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"0n the Quantization of Multilinear Momentum Observables”

by

K. McFarlane, School of Theoretical Physics, Dublin Institute

for Advanced Studies, 10, Burlington Road, DUBLIN 4, Eire.

and

K.K. Wan, Department of Theoretical Physics, University of

St. Andrews. ST. ANDREWS, Fife, Scotland.

Summary: A generally accepted set of axioms of quantization is introduced
and appiied to the quantization of the multilinear momentun cbservables

5o as to delimit the possible forms of the corresponding quantum
aperators. This analysis leads to a canonical decompositicn of the
guantum observabies into a series of symmetric cperators each of which is
determined by an unknown auxilliary tensor generated by the multilinear
momentum. Methods of removing the residual indeterminatenes:s in the
differential operators are then critically reviewed, and a particular

choice illustrated by means of examples defined on the real line.

Physics Abstracts Classification No: 03.65:  Quantum Theory, Quantum Mechanics.

1. = Introduction

We develop in this paper some aspects of the quantization probiem for the
muTtilinear momentum observables, and begin cur discussion with a defiﬁition:
An observable A'is a multilinear momentum cbservable (muTtilinear momentum) if
and ¢nly if, in every chart (Ux,a) of the cotangent bundle (phase space)

7—“7V4 of a Riemannian (configuration) manifold DA, A has relative to the
coordinate system E(x':, PL” ceL1,ml1] (*) the tensor form (%) -

L‘uu L'\

" =aq (x¥) PiyPi, o e Lo=] ,

L

i
and &

[3
in which P; denotes the momentum conjugate to the coordinate =X R
K

a fully symmetric contravariant tensor of order N.

Ideally we should implement the programme of geometric quantization; that
is-we should first identify a symmetric differential operator CBC,CF\), defined
on the sat C::T(hﬂ) , o7 infinitely differentiable functions of compact support,
and naturaily associated with the classical observable A ; then ascertain
whether a. given /\ is quantizable by testing CQO(F\) for essential self-adjointness;
and finally determine the explicit form of the quantum observable by the
calculation of the (unique) adjoint CBG(!\). It is however clear that such a
progiamme could not, in the case of the multilinear momenta, be carriad out either
to cempletion or with full rigor; for in the first part of the programme no
generaily agreed mathematical or physical principle is known which will determine

CEQCF\) , and in the cecond the mathematical difficulties involved in the

. . +h oy .
analytic manipulation, as is required, of N order partial differential cperators

(*) The no;tation Cm,n] is a shorthand for the set of integers fm,mﬂ,mfﬁ,...)n},
infinity being excluded.

(¥) For an explanation of the notation when f\nCD as well as for ali other
implicit notational conventions, refer to appendix A.

(1) F. Bloore Colloques Internationaux C.N.R.S no 237, pp 299-303.




are all but insuperable. It is thus not surprising that there seems to have been 2. - On the general form of the symmetric operators (an(;\)_

no previous systematic and rigorous discussion of the quantization of multilinear
We consider in this section the effect of three axioms of

momenta, though much work has been carried out, more especially into the problams
quantization which, while clearly necessary, are not sufficient for

surrounding the bilinear momenta and the Hamiltenian (BLOORE (1), Bi.OORE and
the unique determination of the formal observable CEQ(AJ, but which

“RouTH (%), BLOORE, ASSIMAKOPOLOUS, and GHOBRIAL (3, cAsTELLANT (%), UNDERYItL
i nevertheless yield much insight into its general form. ~These axioms,

and TARAVIRAS (%), WAN and VIASMINSKY (©), 7y ).
which will require no detailed justification here, are as follows:

We shall theref i i in wi i i
erefore be more modest in our goals, both in system and in rigour ' axion 1:  @_(A) has a differential expression given in terms of the
and shall limit ourselves instead to the following problems: (i) the determination coordinates {Jf’{ie'ﬂ1an1} of a local chart of the configuraticn
of the most general form of the differential operator CZOCPC) so as to deliidt o manifold by the partial differential operator
the degree of uncertainty in CBO(PJ which needs to be resolved by some further .
L

mathematical or physical principle; (ii) the discussion and review, especially in Q) <A) = (‘LT‘) 2 T[ ¥ a;-o-ég 2

1 k
the case of the bilinear momenta, of some means of prescribing a unique differential in which the coefficients 7L “e (344) are fully symmetric in all
expression for CBGCFR) ;and finally (i{i) the exemplification of some features of our indices and are assumed to be real-valued, and in which in particular
discussion by means of an explicitly worked example. ' c 5"'“ = ~tq

; : 7? a b R as is in accordance with the formgX
prescription
(%) F. BLOORE and L. ROUTH I1_Nuovo Cimento 478, 78-84 (1978) (3) Q,(p,) = -th( 2+ % div(3/3="))
o t - .

(3) F. BLOORE, M. ASSIMAKOPQULOS, and I.R. GHOBRIAL J. Math. Phys 17, 1033-1038 (1976)
4 axiom 2 : CBO(A) is a symmetric operator defined on the domain

(="
C:o(hd) of infinitely differentiable functions of compact support.
xR
axiom 3 : For all states 35 of C_ (M), Cbo(f\3}/

transforms as an invariant, as does the wave-function}/

I
‘.
(") L. CASTELLANL I1 MNuovo _Cimento 487, 353-363 (1978). ' i
i
(New York, 1976) :

i

{

.............. ‘ . itself.

The most general differential expression compatible with the above

axioms then has, as is demonstrated in appendix B, the form

o
kuo *

=R
in which b (Jf“) is a fu1ly symmetric contravariant tensor of

o (®) Q(a"j'" peepy,) = (<iR) DAL "S. oy

5 order_ 2 , and in which iS denotes the act1on of the covar1ant

‘ , ) derivative with respect to the coordinate X ﬁ . hdditionally the -
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. L‘...Lk . .
tensors }D satisfy the "initial condition"

(5) b"g n - QL‘ Ly ,‘

and the recurrence relation

) ‘-Ll n n+k k ‘_L“

(6) 5 = S ) {E) El" i, Le Conl
k=4 Yoo 'tk P .

k

in which (ﬁ) denotes a binomial coefficient, and the subscript
vertical bar covariant differentiation. HNote particularly that the

L‘--, I L;"'Ll
tensors b and b

related (for example by contractign) other than by the recurrence

with kfﬁ are not, in general,

Lot
(6), and that the quantities b‘ k may be functions of the parameter

'F as well as of the coordinates Ik

Study of the recurrence (6) shows that to prescribe a unique
differential expression for @o(A) it is'necessary to specify, in

e & Lol
addition to the quantity Q™ "=b " , the tensors

L---L,‘.zk

(7 b , ke L4, C4n1]

in which L&ND denotes the integer part (*) of %n. We may
recast this result as follows: Given a classical observable
Ly . .
- tor on the
Bv b PL,"' P‘:v , we may define a symmetric operato

o0
domain _ CO(M) by the differential expression

® = (B,)= (i) 2. & bL""iv Si‘...S- ,

TR A L
k=o ,"krl. v v

(*) Generally we define Cx1  for any real x as the suprenua of .

{ne{f n<x3 , in which Z  denotes the integers.

v
in which the coefficients O(k are real numbers satisfying the

recurrence relation

v
v vik (kY v v
(9) &, = k%(—1) [z)o(k , o=t

L ""’k
Hence regarding the coefficients b‘ in the expression (4)

Lol
of @A) as arising from some classical observable Bkc b" KP;_‘...ﬁk s

\

we may rewrite @, (A) as

L—i"‘] g_k'__‘
(10) QA== (-in) = (B ),
k=0 "

when the coefficients of the tensorial expansion (6) assume the form

.. [te-n] o
Y A-2K ) Ltk
an b = oL, b;:.. , Jelonl .
k=o Peq AR

Note especially that the canonical decomposition (10) exists for

. v
every choice of the coefficients c(k

We elect for definiteness in the sequel that

consistent with the system (9),

0 o"s (1), e (E) -4

K , VE[oJoo],

in which the undefined binomial coefficients are identically zero,
since these coefficients result in the maximum number of Tower order
terms in the expression‘of E.( Bv) being zero, and assist in .
symmetry induced surface integral calculations when GO(A)

is extended to larger domains, and since then EQ(BV) has

the manifestly symmetric forms



Il Lp

. Y Lol
1) = (B)=(-i%)§,...8. a S LS va2u .
. L1 LF L Lz '

- = (o) {oly
E(B)=iw)5,. 8, 315, d }ﬁz,;;-gav,v-%%

in which { 5 }+ denotes the anticommutator bracket of operators.

This assumption then results in the expressions

14 =, (o'p) = (-i#)(a'S, + ta’ ),

O{IJ

(GLJF; p.) =(—LT\\2(°US'LSJ * 03 8.,

la

ok 3 ik Ry ke
E (a%ppp )= Cifd(a SLSJS“_»LOI:SLSJ%GUKSL),

L

2 (@ p o Yo Q55 S +209%Ess ~aE S
E (0% py popy) =i (075 85,8, * 207, égfk,om 5S),s

and in the corresponding canonical decompositions

(15) @, (a'p,) = ¢-iR) ('S e ),
QQ(QL;PL pJ= ‘;LK’Z(QLJSLSJ i ijsa +b(a¥)),
Gl o )= E @ p) - BE, (B p,)

ng _ i_jk?
Q0™ p.pPiche) = =, (a P.P;Ppe)
2 03 I Gkd
—RE (b p ) # R b (@)
~in which the quantities b(a"),bk(a“’k) s btJ(O“’kg) , end
b (cxi'S k’!) are undetermined tensors of the indicated typ2.

The canonical decomposition (10), as embodied in the lowest

order examples (15), precisely circumscribes the degree of arbitrariness

remaining in the differential expression of Q,(A). The problem of
the formal quantization of the multilinear momenta has thus been
reduced to the determination of the tensor quantities

Bmlk(A), ke[4,[&n]], a task to which we shall mow
turn.

3. - On the determination of the quantities B o (A).

We find it convenient to divide our discussion into two partsy
the first, more detailed, concerned with the special case of the
bilinear observable Cl“’FQ Ri5 and the second, rather speculative,
concerned with the most general case.

3.1 - On the form of the operator @, (a“p;p;).

We here outline and contrast three distinct methods whereby the

function b(Q™) in the expression for Go(dl‘jpifs)may be determined,

. and begin our discussion of the first of these procedures with an

axiom:

axiom 4: Formal quantization is such as to preserve the constants

of free motion, so that

. ¥ o it 0
(6 @,(Ta%p,,5%,p3)= -8 Louhip ), (g0

in which { R } denotes the, poisson bracket, [ s ] the commutator
Lracket, and %}U the contravariant metric tensor of the configuration

space.

N\

This axiom has, as have other more general axioms, been studied by BLOORE

('Y, BLOORE and GHOBRIAL (®), BLOORE and ROUTH (%), BLOORE,

ASSIMAKOPOULOS, and GHOBRIAL (3), who have obtained the following



results: First the assumption of lineavrity
4 ) _ 4 " o "
an Q@ (xa +/§b )P;_PJ)”“QG(G PLFJ)“/‘g@o(b PRy s

together with conservation under quantization of constanis of the
free motion yields for a conserved bilinear momentum the expression
4 g jk ¢

18 Wetgil=

(18) ba¥)=Fay;= %9 AUk o

as may alternatively be demonstrated (*) from (16) assuming in place
of linearity that the free quantum Hamiltonian is, as in MACKEY's
(9) scheme, simply the Laplacian, And second if the expression (1)

is held to obtain for all second order observables, then the above

scheme is incompatible with the DIRAC (10) correspondence

19 G (falpp b D)= i L e p), @, (6501,

k . .
else in the special case where the momentum b Pk is avsociated with a

Kiiling vector field.

(®) F. BLOORE and I.R. GHOBRIAL J. Phys. A:_Math. Gen 8 1863 - (1975)

(*) We omit the demonstration which, while lengthy, is a straightforward

(9> G.W. MACKEY The Mathematical Foundations of Quantum Mechanics

o a0 2 2 2 Tt P S P R e O S 0 P O R O W O O P 0 e O

An alternative procedure for specifying EICItd) is to eequire that
axiom 5: in the case where the bilinear observable is the square of
a momentum, quantization is in accordance with the

X . 1
squaring axiom { ),

(20) Q_( b;bJPLPJ.)= Qf( bip-‘) .

What 'is surprising is that this axiom is inconsistent (*) with the axiom of

Tinearity (17).
As a final method of quantization we propose the following:
axiom 6: The formal observables CEB(Q“JPQF: ) are such that
% 13 v
(21) blaV¥) = «a’” + ga?,
(B /Bolu ¢
in which « and /3 are real constants, and moreover satisfy the

requirement that each positive-definite observable has as quantum analogue

a positive operator. '

This results, after substituting from varicus examples (appendix C), in the

ideally simple form

(22) b(aV) =0,

Turning now to compare the above methods of quantization we perceive that,

whereas each is based upon a natural correspondence,

-(*) Consider the examples on the real line with Cartesian coordinate. =

2 52
F:-" sin(z)p &n cos(x) p, and compare the expression @ (P F;_)

with @2 (R)+ @7 (R).
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each is nevertheless inconsistent with all the others. There would
seem, at present, to be no overwhelming reason to prefer any one of
the above procedures to any other. However to be definite, in the
sequel we shall assume that the choice of axiom 6 is the currect

one, since this results in the ideally simple canonical decomnosition
\

~

4 =7 (g
(23) @, (aYpp;) = =, (0 pips) s
and, as has been demonstrated by KIMURA (]2), in the attractive

equivalent expression

=, <

g y i, ~Yy
(24) QGCGLJPQPJ)= %”(-ikat)g“'o J%H("Lhad')? 3

in which as usual 8' denotes the determinant of the metric tensor,

3.2: Some remarks upon determining the quantities Bn—;k“\l
We here outline and briefly discuss two possible methods of
ces Cin
determining in the general case the quantities Bn—’.).k (A, kele, LR ]},
and tentatively find in favour of the second. Consider firstly the
general axiom:

axiom 7: The formal quantum operators CbQCA) obey the relation

@) @, (L, A= -t Le,g% ), Q, (A1,

Whilst this is a natural and physically appealing rule, it is
nevertheless, as was demonstrated by BLOORE, ASSIMAKIPOULOS, and
GHOBRIAL (3), inconsistent, the only cases where (25) uniquely

determines the operators CBQCA) (of at most second order) corresponding

(12) T. KIMURA Prog._Theor. Phvs. 58, 1261-1277 (1971)

------------- —

1

to reducible configuration manifolds, either of one-dimension,.or

of vanishing Ricci‘ tensor, or of constant curvature. We may conclude
therefore that this axiom has ro general applicability in the quantization
of multilinear momenta. Alternatively we may be less ambitious and
demand instead that the system (25) be valid only when A is a
constant of the free motion. The disadvantage of this scheme Ties in

\the extreme computational difficulty involved in the explicit

calculation even of the Towest order observables @Q( A).

Restricting our attention for the moment to one-dimensional
+manifolds, we propose as our second axiom of quantization the following:
axiom 8: The formal quantization of the multilinear momenta is
such that the class of quantizable momenta is, in a sense
to be made explicit below, maximally large, the quantities

Bn-!lk CA)

being assumed to have the general form

' Lo by
(26) B (A)=€c"a' P keLo,T4nl]
n-2k 1k !LA-Qk;i"'Lﬂ FL{ P"h—lk J ’ 2
in which the quantities E;k are real constants.

We next observe that a necessary condition for the essential self-
adjointness of @ (A) on the interval manifold M= (a,b) of the real

Tine is that the following boundary conditions be satisfied

(27) e gt
It el
n-2m1-/° n

() =O) C=Qorb, /JG [O,Ein'%]] s

a result which may be obtained (®) by computing the symmetry induced
boundary conditions for the extension of @Q(A) to the domain set

o
C (M) of infinitely differentiable functions on M. The system
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(27) may be illustrated for the special case n=5 say, for which
we obtain the equations
1444 5 it 5 qaan
Y=0 = VO
i ) (c ) €,9, (=0 €0 @0,
444 = S 11444
CJ.‘4 () =0 s EA_QHMCC)=O 3
1
'111 1CC) =0

>

n
in whichc=aor b , and where we have noted that by (5) eoa'L Tt is now
immediate from the pattern illustrated in (28) above that independent of the
choice of {@,b) ; the number of equations of comstraint will be

minimum provided only that

n
(29) €, =0 . ke L1, L4n-%1]. |

This set of equations uniquely determines the cbservables of odd order,
s Lyl
and determines those of even order to within the scalar function E,\G,:“.‘ .
() n
Preservation of positivity under quantization is then sufficient (*) to

set €§:==(D , so that for the case of one-dimensional manifolds axiom 8

Teads to the guantization rule

(20 G, (A = Z_(A)

It is row natural to suppose, at least for the purposes of the sequel, that

(30) holds quite generally for all manifolds and all observables A

(*) This is a very long and_ somewhat technical calculation details of waich

may be found in K. McFarlane, Ph.D Thesis (St. Andrews University 1980)
(¥) The demonstration is by means of explicitly worked examples cn the

real Tine.

13

4 -~ An illustration of the proposed quantization scheme.

To facilitate comparison with other methods of quantization,
we shall develop explicit expressions for certain quantum observables
defined on the real line EE with the usual metric and endowed with
the Cartesian coordinization iJi‘Jle FLS. More precisely we shall,
for a representative group of infinitely differentiable functions
g of the (complete) momentum xp determine the coefficients

of the expression

o k
(31) Q (=)= = af:@o(xe) s
k=0

- as will accord with the rule of quantization

o) k) —
(32) QM= 2 g‘m :_Lo(xkpk)/ k! .
k=0

This rule of quantization is itself obtained by performing a Taylor
expression of g in the argument:zpJ by assuming a generalisation of
the linearity equation (17), and by applying the quantization rule
(30). Turning our attention first of all to the observables 351;: we

deduce after some calculation (appendix D) that

(33) Q (x k),,zk 'k.)k_J. k _J
W (x P = (-t /BJ G, (xp) s

k
the coefficients /33 of which are prescribed by the system

Ls)

24 24+ al Lo )
. /[% ==/g.i*r-r -2, S:w <~3)(ﬁ'»‘9 , Leloe]  je o, u],

L _ a
E;J denoting a Stirling number(7°) of the first kind, and in
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: 2L 24-1
particular satisfy the symmetry conditions /éa_ B “’/30. = (),
97t =

Je [licn]‘(;e ‘:q,!?],Concrete‘.y we obtain the lowest order decompositions
A A 2 2
(35) Q,(xp)=Q, (xp)rHH,
4 H E %~ Yy
Q") =@ (xp)* TR Q=) tERT, -

@, (<) = @ (xp)+ SR xp)» 2T WG 1) + 3K
o ,s‘ (4] l 16 ) P )

from which the corresponding odd-order expansions follow by means of the
. 2844 24+4 24 24

relation @ (X +}> )=®°(1P) Q,(x p ). To complete (*)

our discussion we calculate (appendix D) the formal expansions o7 certain

transcendental functions to obtain -
(3) @ (simzp) = sin (2/F sink (§/2) Q,(=p)?,
-3
@ylees xp) = <os (2/% sinﬁ.4('ﬁ/2)®oéx">)) \'1-.*7\:\//4)2:,
@, (sinh zp) = sinh(2/Fsin (7/2) @, (xp)),
: ' )
®, (coch xp) = cosh(2/h sin (% /2) @ xp)) (14 ?.z/»',f)./z

5 - Conclusion.

The foregoing reactions have illuminated in some measure the problem

of the quantization of the multilinear momentum observables, and have lad

in particular to a plausible and systematic scheme of (formal) quantization.

Progress has been made in delimiting possible quantizations of the
multilinear momenta, and a preferred scheme has been illustratively
applied to functions of the momentum JLF on ‘FZ, and this has led to
rather pleasing explicit forms for the quantum analogues of cos(xp)

and sin (2’.?)_

15

Finally we may remark that we do not claim the above-discussed methods

of quantization to be exhaustive (in particular we have not included
WEYL's (]4) rule or its generalisations due to UNCERHILL (]5), and
UNDERHILL and TARAVIRAS (5); a great breath of material remains unexplored

by our brief summary.

K. McFarlane acknowledges the support of a Royal Society European

Exchange Programme Fellowship, and the facilities made available to

. him by the Dublin Institute for Advanced Studies.

("3 c. soroan Calculus of Finite Difference, second edition,
(New York, 1850).

{*) Note also that the equation for CBO(K?FL) shows, as is readily
verified from the work of CASTELLANI (4), that our proposed

quantization scheme is inconsistent with Weyl's rule, the

“symmetrization" rule, and the Born-Jordan rule.
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Some notational conventions.

(1)
(i1)

(A.T)

(ii1)

(A.2)

(iv)

(v)

{A.3)

The usual summation and va-1ab1e free-index conventions hold.

The symbols ] and S denote the operator of rovariant

differentiation; thus

e ti ' Caelk

b K letim] = S (betRY
’.), g’ ’ Jg Ye

The symbols "; and O denote the operation of partial

differentiation thus

U'

Li: . kfeDoo'l B E (b“ )

)

L
The symbol Cl.‘ P - P is to be interpreted when
“n

K
n=0 as the (momentum independent) scalar function Qx’),

The symbol L eee L k,!c—EO,w] is defined recursively us

Laa
(L "'.k )L,< k,£+2,- Lkar-i-r’?; | and is

void when £= k . This is as illustrated below

S pits _ pebds phists Gt i
. T+ DL,
.o h— Lk . '(-4 l"1L1. “‘lh"? °
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APPENDIX B @ On the general form of the symmetric_operators Q. (A,

We omit the demonstratlon that @, (A) may be assumed to have the

tensor form (-1K) 2 b kS. S
k:o
consider only the proof of the recurrence relation (6).

We have that, by axiom 2, V7, }ZeC (M), <¥1Q, (A)f) <®(P\)}”§‘9>)

or equivalently that

of equation (4), and

. n ne L.--":k # - yr.. ne ;-."":k
(5.1) n{m W'y, 19 h{a,z SRS

By applying the identities

L‘...Lk
e ﬂb Ao fc-:)(b «/)M__ikf,

Lr“ik — L, k
T ) e SO
We may then deduce that .

$ e i el T
(B.4)Mf}; (-i%) gb "7%;_2“. = [ L) 42, 2 1) b 7/“‘ L-])g

:0?” 4

when comparison of(B.4)and(B.2) yields the desired result. Given this
result the canonical decomposition (10) now follows by substituting from
K
the formula defining EO(B ) into the original recurrence for b

Explicitly we obtain the following identities: first

[;A] n-g-kn-ak n-2k, L n-lk
(8:5) @(M > ikl =ik 2a b 8.0
le=0 £=0 1 "‘E-H' ALK, b L

which upon rearrangement becomes
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1 hﬁ..l%u ...-.N_A F :.h Nr
(8.6) %) (S« bt NS LS

\no k=o N ~\+_...r=‘»r r»... lh.v

from which (11) follows; and secondly

. mﬁmu n k
nrko ey L z f+ .2 r ... .
a:MIVEwlngRMIV§>L; -
ked I bk g=e ket Ttggiveta-2]

which upon substitution from the recurrence (9) yields

£
n ] :

k -2 : Lot
amMEagwpr M%L.,igumﬁg
I h..,.. Jeo :.f.m . ?.N.w

.

2

as is the required symmetry condition (6).

19

APPENDIX C. On the determination’of the quantities 3~ (A),

n-LK
We show that the preservation of uomiz vity c:gm« quantization

Ly
sufficient to set 4= \qu by combining inequalities on ¢ and \w

1y
together with the assumption that Vmacv Qo, \WQ is

deduced from the following four special cases

example 1 : cn the manifold D\TQ\NV with the usual metric,
2.2
consideration of the bilinear observable A= P 5in
which % 1is a Cartesian coordinate, m:ﬁu its conjugate .

momentum, yields the general quantum analogue

.1 ' w» ) = (~(k) AHO+pRD+p 34\.~

Tt
from which, upon noting that the operator -(x*D +wHDv
is positive, we may deduce o.,..r\w >0,
example 2 : on the amimo“mguﬁ\pvig the usual metric, the observable

A= (unx) mp. "Deduce oi.\wa

- example 3 3 on the Euclidean space (1,2)x(1,2), the observable .

>u«wr*x _uv% Deduce - \wVO .

example 4 ¢ on the manifold (1,2)x(1,2) with the usual metric, the
n

ovmmzmzm} mw iw_:_\wnv ww + Deduce \wmo.
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List of Hand-written Symbols

Character

Bold capital
Bold capital
Bold capital
Bold capital
Bold capital
Bold capital
Bold capital
Bold capital
Bold capital
Bold capital
Bold capital

Bold Greek capital "sigma"

- O =T Mo 0O W >

=

z

" Symbol

Bold Greek capital "xi"

Character

Greek Tower
Greek lower
Greek lower
Greek lower
Greek lower
Greek Tower
Greek Tower
Greek Tower
Greek Tower
Greek lower

case
case
case
case
case
case
case
case
case
case

"alpha"
"beta"
"delta"
"delta"
"epsilon"
"eta"
—
"yt
"phi®

"pSi"

Character

xWW:’SKWLwN;ﬁmdva

Symbo1

Tower case
Tower case
Towe: case
Tower case
lower case
Tower case
Tower case

-0 ~h Q.0 T o

Tower case
lower case

- G

lower case
Tower case
Tower case
lower case

x ©w - 3

Tower case
Tower case y

Character

infinity symbol

zero subscript

dagger

Dirac's constant (crossea h) -
less than

less than, equal to

vertical bar

standard symbol for the reals
square brackets

curly brackets

curly brackets with subscript
plus sign

tall round brackets with jcwer
case entries{Biuomial coefficiont)
asterix

wy
3
o
o
—

TIMN = "iU]QZ'nDﬁ'Do} r(

Symbol
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List of Hand-written Symbols

Character

Bold capital
Bold capital

" Bold capital

Bold capital
Bold capital
Bold capital
Bold capital
Bold capital
Bold capital

_ Bold capital

Bold capital

Bold Greek capital "sigma"

o -4 o T TT OO WP

z

" Symbol

Bold Greek capital "xi"

Character

Greek Tower
Greek Tower
Greek Tower

. €reek Tower

Greek lower
Greek lower
Greek lower
Greek Tower
Greek lower
Greek lower

case
case
case
case
case
case
case
case
case

N
case

"alpha"
"beta"
"delta”
"delta"
"epsilon

"eta"

mu
n\nuu

"phi"
Ilps.i "

Character

~-Q han v g
o

o TRTU 5 3 K

Symbol

Tower case

lower case
Tower case
Tower case
Tower case
Tower case
Tower case

lower case

ey ch OO0 T W

Tower case
Tower case

lower casé
Tower case
Tower case

X W 3 F - x

Tower case
lower case y

Character

™M

B~ N A st—o0

w

(R .

o

infinity symbol
zero subscript

‘dagger

Dirac's constant {crossed h)
Tess than :
less than, equal to

vertical bar

standard symbol for the reals
square brackets

curly brackets

curly brackets with subscript
plus sign

tall round brackets with Towe
case entries{Binomial coeffic
asterix



