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Summary: A generally accepted set of axioms of quantization is introduced

and applied to the quantization of the multilinear momentum cbservables

so as to delimit the possible forms of the corresponding quantum

operators. This analysis leads to a canonical decompositcn of the

quantum observabies into a series of symmetric cperators each of which is

determined by an unknown auxilHary tensor generated by the multilinear

momentum. 1ethods of removing the residual indeterminateness in t.e

differential operators are then critically reviewed, and a partiolar

choice illustrated oy means of examples defined on the real Tine.
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1. — Introduction

We develop in this paper some aspects of the quantization problem for the

multilinear momentum observables, and begin our discussion with a definition:

An observable Ais a multilinear momentum observable (multilinear momentum) if

and cnly if, in every chart CU,o) of the cotangent bundle (phase space)

T M of a Riemannian (configuration) manifold M, A has relative to the

coordinate system £c p) 1 c€Ci,m] (*) the tensor form (3)

A
L, k

(x ) p. ...p. , ,eCOo]
I

Lk
in which denotes the momentum conjugate to the coordinate X

a fully symmetric contraváriant tensor of order (1

Ideally we should implement the prograrrune of geometric quantization; that

is we should first identify a symmetric differential operator defined

on the set C0 (M) of infinitely differentiable functions of compact support,

and naturally associated with the classical observable A ; then ascertain

whether a given A is quantizable by testing G0(A) for essential self-adjointness;

and finally determine the explicit form of the quantum observable by the

calculation of the (unique) adjoint G(P . It is however clear that such a

programme could not, in the case of the multilinear momenta, be carried out either

to completion or with full rigor; for in the first part of the programme ncr

generally agreed mathematical or physical principle is known which will determine

Q0CP1) , and in the second the mathematical difficulties involved in the

tk
analytic manipulation, as is required, of fl order partial differential operators

(*) The notation m,n] is a shorthand for the set of integers

infinity being excluded.

() For an explanation of the notation when flmO as well as for all other

implicit notational conventions, refer to appendix A.
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are all but insuperable. It is thus not surprising that there seems to have been

no previous systematic and rigorous discussion of the quantization of multilinear

momenta, though much work has been carried out, more especially into the p;-oblems

surrounding the bilinear momenta and the Hamiltonian (BLOORE (1)’ B.OORE and

ROUTH
(2),

BLOORE, ASSIMAKOPOLOUS, and GHOBRIAL
(3), CASTELLANI (4),

!JNUERMIL

and TARAVIRAS
(5),

WAN and VIASMINSKY (),
(7)

).

We shall therefore be more modest in our goals, both in system and in rigour

and shall limit ourselves instead to the following problems: (i) the determination

of the most general form of the differential operator so as to deli;.it

the degree of uncertainty in Q(A) which needs to be resolved by some frrther

mathematical or physical principle; (ii) the discussion and review, especially in

the case of the bilinear momenta, of some means of prescribing a unique dfferential

expression for Q(PJ ;and finally (iii) the exemplification of some features of our

discussion by means of an explicitly worked example.

(2)
F. 8LOORE and L. ROUTH fl_ 2_çj.g 478, 78—84 (978)

(3)
F. BLOORE, N. ASSIMAKOPOULOS, and I.R. GHOSRIAL J. Math. Phs 17, 1034—1038

(4)
L. CASTELLANI. Il Mu vo Ci o 48A, 359—363 (1978).

(5)
J• UNDERHILL and S. TARAVIRAS Lecture Notes in Phsics 50, pp 210-216

(New York, 1976)

(6)
K.K. WAN and C. VIASMINSKY 2_I9re. 58. 1030—1044 (1977).

(j’)
K.K. WAN and C. VIASMINSKY J. Ps.A:Math.Gen. 12, 643-647 (1979).

2. — On the general form of the symmetric operators

We consider in this section the effect of three axioms of

quantization which, while clearly necessary, are not sufficient for

the unique determination of the formal observable Q(’), but which

nevertheless yield much insight into its general form. These axioms,

which will require no detailed justification here, are as follows:

xiom 1: c?(i\) has a differential expression given in terms of the

coordinates x.’ ic Et,m]3 of a local chart of the configuration

manifold by the partial differential operator

(2) ac” k ‘

in which the coefficients
rj•Lk (xi) are fully symmetric in all

indices and are assumed to be real—valued, and in which in particular

as is in accordance with the formal

prescription

(3) Q0(p) -( t ÷ d1v(/xt)).

axiom 2 : is a symmetric operator defined on the domain

C(M) of infinitely differentiable functions of compact support.

axiom 3 : For all states of C0(M) ,

transforms as an invariant, as does the wave-function

The most general differential expression compatible with the above

axioms then has, as is demonstrated in appendix B, the form

(4) Q0(’ p...p. ) = (-LI)
. ....

‘i ‘

in which b Cx.’”) is a fully symmetric contravariant tensor of

order_2. , and in which denotes the action of the covariant

derivative with respect to the coordinate . Additionally the

(1976)

itself.
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fl fli.k(<)

b’” Ie[o,n] •,= Sc-i)
•

i+i

V

K—’
V

(8) I I
= (-LIU b” . ...

t_d& V1
k.e k iLk; P

1.4 I.V )

(*) Generally we define Cx]

£n I n<x3 , in which

5

in which the coefficients are real numbers satisfying the

recurrence rel ati on(5)

satisfy the “initial condition”

I:.A l4•• A

=0

in which

vertical

tensors

tensors b

and the recurrence relation

L1.. ‘L
(6) b

I k
. .j denotes a binomial coefficient, and the subscript

bar covariant differentiation. Note particularly that the

6” Lk

and b”
Lj

with are not, in general,

related (for example by contraction) other than by the recurrence

iLk

(6), and that the quantities b’ may be functions of the parameter

as well as of the coordinates

Study of the recurrence (6) shows that to prescribe a unique

differential expression for Q0(P) it is necessary to specify, in

..-.L,

addition to the quantity 0. b ‘ , the tensors

(7) , k ri tnfl

in which En] denotes the integer part (*) of n. We may

recast this result as follows: Given a classical observable

B —. b’” p. we may define a symmetric operator on the
V 1L I1.)

domain_ C(M)by the differential expression

= )Vtk(k)v
-1

I ••

Hence regarding the coefficients D in the expression (4)

of c30(A) as arising from some classical observable b’ k1

fk ‘

we may rewrite G0(P) as

(10) Q(A)2
.

when the coefficients of the tensorial expansion (6) assume the form

[(rl_t)]

I
L1...

ill, b o b . . .eCo r
ko £

Note especially that the canonical decomposition (10) exists for

every choice of the coefficients cL consistent with the system (9).

We elect for definiteness in the sequel that

(12) (cv) , c VeEoco],

in which the undefined binomial coefficients are identically zero,

since these coefficients result in the maximum number of lower order

terms in the expression of ,.i(B) being zero, and assist in

symmetry induced surface integral calculations when

is extended to larger domains, and since then has

for any real X. as the spreBun of

denotes the integers.

the manifestly symmetric forms
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(13) (8 ) (_L1’. 5. ci ,. ,5 v#2& remaining in the differential expression of Q,(PO. The problem of

V t.j
p1

the formal quantization of the multilinear momenta has thus been

V(1

(By) = 5. . . . S• cz”wJ ‘...E, va21’rl, reduced to the determination of the tensor quantities
o L4 L L - 1..

/ 14$1 k€ C,[r]I a task to which we shall now

in which c denotes the anticomutator bracket of operators.
turn.

This assumption then results in the expressions
3. — On the determination of the quantities B2fr(A).

(14)
(L)

C—L)(&5.t)
We find it convenient to divide our discussion into two parts

the first, more detailed, concerned with the special case of the

E (ap.p.)(—L1
(QUJ

g, +o), bilinear observable ap. ; and the second, rather speculative,o ji.j t j Ij (. .1

concerned with the most general case.

_•

I Uk )(.Jk÷3g±LJ )

_____________________

3.1 - On the form of the operator10
0

____________________________________________________________

‘ 1Jc

__________________________

.—, , Ljk
Ib

2kk_
We here outline and contrast three distinct methods whereby the

ii function b) in the expression for0(a.)may be detemmined,

and in the corresponding canonical decompositions
and begin our discussion of the first of these procedures with an

axiom:

(15) Q(c’p) C-I)(o+ C2),
axiom 4: Formal quantization is such as to preserve the constants

)
(LJ

-sS(Q’))
of free motion, so that

0 Pr U U

PP?k
k

a -

b(ik)p,
(16)

PP2’3pp)
_l[G0(QUJp.p),Q0cp.p.)],

• Jk2
0 ( Jo

pppp) in which , denotes the poisson bracket,[, the commutator
0

2. r—t
b’pp)

+i baUj)
bracket, and the contravariant metric tensor of the configuration

—n
in which the quantities aj),bk(o), b’(a)

space.

b(c kJ)
are undetermined tensors oF the indicated typ±. This axiom has, as have other more general axioms, been studied by BLOORE

, BLOORE and GHOSRIAL
(8),

BLOORE and ROUTH
(2),

BLOORE,

The canonical decomposition (10), as embodied in the lowest

ASSIMAKOPOULOS, and CHOBRIAL
(3),

who have obtained the following

order examples (l5) precisely circumscribes the degree of arbitrariness
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results: First the assumption of linearity

(17) Qcb)pp O(G?LPO(bPP

together with conservation under quantization of constants of the

free motion yields for a conserved bilinear momentum the expression

(18)

as may alternatively be demonstrated (*) from (16) assuming in place

of linearity that the free quantum Hamiltonian is, as in MACKEYs

(9) scheme, sieply the Laplacian, And second if the expression (16)

is held to obtain for all second order observables, then the above

scheme is incompatible with the D1RAC
(10)

correspondence

(19) c( £a’p p , bp3) = - L1[Q0(cJp.p), 3

else in the special case where the momentum S Pk is aso:iaed with a

Killing vector field.

8
F. BLOORE and I.R. CHOBRIAL . Ps. A: Math. Gee 8 1863 — (1975)

(*) We omit the demonstration which, while lengthy, is a straightforward

application of Riccis identities (I.S.SOKOLNIKOFF Teno_j

andAggiicationstoGeometr, second edition, (New Yo.k, 1964)

G.W. MACKEY The Mathematical Foundations of Quantum Mecharncs

(Reading, Mass. 1963)

‘3
An alternative procedure for specifying t( ) is to cequire that

axiom 5: in the case where the bilinear observable is the square of

a momentum, quantization is in accordance with the

11
squaring axiom ( ),

(20) Q0(b’b..Y c( b’p).

What is surprising is that this axiom is inconsistent (*) with the axiom of

linearity (17).

As a final method of quantization we propose the following:

axiom 6: The formal observables Q0(o’Jpj) are such that

(21) bc03)Q1+2c3’.
i..) I Isj’

in which oc and are real constants, and moreover satisfy the

requirement that each positive-definite observable has as quantum analogue

a positive operator.

This results, after substituting from various examples (appendix C), in the

ideally simple form

(22) b(c)O.

Turning now to compare the above methods of quantization we perceive that,

whereas each is based upon a natural correspondence,

(11) G. TEMPLE Nature 135. 957 (1935).

(*) Consider the examples on the real line with Cartesian coordinate X.

sinz)p.,J—cos(x.)p) and compare the expression

with

(10)
P.A.M, DIRAC Erisi1_2_Q 1g (Oxford, 1956)
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eacI is nevertheless inconsistent with all the others. There wold

seem, at present, to be no overwhelming reason to prefer any one of

the above procedures to any other. However to be definite. in the

sequel we shall assume that the choice of axiom 6 is th. correct

one, since this results in the ideally simple canonical decomposition

(23) QO(&pLpJ)

and, as has been demonstrated by KIMURA
(12),

in the attractive

equivalent expression

(24) (o’Jp.p.)

n which as usual denotes the determinant of the metric tensor.

3.2: Some remarks upon determining the quantities B JA

We here outline and briefly discuss two possible methods of

determining in the general case the quantities B (A) kDL±n]J,

and tentatively find in favour of the second.. Consider firstly the

general axiom:

axiom 7: The formal quantum operators 0(A obey the relation

(25)
0

( £ A1) _Ll[0(Jpp),

Whilst this is a natural and physically appealing rule, it is

nevertheless, as was demonstrated by BLOORE, ASSIMAKIPOULOS, and

GHOBRIAL
(3),

inconsistent, the only cases where (25) uniquely

determines the operators O(P%) (of at most second order) corresponding

to reducible configuration manifolds, either of one-dimension,.or

of vanishing Ricci tensor, or of constant curvature. We may conclude

therefore that this axiom has no general applicability in the quantization

of multilinear momenta. Alternatively we may be less ambitious and

demand instead that the system (25) be valid only when A is a

constant of the free motion. The disadvantage of this scheme lies In

the extreme computational difficulty involved in the explicit

calculation even of the lowest order observables

Restricting our attention for the moment to one—dimensional

manifolds, we propose as our second axiom of quantizatjon the following:

axiom 8: The formal quantization of the multilinear momenta is

such that the class of quantizable momenta is, in a sense

to be made explicit below, maximally large, the quantities

22k
(P\) being assumed to have the general form

(26) 8 (A)
=

. p...p kEco,rn]J,
ri—2.k .)<

‘ikt1
. ‘i

in which the quantities are real constants.

We next observe that a necessary condition for the essential self

adjointness of G0(A) on the interval manifold M(1b) of the real

line is that the following boundary conditions be satisfied

(27) Ea
•...L

c)O, CQorb,,E-1]

a result which may be obtained(*) by computing the symetry induced

boundary conditions for the extension of G0(A) to the domain set

C(M) of infinitely differentiable functions on The system

11

F, -.41’.

(12) T. KIMURA 58, 1261—1277 (1971)
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0 ke Li, En-]]

This set of equations uniquely determines the observables of odd order,

. e,... 1A
and determines those of even order to within the scalar function C

Preservation of positivity under quantization is then sufficient (+ to

set so that for the case of one—dimensional manifolds axiom 8
r J

leads to the quantization rule

t U+4
(34)

Lj 2

(27) may be illustrated for the special case fl”. say, fcr which

we obtain the equations

(28)

itill

a. (cO

11414

CI. (c)0
11

41411
0. (c)=0

J44

44411 5 i141

E C. (c)0 , Cc)’O
1/ 11114

5. iti4

€Q (c)0
(cii

in whichCor b and where we have noted that by (5) it is now

imiiediate from the pattern illustrated in (28) above that independent of the

choice of (Q,b) , the number of equations of constraint will be

minimum provided only that

(29)

4 — An illustration of the proposed quantization scheme.

To facilitate comparison with other methods of quantization,

we shall develop explicit expressions for certain quantum observables

defined on the real line IR with the usual metric and endowed with

the Cartesian coordinization X1 z.e)gj. More precisely we shall,

for a representative group of infinitely differentiable functions

of the (complete) momentum .p determine the ccsefficients

of the expression

co
(31) 4(x.p)) cc. Q (xr) ,

as will accord with the rule of quantization

(32) Q0((zp)) ) E(kpk)/k!

This rule of quantization is itself obtained by performing a Taylor

expression of . in the arumentxp, by assuming a generalisation of

the linearity equation (17), and by applying the quantization rule

(30). Turning our attention first of all to the observabies we

deduce after some calculation (appendix D) that

(33)

the coefficients of which are prescribed by the system

() (i-)’ £ C,°oJ co

(30) Q C - ‘I I
0

It is now natural to suppose, at least for the purposes of the sequel, that

(3D) holds quite generally for all manifolds and all observables A.

(*) This is a very long and somewhat technical calculation details cf wiich

may be found in K. McFarlana, Ph.D Thesis (St. Andraws Universitj 1980)

(i- The demonstration is by means of explicitly worked examples c.n the

real line.
S3 denoting a Stirling number() of the first kind, and in
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(35)

G(x p) + cp)

G
= xp) ÷! i2 p c

from which the corresponding odd—order expansions follow by means of the

relation G0(.p) To complete (*)

our discussion we calculate (appendix D) the formal expansions o certain

transcendental functions to obtain

(36) sin (2JIsi4(1/2)GOCxp)),

= cosC/iW4(/2)xp)) (i-)’

D(sinhxp) snh(/1sin (/z)(r)),

(ccv) = cosh (2/n sin’(/2) xp)(1

B — Conclusion. -

The foregoing reactions have illuminated in some measure the problem

of the quantization of the multilinear momentum observables, and have led

in particular to a plausible and systematic scheme of (formal) quantization.

Progress has been made in delimiting possible quantizations of the

multilinear momenta, and a preferred scheme has been illustratively

applied to functions of the momentum on IR, and this has ed to

rather pleasing explicit forms for the quantum analogues of cos(x.p)

cnc n(xp),

Finally we may remark that we do not claim the above-discussed methods

of quantization to be exhaustive (in particular we have not included

WEYL’s
(14) rule or its generalisations due to UNDERHILL

l6>,
and

UNDERHILL and TARAVIRAS
(6);

a great breath of material remains unexplored

by our brief summary.

* * * * * * *

K. NcFarlane acknowledges the support of a Royal Society

Exchange Programme Fellowship, and the facilities made

him by the Dublin Institute for Advanced Studies.

(13)
C. JORDAN second edition,

(New York, 1950).

(*) Note also that the equation for shows, as is readily

verified from the work of CASTELLANI
(4),

that our proposed

quantization scheme is inconsistent with Weyl’s rule, the

“symmetrization” rule, and the Born—Jordan rule.

(14)
H. WEYL TheoofGrousandQuanturnMechenics second edition

(New York, 1931).

(15)
J. UNDERHILL . Math. Pbys. 19, 1932-1935 (1977).

particular satisfy the symmetry conditions /3. /3g. 0,

2t ri,,J.Ero,liConcretely we obtain the lowest order decompositions

European

available to



16

APPENDIX A : Some notational conventions.

17

iL,”k ‘

... C” ‘

(1) The usual summation and variable free—index conventions ho1.

(ii) The symbols I and denote the operator oi’ .ovariait

differentiation; thus

(A.1) b
Lk

k,t e tip) . .. . S. (b”
Lk)

‘ Jj %Jq

(iii) The symbols and ? denote the operation of partial

differentiation thus

L._Lk
L

(A.2) bt. . kIeEi,ci1 . ...
(bk”

k,,•

J

(iv) The symbol & is to be interpreted when
L1

as the (momentum independent) scalar fwiction

(v) The symbol 1.. L.< ., k,1e[o1J is defined recursively us

(L1...i) i.j< , k..t2; L.k1k.1÷1; and is

void when £=k This is as illustrated below

(A.3) b” b’÷ b’’÷ b’+
k.cc

J(4 J1L

APPENDIX 8 : On the general form of the symmetric operators Q()

We omit the demonstration that 00(A) nay be assumed to have the

tensor form of equation (4), and
_1 L

consider only the proof of the recurrence relation (6).

We ha’,e that, by axiom 2, V1eC°(M))<31O(A> =<()iJD>,

or equivalently that

I,

(8.1) 1[(-1o2 =1-Sb”
M k.o

/
M

By applying the identities

(8.2’ 1 b’”. .
M

and —

(8.3) 7 —

We may then deduce that

I’

fl ..7 c—i

(8.4)fb’
.

Z C-i) b’
.

M k.o Ni ° R ...( ‘.

when comparison of(B.4)and(B.2) yields the desired result. Given this

result the canonical decomposition (10) now follows by substituting from

the formula defining E’ ( ) into the original recurrence for b
0

Explicitly we obtain the following identities: first

.k -k i-2k --- L,2k

8’5G0(A)(—1c) (—i) cc b .
L ‘

IL..-2k

which upon rearrangement becomes
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List of Hand-wri tten Symbols List of Hand-written Symbols V

Character ‘Symbol Character

a lower case a

lower case h

C lower case c

Bold

Bold

Bold

Bold

Bold

Bold

Bold

Bold

Bold

Bold

Bold

Bold

Bold

Character

capital A

capital B

capital C

capital 0

capital F

capital H

capital Q
capital S

capital T

capital ii

capital Z

Greek capital “sigma”

Greek capital UXjH

Symbol

B
C
D
F

M

S
T

(1

2

Symbol

jS

S

47

V

20

Character

lower case a

lower case b

lower case c

lower

lower

lower

lower

lower

lower

lower

lower

lower

lower

lower

lower

case d

case f

case g

case i

case j
case k

case i

case m

case n

case p

case x

case y

Bold

Bold

Bold

Bold

Bold

Bold

Bold

t3ol d

Sold

Bold

Bold

Bold

Bold

capital A

capital B

capital C

capital 0

capital F

capital H

capital Q
capital S

capital T

capital U

capital 2

Greek capital

Greek capital

symbol

ci

b

ci.

F,O.

• J

1<

1)1

“sigma” r,

“xi” p

Character

d,

J

1

m

I,’

p

Symbol

cc

JR
C, 2
£ ,J
£, 3.

ymbol

B

F

M
c.

• S
1

(1

2

Symbol

C’

p
S

JA

20

lower

lower

lower

lower

lower

lower

lower

lower

lower

lower

case d

case f

case g

case i

case j

case k

case 1

case m

case n

case p

• Greek

Greek

Greek

Greek

Greek

Greek

Greek

Greek

lower

lower

1 oier

lower

lower

lower

lower

lower

case

case

case

case

c,as e

case

case

case

“alpha”

“beta”

“delta”

“delta”

“epsilon”

“eta”

flu,,

CharacterCharacter

infinity symbol
zero subscript

dagger

Dirac’s constant (crossea h)

less than

less than, equal to

vertical bar

stanoard symbol for the reals

square brackets

curly brackets

curly brackets with subscript

lower case x

lower case y

Character

Greek lower case “phi”

Greek lower case “psi”

Greek lower case “alpha” co infinity symbol

Greek lower case “beta” o zero subscript

Greek lower case “delta” dagger

, Greek lower case “delta” Dirac’s constant (crossed h)

Greek lower case “epsilon” < less than

Greek lower case “eta” less than, equal to

Greek lower case “mu” I vertical bar

Greelç lower case “nu” JR standard symbol for the reals

Greek lower case “phi” C - 2 square brackets

Greek lower ‘ease “psi” £ ,‘J

plus sign

1.2) tall round brackets with icwer

case entries(Biomial coef’ficlnt)

* asterix

curly bt’ckets

£ - 3 curly brackets with subscript

plus sign

tall round brackets with iow

case entries(finomial coeffic

* asterix


