensional analysis suggests
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replacing R by Schwarzschild radius 2rn. In this case we see that the

resultant cross—section is proportional to m6. Notice this is a scat

tering local to the particle, analogous to the Thomson scattering of

the electromagnetic example.

For non—structured particles we cannot expect this tidal mechanism

to operate. But there is another type of radiation which is independent

of the structure of the test body, except for its mass.

This type of radiation is produced because there is an essentially

Newtonian scattering, different from the tidally mediated scattering

discussed above, which deflects the virtual quanta. The scattering

mass m deflects massless radiation according to its Newtonian gravita

tional attraction and the equivalence principle (as, for instance,

expressed by the gravitational deflexion of light). The Riemann tensor,

which is defined at a point, has no direct bearing on this Newtonian

scattering. We use it solely as an indicator of the presence of a plane

wave over an extended region about the scattering centre which is the

test particle. To discuss the scattering problem we need the cross—

section for the scattering of strong gravitational waves on a point

particle as well as the complementary problem of calculation of the scat

tering by a large Schwarzschild mass, when the incident waves are

treated as a perturbation. In the very low—frequency limit, this

scattering of weak waves has been computed exactly by Matzner and

Ryan41 (as a limit w-*O).

The result, which unfortunately does not have a particularly

simple analytic expression, is given by squaring the modulus of the

amplitude lim f(w,O) , where

w-O

a 2imw
2i

, . “ /
f(w,O) = me

_____

÷ 2ye (21mw l-4imw
_l/cos4(8/2)

y 2iw l+2imw

2i
,, \I

+

°
(imw — l—imw

1/cos(O/2)
2iw l+2imw

(8.2)



is an irrelevant phase, and -

y sin20/2 . (8.3)

The cross section determined by this scattering amplitude has some

interesting features. Contrary to first impression, it does not have

a backward divergence (where cos2 0/2 ÷ o) but because of a cancellation

of terms vanishes in the backward direction and is quite small in the

entire backward hemisphere. The forward direction is dominated by a

forward divergence a m2sin 0/2 just as in the case of the Rutherford

cross section. Because
2imw

is not a factor of this expression, there

are interference phenomena between the different terms. But for small

mw, these are confined to the region e < exp (—1/4mw). Finally, the

cross section so derived is summed over final polarizations; it is

independent of the polarization state of the incident wave and is

independent of axial angle.

This low frequency limit is appropriate to our calculation because

the relevant smallness parameter is mw, and we are taking the small

mass m as a test mass. By making m small enough, we can guarantee that

all of the wavelengths in the equivalent pulse exceed the Schwarzschild

radius of the small particle, in. An alternative statement of this con

dition is that the frequency spectrum cuts off at a frequency less than

- 1/rn and this will be shown to require b/1 > in in the bremsstrahlung

calculation where b is the impact parameter in that problem.

The cross—section is not exactly of this form (there is some absorp

tion for instance) for non—zero frequencies. For those cases one can

in principle use the numerically computed cross sections. It is then

possible to relax the requirements of the smallness of in to a simpler

condition such as m <<M. The requirement in < b/ is thus not essential

to the method of virtual quanta.

The Rutherford—like cross section calculated from (8.2) obviously

dominates the cross—section for tidally induced scattering (8.1) for
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small m and we shall henceforth totally ignore the tidal effects. -.

In contrast to the cross—section (8.1) the Rutherford—like cross—

section is inherently long range. Hence at least some of the virtual

gravitons scattered by this field are scattered far from the small

mass and with small angles of deflexion. The equivalent pulse consists

of waves which are locally plane waves but deviate from planeless over

lengths of the order of the impact parameter b, the characteristic

length in the problem. One might consider that the smallest deflexion

angle is this 0
mm

-. 4m/b (i.e. there is no scattering of virtual

qravitons with impact parameter greater than b), and this is the pro

cedure which was followed in Ref [1). However, a point not considered in

[1] is that this deflexion angle is smaller even than the deflection of the

small mass past M. Virtual quanta which are -b from m are < 2b from N,

and, at least after initial disturbance from m, are scattered through

-4M/b by M. Hence in this work we take 0 . 4M/b, and w . — 1/b.
mlfl mm

The infinities in the energy spectrum of the equivalent pulse and in

the cross section are thus cut off.

Again the non—localizability of gravitational interaction leads

to ambiguity. And again physical arguments have allowed a reasonable

choice of cut—off; the ambiguity is, as before, concentrated in the

long wavelength part of the radiation spectrum.

For analytical calculational purposes we will use the following

very simplified approximation to Eq (8.2):

f(0) = m(sin2 0/2 — 1) (8.4)

The cross section calculated by squaring (8.4) closely approximates

that from (8.2) everywhere but is much easier to handle analytically.

Eq (8.4) corresponds to the limiting backward behavior of the cross

section, and obviously preserves the forward peak. We should emphasize

that although explicit w dependences appear in (8.2); the result for

in <<1 is in fact independent of , except for very small forward angles,

for purposes of analysis, we may treat the cross section as ihdependent of .
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IX. Gravitational Bremsstrahlung

We now multiply the energy spectrum of the incident equivalent

pulse by the cross section to obtain the energy per unit solid angle

and frequency scattered by the small particle m from the equivalent

pulse of plane waves:

d2E d2E
8 = 4M/b

dldw dwdA d2 mm

m —1
w >b

(9.1)

0 otherwise

where we have introduced the small angular and small frequency cutoffs

described above. The expression 8. 4M/b is appropriate for large

impact parameters which we consider..

Direct calculation of (d2E/dQd) then inserts expressions (6.9),

and the square of (8.2) into (9.1). Because the approximate expression

(8.4) is independent of w , the resultant spectrum at any angle in the

frame of the small particle has the approximate behavior

2 2

dwd mZ (:) (sin 8/2-1)

1

(9.2)

> 0 ,— < w < w = —

minb c b

= 0 otherwise,

where as before we indicate with the subscript m the various quantities

measured in the frame of the small mass. To obtain the spectrum of

radiation at infinity we need to transform to the frame in which the large

mass M is at rest. We will use Eqs (2.7) — (2.9) since gravitational

wave energy transforms just like electromagnetic wave energy.

Because of the sharp cut—off at the low—frequency end of the

spectrum w = 1/b and because of the existence of the minimum angle of

deflexion (0.) the lowest frequency in the spectrum at infinity is
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given by

= (y/b)(l+ óv), (9.3)

where

(S = — cos(O . )
m minm

— 1+8M2/b2

The spectrum at infinity has frequencies approximately up to the

frequency corresponding to the maximum blue shift applied to w:

w)
_l 1

‘ccc bl—v

Knowledge o the frequency spectrum at infinity obtained by

the quantity
dwd

over solid angle allows comparison with other

discussions of the process or radiation emitted by rapidly moving

particles, even though this quantity itself is not of direct physical

interest. The integration around the angle is of course trivial

and the integration in dn has the following limits;

n3 upper limit = mm l
- b)

A , (9.5)

n lower limit = max 11 - E B, (9.6)
3 v b)

(S

The limits 1 and in (9.5) and (9.6) are simply the limits defined by

the geometry of the problem. The expression A in (9.5) however, gives

the most forward angle (greatest blue shift) such that the under

consideration corresponds to any blue shifted radiation in the approximation
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spectrum (9.2). That is, any higher blue shift would shift the lowest

frequency in (9.2) above the frequency w. Similarly, the expression

B in (9.6) gives the largest red shift permitted, the amount which

red shifts (w ) below the w under consideration. We may thus use the
cm

simple analytic form of (9.2) with the appropriate transformations to

express the variables in terms of w , n , and the limits on the3cx
integral given by (9.5) and(9.6)take care of the cut—off defined in

(9.2).

If we wish to give a frequency spectrum we must integrate over

all angles for each value of w. This has been carried out, for the

approximations of Eq (9.2).

The spectrum starts from zero at

(w). = (y/b)(l+v), (9.7)

and rises at first linearly, reaching a maximum value at

(2w). (2y/b)(l+v). (9.8)

This abrupt initial rise is entirely due to the cutoffs imposed at

low frequency and small angle . Thereafter, the spectrum falls approxi—

—l —2
mately like w up to the frequency w l/yb(l—v). Then w

behaviour begins. As the frequency approaches the upper boundary ()

l/b(l—v) 2y’b) the simple model shows a linear decrease in dE/d, down

to zero flux for Li > ((ii ) . An exact treatment would show instead

an exponential decrease influx above the frequency and this is

the only significant difference between our simple analytical model

and an exact calculation.

In order to calculate the total energy radiated we can perform an

approximate calculation based on the cross section from (8.4), which

2 2 2
is in (1—n) /(l+n) . We integrate:
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fw b\

ETOT = 2’?TJdn I
_‘

F4 M2y w2K2
“ ii do (9.9)

J y2(l_yn)Z m 2 Y)j d2

8M2 1 dn I dw K (_!!L_) do 12 /wb\

2i.2j coj dQ (1_vnco)2

Now, using (2.8) we have

2 dw b(1-vn )

_____ ____________

do8M
‘ dnETOT = y2b j J

b(1—vn
(wb -vn))2K(wb -vn))

(9.10)

8M2 1 dn
do 1

=

y2b3 J (1- ) J
x2K(x)dx

o,

The lower limit of the x integral equals the least value of in the
-r

frame of m. Thus x = . We cannot quote here a tabulated value
0

for the Bessel function integral (as we did for the electromagnetic

case c.f. Eq (2.10).) However K22/x2 as x - 0, and (6.5) shows that

the effective upper limit of this integral is x 1, so
C

0,

J
x2K(x)dx =

4y[1+0(yl)j (9.11)

x
0

Hence

1 /l-n\2
32M2m2 I m’ 1

n)

0,\

m
ETOT dii 1 l+n

)
(l-vn )3 (9.12)

mm

It is clear that the contributions to this remaining angular integral

come principally from the poles. An analytic form can be found for

the integral, but it is not particularly enlightening. The principal

terms are obtained by adding terms at the two poles. Note that according

to (2.9),

/ 2

___

0,1fl-n \ (ln
\2

= y(l+v)4 -j-- J (9.13)

m coJ
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Hence:

ETOT{Grav.Rad; Gray. Defl.} =

(l6Mm)23{
y + H()} (9.14)

Here H(y) is the contribution from the small angle cutoff part of the_2
integral. H(y) (b/M)2y so long as (My/b) < 1, and H(y)-O(l) for
y > b/H. Hence this term contributes negligibly to the y -‘- limit
of the total energy. As we mentioned earlier, the largest part of the
energy is emitted in the low frequency modes, and result (9.14) is uncer
tain up to numerics owing to the ambiguity in the cut—off. However
the y3 power is not uncertain although the logarithm appears to be a
spurious feature of the total energy result, arising from the angular
integration cutoffs (see the discussion in Section VII).

We note that marr1s[13l study of the zero frequency limit of the
gravitational radiation produced in a bremmstrahlung encounter suggests
the produced spectrum flattens off to eliminate the divergent low fre
quency behavior starting at the intermediate frequency w y/b.
(The spectrum at ranges over w<1/(2by), 2y2/b > .)

In Reference [1] the frequency spectrum and total energy were cal,—
culated using cross section derived in the Born approximation. The
cross section based on Eq (8.2) had not been discovered when the earlier
work was performed. The essential difference is that the cross section
from (8.2) vanishes in the backward direction, while the Born cross
section has the value m2 in the backward direction. The is the direction
which leads to the greatest blue shift and might have been expected to

affect the high energy end of the spectrum somewhat. In fact the
change is slight. The greatest change appears in the total energy calcu
lated in Eq (9.14) above. When this approximate calculation is compared

to the work of Ref [ii the value of ETOT here is exactly (1/2) that of

the previous calculation.

‘We should at this point mention a certain invariance of structure



—31—

of these calculations. In particular, the effective gravitational

wave pulse impinging on the small particle is independent of the source

particle; contributions from higher multipoles fall off more rapidly

with distance than does the mass contribution. Thus only the mass and

charge of the large particle contribute to the large b fields. The

scattering cross sections also are largely independent of the structure

of the scatterer. Eq (8.2) was derived on the basis of a Schwarzschild

black hole. However, both electromagnetic and gravitational waves have

non—zero spin. This means that the angular quantum number 2l, and

centrifugal terms in the wave equation ensure that the waves are non

zero only outside the turning points rTP Z/w >> m. The scattering am

plitude (8.2) is thus in fact calculated for any mass of finite radius,

in the limit mw-*O. (Again, we expect multipole moments other than the

mass to have no effect on the w - 0 limit of the cross section; see the

more detailed arguments at the end of the following section.)

X. The Method of Virtual Quanta as a Probe of

the Equivalence Principle.

We now use the results obtained in the previous sections to apply

the virtual quantum technique as a probe of our understanding of the

equivalence principle.
[151

Besides the classical electromagnetic

bremsstrahlung and the gravitational bremsstrahlung worked out above,

our discussion requires two intermediate cases, both of which are

calculated by the method of virtual quanta (see Appendix):

Case 1:

The electromagnetic radiation produced when a charged test mass

(m,e) moves in a hyperbolic orbit in the field of a large unchar4 mass

M.

Case 2:

The £ytationai radiation produced during a bremssirahlung en

counter of two charged particles (m,e), (M,Q).
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Although it is clear that both these cases can be treated by the

technique of Green’s functions, [16,17] an alternative formulation, is

always desirable. A crucial point enables us to caiculaLe the radiation

emitted in the cases above using the method of virtual, quanta. This is

the fact that in the firsL order perturbation theory of the Reissner—Nordstr’/m

[18,191 geometry describing a charged black hole, there is a coupling between

electromagnetic and gravitational modes which means there is a cross section

for interconversion between them [20,21] . Case 1 above may be calculated in

terms of virtual gravitons undergoing conversion scattering on a charged black

hole; the conversion cross section gives the electromagnetic radiation produced.

Similarly, case 2 may be calculated by utilizing the conversion scattering of

incident virtual photons which give an outgoing gravitational wave flux.

The cross sections for the conversion process have been calculated by

Matzner [221 (the 2=2 case only) and by Fabhri [231. In using the cross

sections we are modelling our test particle (m,e) as a small black hole.

However we argue at the end of this section that the conversion cross

sections used here are universal for spinless test particles.

The two dimensionless numbers characterizing the scattering of

gravitational waves of frequency w from the small particle can be

formed by multiplying w with m or e. Both will he small in the test

particle limit so that only the long wavelength conversion cross section

is relevant to our purposes.

The 9. = 2 cross section for conversion between electromagnetic and

gravitational radiation on a charged black hole is, in the limit w-0:



2
o -e (101

cony

£= 2

Unfortunately, contrary to statements in ref [221, the 2. > 2 terms

contribute significantly to the cross section; in fact a 2.l, that

o
tot cony (10.2)

cony 92 2.

— a
cony max (10.3)

C2e2 2.n 2.
max

where C is a constant of order unity, and where 2. is some maximum per

missible value of the angular momentum, determined by the parameters of

the problem. We are interested, in this paper, in distant bremssrr’h—

lung encounters. In such a case, 2. w b, where as before
max mp

w - y/b. Hence 2. y.
max max

According to [22] the conversion cross section arises from (differences

in) potentials of order r3. For low frequencies the wave functions are

nonzero only outside the turning points rTP 2./w>>m. In analogy with

our previous discussion (Section IX), we argue that the conversion process

occurs very far from the black hole and we thus conclude that the

structure of the black hole, even whether it is a black hole, and what

the ratio le/mi is, are all irrelevant. We conclude that any charged mass

will have the low—frequency conversion cross section (l0.l)—(lO.3) regard

less of e/m. (The cross sections in (lO.l)—(l0.3) were calculated
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assuming Ie/mI<1.) Hence we conclude that our model of the test

charge as a charged black hole is no specialization at all, but merely

an intermediate step in arriving at the universal equations (10.1) (10.3)

above.

XI. The Equivalence Principle; Does a Falling

Charge Radiate?

The equivalence principle states that if gradients of the gravita—

tional field can be ignored, Lorencz physics holds in a freely falling

frame. A charged particle possesses a Coulomb field which reaches to

infinity, and so does interact with the gradients of the gravitational

field. Thus there is radiation expected from a freely—failing charge,

but, as we shall calculate, there is substantial suppression of radia

tion in the free—fall case compared to possible motions under the action

of non—gravitational forces. The freely falling charge is trying very

hard not to radiate, so the equivalence principle arguments have some

relevance. In this section we discuss results of this type and their

interpretation in terms of the equivalence principle.

We have already given the large y expressions for the angle of

deflection due to electromagnetic forces (Eq (2.2)) and the angle of

deflection due to gravitational forces (Eq (3.1)). Comparing (2.2) with

(3.1), we expect that in an encounter between two charged particles

one of two different deflection regimes to hold, depending on whether

(with the other parameters fixed), Q exceeds the value needed to give

0 = 0 . The critical value of Q is
em gray

Q = 2m(yM)/e (11.1)
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Naively one might suppose thatCh.1) is also the criterion that the

electromagnetic radiation produced by electromagnetic deflection equal that

produced by gravitational deflection. however we have already mentioned

that the equivalence principle suggests the radiation in the gravitational

(free—fall) case should somehow be suppressed. A very naive misapplica

tion of the equivalence principle might predict no radiation at all in

the free—fall case. Figures (l)—(4) are presented to hell) explain the

physical result, which is intermediate between the two naive extremes.

First we recall the argument of Thomson [24 j, using the Fig. (1)

from Reference [26 1. An accelerated charge radiates electromag—

netically because the sudden acceleration of the particle kinks the field

lines near the particle and the kinks then propagate outward along the

field lines. This sudden kinking of the field lines near the particle

requires an acceleration, but does not require relativistic velocities

for the particle. On the other hand, we here concentrate on a

virtual quantum picture which does require relativistic velocities (large

‘y). In Fig. (2) we consider a moving charge (m,e), with y>>l, viewed

from the frame of the large charge (M,Q) - In this frame the Coulomb field

of e is the field that resembles the plans wave, with the field lines

schematically represented in Fig. (2a) . In F Eg. (2b) the lie Id lines are

replaced by virtual quanta. Consider now the case of electromagnetic de

flection. The virtual photons of Fig. (2b) are uncharged, so when the test

charge e is accelerated by the electric field due to Q, the net deflection

yanks the charge away froms its attendant cloud of virtual quanta, as in Fig. (3).

Some of the quanta (no longer virtual) escape to infinity as the produced
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bremss trahiung radiation.

Fig. (4) shows the situation for gravirational deflection. Recall

that gravitational fields deflect even light. Now since >>l, the test

particle and the photons undergo the same deflection. The virtual

quanta are not separated from their charges, so we expect the electro—

*
magnetic radiation to be suppressed in this case. The freely falling

particle is trying very hard not to radiate.

That there is any radiation at all arises from the long—range

nature of the electromagnetic and gravitational fields which enables

the test particle to sample the non—stationary aspects of its situation.

From the virtual quantum picture of Figs. (2)—(4), one would say that

the radiation produced is due to gradients in the field of (M,Q); the

“photons nearer the mass M are deflected more.” This leads to some

separation of the virtual photons from their charge, producing radiation,

though a substantially smaller amount than in the case of electromagnetic

deflection.

Obviously the comments in the above paragraphs also apply to virtual

gravitons and the production of gravitational radiation. In Figures (2)—(4)

simply interpret the wiggly lines as gravitons instead of photons.

The total amount of bremsstrahlung radiation produced for gravita

tional and for electromagnetic encounters has been calculated as:

E tGrav. Rad.; Gray. Defl.} l6°(Y) (11.2a)
tot b

lows that the acceleration in Fig (U should be non—gravitational;

otherwise the field lines locally [all with the charge and no strong

kinking occurs.
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E {E.M. Rod.; E.M. Defl.}
e i e 2

(ll.2b)

32

A2 (lL2c){E.K. Rod.; Gray. DefL}

b3

222
E {Grav. Rad.; E.M. Defl.I

—_- B2 9
(ll.2d)

tot
b3

where A2 and B2 are constants of order unity. Equations (1l.2a) and

(1l.2b) are calculated above in Sections IX and II respectively.

The other two are worked out in the Appendix.

The calculated amounts of radiation allow us to make comparisons

between them. For instance, let us compare the electromagnetic radiation

energy produced in a brehmsstrahlung encounter for electromagnetic de

flection [Eq(l1.2b)] to that for gravitational deflection [Eq(l1.2c)].

We find that the two contributions will be equal when Q is odlusted

(y,b,e,m,M fixed) so that (neglecting logarithms)

222 ‘2 322
() (11.3)

b3 b3

i.e. when

eQ y mM. (11.4)

Similarly, we may compare the gravitational radiation produced in an

electromagnetic deflection [Eq (ll.2d)] with that produced in a gravita

tional deflection [Eq (ll.2a)J. We find, neglecting logarithms., equal

contributions when Q is adjusted so that
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222 322
yQe 1Mm (11.5)

b3 b3

which again leads to (11.4).

It will be noted that (11.4) is not the same condition as the con

dition (11.1) that angles of deflection in the electromagnetic and gravi—

tational cases be equal. Eq (l1.4)says that for y>>l the total energy

produced (whether gravitational or electromagnetic) in an electromagnetic

encounter is much greater than that produced in a gravitational encounter

with the same deflection. In other words, for the same total power to

be radiated, the angle in the case of eledtromagnetic deflection is a

factor smaller than the angle in the gravitational deflection case.

3 2.
The higher power of y(i.e.

‘‘
vs

‘‘ ) in formulae

for radiation due to gravitational deflection appears because the

gravitational deflection angle
0grav

is finite as 1-, i.e. much larger

than 0 which goes to zero. There are simple relationships between

em

the total radiation produced and the angle of deflection (recalling

Eqs (2.2) and (3j)):

(Gray. Rad; Gray. DefI .1 02
, (ll.6a)

E {E.M. Rad; E.M. Defi

42
o2

, (11.6b)
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b gray

E {Grav. Rad; E.M. DefI.)
42

2
(1l.6d)

which make explicit the smaller radiation for the same angle of de

flection in the free—fall case.

An interesting aspect of the equivalence principle applies here.

The orbit of the charged test particle in free fall could perhaps be

considered an accelerated orbit in some sort of coordinate system in

flat space. Case 1 of Section X would thus be viewed as a classic

brernsstrahlung with gravitational deflection. Whatever coordinatization

is used must agree with (3.1) on the net deflection since this is deter

mined by measurements in the asymptotic region of the spacetime. Taking

this viewpoint seriously leads to an incorrect estimate based on the

electromagnetic deflection formula (l1.6b) but with 0 incorrectly in—
gray

serted instead of 0. The incorrect result is larger by a factor

y than the correct (1l.6c).

Another amusing result concerns the situation where the condition

eQ = 2yMm (11.7)

is exactly satisfied (e and Q have the same sign). There is then no

net deflection and a naive application of flat space electrodynamics

predicts no radiation while the actual energy radiated is given by Eqs.

(11.2a) — (l1.2d) and is dominated by the Lerms (11.2b),(1l.2d) arising

*

from the electromagnetic acceleration. Figure 5 describes this

*There isa compi icaL ion here that I f M possesses a harqe Q a 1s), i L S

Riemann tensor most be en] cul ated on that basis; the Ri emann tensor of

a cha rged b lack hole eon La ins terms depending on the charge. However

as noted in Section IX the dominant terms in the Riemann tensor in

distant encounters are those that depend only on M.
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situation from the virtual quantum viewpoint. The process may be viewed

as arising from the fact that the uncharged virtual quanta are gravita—

tionally deflected away from the test parLicle. More accurately,

the quanta are following a straight line (geodesic) and it is the test

particle which is deflected away from them.

XII. The Accuracy of Virtual Quantum Calculations

It is well known that for purely electromagnetic calculations the

virtual quantum technique is accurate for y-> so Eq(ll.2b) is accurate.

For the purely gravitational case, the total radiation has been computed

via at least three techniques other than the virtual quantum result re

ported in Eq (ll.2a) the Green’s function techniques of Peters61 the

“Zero Frequency Limit” which was recently used by Smarr31 and a very

detailed calculation by Kovacs and Thorne261 . The purely gravitational

calculation of requires the imposition of a geometrically reasonable

low frequency cutoff for the virtual quantum spectrum. The ambiguity of

the low frequency cutoff introduces an ambiguity in only a very slow

[16)
function of the energy produced. For instance, neither Peters’ nor

Kovacs and Thorne’s result
[26)

have the ny factor of Eq (l1.2a) while

Smarr does find such a factor.

Kovacs and Thorne have given a very detailed analysis of the

radiation process. It appears from their analysis that the method

of virtual quanta, together with the zero frequency limit results,

could have produced an accurate prediction of the radiation, by
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simply observing where the two estimates cross, and taking the one

which predicts the lower energy. Kovacs and Thorne state that this

would change the cut—off behavior in the angular integrals (9.12)

eliminating the logarithmic term in Eq (9.14). Aside from the loga

rithm, when account is taken of the different regimes of applicability

all the techniques are in reasonable agreement on Eq (1l.2a). The

calculation of Eq (ll.2c) in the Appendix also requires a low fre

quency cutoff. However, Eq (ll.2c) may be compared to calculations

due to Peters
[16]

who based his result on a weak field Green’s

function technique. He estimates, based on this technique

E {E.M. Rad.; Gray. Def].)
647r(e)23

[271
Peters has also given a calculation of {Grav.Rad.; E.M. Defl.}

(compare Eq (ll.2d), which is

222
{Grav.Rad.; E.M. Defi.)

7Ty Qe

4b

Considering the difference in the techniques and the regions of

validity of the approximation, these are also in satisfactory agreement.
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Appendix

a) Electromagnetic Radiation from Free—Fall Bremsstrahlung

Using the cross sections for conversion (lO.l)—(lO.3) we may

calculate, via the virtual quantum technique, the electromagnetic

radiation produced when a charged particle in a hyperbolic orbit in a

gravitational field is deflected. (This is case 1 of Section X). We

begin with the equivalent spectrum of gravitational radiation given by

Eq (6.9). Because the conversion cross sections (lO.l)—(lO.3) are

independent of w , no natural cutoff presents itself so we retain the

lower frequency limit of b1 in the equivalent pulse.

The produced electromagnetic energy in the frame of the small

particle, m, is the amount of scattered “conversion” electromagnetic

radiation:

d2E — d2E da

dwdQ — dwdA dQ i . (A.l)

m

To obtain the energy spectrum and angular distribution in the frame of

the heavy particle, we apply the standard transformation (2.7). The

total energy of the produced electromagnetic radiation is gotten by

integration equation (A.l) over angle and frequency in the large

mass frame. Let da/d2 = (e2/iT)f(n3,P). Then we may write

J dcdw dQ (i)2x-- I
x (I—vn. )w b

0 3’ ‘O

(A.2)

The Bessel function integral is carried out as in Section IX, and the

angular integral is estimated using Eq (10.3); we obtain:
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322

1tot
{E.M. Rad.; Gray. Defi.) A2 ny

b (A.3)

with A2 a constant of order unity.

Again this result, to logarithms, can be estimated in the way

described in Section VII.

b) Breinsstrahlung Radiation of Gravitational Waves in Electromagnetic

Deflection

The case of the production of gravitational radiation due to the

deflection from electromagnetic forces in an electromagnetic bremsstra—

hiung encounter (case 2 of Section X) can also be treated by the tech

niques developed here. In this case, there is an electromagnetic plane

wave incident on the test mass which gives conversion scattering into

gravitational waves, via (10.3).

The incident virtual quantum fluxd2E/dwdA is thus that given by

(2.3) or (2.4). No cutoff is required. In the lab frame we obtain

the result

2
2 —2 —2 dE da

d £ = ‘y (1
— Vfl30)

dwdA
(A.3)

dwdc
E-G

in analogy to equation (2.7).

The total gravitational radiation energy produced in this case is

found to be

222
{Grav. Rad.; E.M. DefL }= B2LJ$—-_ (A.4)
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where B2 is another constant of order unity.

This result is (ffl2/e2) smaller than the electromagnetic radiation

produced in such an encounter, and it should be noted that this goes

as
2,

as opposed to the quoted in Equation (ll.2a) above, for

gravitational radiation produced by gravitational deflection.
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Fig. 1: An explanation in terms of electric field lines (due to 3. J.

radiation induced when a charge undergoes an accelera

tion. Outside a sphere of size ct, the field lines are centered

on the position which would have been occupied by the charge, had it

continued to move to the leftat speed vj<<c. Since the particle

reversed direction at t = 0, inside the Ct sphere the field lines are

essentially those of a Coulomb field moving to the right at speed Jvj.

The resulting kinks of the field lines move outward with speed c,

and constitute the transverse radiation field. Th j f lgUlC adapted

from Rf [25], fig 4.6.
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Fig. 2 a: A charged test particle of mass m, charge e and energy my

undergoes an encounter with impact parameter b on a much more massive

particle of mass M, charge Q. In the frame of (M,Q) the Lorentz

transformed Coulomb field of (m,e) takes oj characteristics closely

similar to those of a plane wave [2], [3].
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Fig. 2 b: The effective plane wave has been replaced by an equivalent

[1]

pulse of virtual photons. it has been shown that the spherically

symmetric gravitationaL field of (m,e) when viewed from the frame of

(M,Q), takes on the character of a plane pulse of gravitational radiation

as in Fig 2.a, and can be replaced by an equivalent pulse of virtual

gravitons, as in Fig 2.b.
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Fig 3: An equivalence p r inc iple” OXI) I ana t I oil’’ o I I cc t rom;lgne L [c brerns—

strahiung. The condition eQ>>2’y’mM guarantees that gravitational deflec

tion is negligible. The electromagnetic acceleration (here repulsive)

deflects the charged particle (rn,e) away from part of its virtual photon

cloud. The uncharged virtual photons, separated from the charge, become

the produced bremsstrahlung radiation reaching infinity. The total

electromagnetic radiation produced is ye2O2 lb [q l1.6b]. The test

particle also possesses a cloud of (uncharged) virtual gravitons, and

they behave similarly to the virtual photons just described. Hence we

expect gravitational radiation to be produced also, and in fact the

422
total gravitational radiation produced is —y Oelb [Eqll.6d}.
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Fig 4: Gravitational brernsstrahlung, electromagnetic deflection assumed

negligible. Here the uncharged virtual gravitons (or photons, if the

test particle is charged) fall with the particle (since y>> 1) according to

the equivalence principle. Some radiation is still produced, but by non—

local effects, and Fig. 4 gives a qualitative explanation of the suppres—

sion of the radiation (by a factorY) compared to the case of the same

deflection order electromagnetic forces shown in Fig 3. The total

gravitational radiation produced is y3m22 /b [Eqll.6aj; if the test

particle is charged, the total electromagretic radiation produced is

y3e2O2/b. [Eq 11.6c]
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