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Conformal Properties of the BPST
Instantons of the generalised Yang-Mills System
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1. School of Theoretical Physics, Dublin Institute
for Advanced Studies, 10 Burlington Road,
Dublin 4, Ireland.

2.. Department of Mathematical Physics, St. Patrick's
College, Maynooth, Kildare, Ireland.

ABSTRACT: A manifestly 0(4p + 1) invariant formulation of
generalised Yang-Mills (GYM) theory on SQP{r‘r.r = l}(R4p+]
is given, and the corresponding BPST instantons and anti-
instantons are shown to be solutions of the equations of

motion.

‘Qur-main purpose in this note is to complement a paper by Grossman,
Kephart and Stasheff]). These authors]) have found a spherically symmetric

solution to the following duality equations in 8-dimensions
FAF = *(FaF) m

2)

This solution is the analogue of the BPST instanton in 4-dimensions,

and (1) is the p = 2 menber of the hierarchy of duality relations in
4rdimensions

Flep) = £ FOp (2a,b)
where

Flp)y= Fa---nF (2p times)
These are the duality relations pertaining to the generalised Yang-Mills
(GYM) systema)q) with action
§ te FopY 4% x . (3)

The solutions of (2) yield a hierarchya) of BPST instantons.

Now an important property of the BPST instanton field configuration
is its behaviour under conformal transfonnationss), as was stressed and
exploited by Jackiw and Rebbiﬁ). These authors noted that the BPST instanton
was actually invariant under the action of an 0(5) subqroup of the conformal
group. - Then they gave a manifestly 0(5)-invariant formulation for the Yang-
Mills (YM) system, by incorporating the SU(2) instanton and anti-instanton
fields in an 0(4)-algebra valued field on S*{r{r.r = 1}¢ R*. “This formula-
tion does generalise to dimension 4p, which we will give below.

In dimension-8 Grossman et al 1 attempted to derive the solutions
of (1) from the Euler-lLagrange equations of the S0(8) YM system on

S®(r|r.r = 1JCR® and not from the p = 2 GYM system, whose instantons we
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know3) are-the solutions to (1). Later in an Erratum7), they pointed out

that the GYM action (3) (with p = 2) should replace the YM action in their
work, but did not give the details of the formulation in this case, that
Jackiw and RebbiG) have given in dimension 4. This is precisely what we
present below.

3)

For arbitrary p, the BPST instanton and anti-instanton connections

can be expressed, respectively, in the following forms

A - X RN
(x) o 9 3,,% (4a)
Rt (xy = *_ 3 ora (ab)
2 - R -
Av kY % %
g =X * x-2 , SM (w0 TF (5a)
% - (k- x)E s L l‘z(“r‘trv\) rr, (5b)
where  UF are the 22P « 22P P_matrices in 4p-dimensions, and V;PH
is the corresponding chirality matrix.
The corresponding field strengths are then given by
= . Y
Fx) = (Arx)? 2 (6a)
~ v _ 4 ':f’.av
PO = gy & (60)
where 1+ [ [\qr l—w}
BV 1x - L * Lapnn )
2 ( ) ‘\'( a ) (73)
S0 = -5 () WY
2 (7b)

are spinor-representations of s0(4p), and for p = 1 they are self and
antiself-dual, respectively.

The 2p-forms used in (2a,b) then take the following forms
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4 s
LIS A
F;~‘T"r(x) (A )T Fek (8a)
~ - . ﬁf_’ =
F/q /‘;f(ﬂ) (‘\r;ﬂx“)w 2"/4‘/“1‘: ’ (Bb)

where :ﬁr)and Zzwy are totally antisymmetrised products of zy(ZJand 5;(22»)

respectively, satisfying the following duality relations

o #
S pup = by (9a)

* =
Z/“\/UZP == 2‘[“ /“IF - (gb)

Then (8a,b) manifestly satisfy (2a,b).
To incorporate the instanton and anti-instanton field configurations

(8a,b), we consider the co-ordinate inversion transformations

A —> RFp) = & T AV L o)
™) - otk x’ [t

Under (10), the 2p-forms (8a,b) transform as

- \ A 1Y,
F'.,'.A.rLr(x)—-b E‘" :‘"f(A) = I ' L f‘f(;\) Fv‘. .vlf,(‘/x) 5 (1)

whence it can be shown easily that (2a,b) result in the duality relations
— — =
Fapy = ¥ FOp- (12a,b)

From (2a,b) and (12a,b) one concludes that under inversion, which
belongs to the conformal group, instantons and anti-instantons are inter-
changed. Also, since the topological charge of these instantons3) are
given by the 2p-th Chern-Pontryagin. integrals, and the latter are integrals
over the densities

t Fipa FOP)
it is clear that a g = 1 BPST instanton will simply go over to a q =1 BPST
anti-instanton, under the inversion (10).

This leads us to consider the composite field strength P+ EM  in

(6a,b). We denote this field simply as



"‘r‘\l o 4 PV
(K) (T'rx‘)l v (13)
("'f" = L lrrlrw X

(14)

TH in (14) is simply the representation (2"r 21y of s0(ap), and

in (13) incorporates the q = +1 and q = 1 fields in (6a,b). Under an
inversion transformation, these q = &1 fields are interchanged. Under a
full conformal transformation (inversion-translation-inversion) FF’ is
not invariant.

It can however be shown simply by adapting the demonstration given
in ref.[61 (for p = 1), that for any p the field (13} is invariant under
an 0(4p + 1) subgroup of the conformal group 0(4p + 1,1). The o(4p + 1)
group in question is generated by (rqPipf)’ where h“v are the generators
of 4p-dimensional rotations and

RF -4 (PFekF) (15)
is a combination of the translation and (special) conformal transformation
generators P* and k' , respectively, in 4p-dimensions. The group gener-

ated by (15), for the p = 1 case, has been previously considered by Ad]erm

and Fubinig).

6) 8)

Following Jackiw and Rebbi ', and in turn Adler who first formul-
ated (euclidean) electrodynamics on S*, we proceed to generalise the

fonnulationB) of the p = 1 GYM (i.e. YM) system on S, to the case of

general p on 54p {rlir.r = 1}(:R4p*].
We first summarise the necessary definitions and formu1ase)8) approp-
. 4p+1 .
riate to any p. The R P coordinates Vo= ﬂﬂ,ﬁw,‘ are defined by
X A - Rr ]
- ¢ Y, = 7
Tr Aext ’ 4pea terr (16)

~

and the 0(4p + 1)-algebra valued gauge connections Ph_ by

Avx® A A :
2T Ap = A xR
~ LS
Ap = B A - Ay an
Agprz = *phy

25 -

The (antihermitian) representations of the 0(4p + 1) that we use are
ab v . .
re - (TP, cper) (18)

with P given by (14). The gauge transformation forﬂu1a36)7) for the
connections A, are

'S

A o WA U+ M Gl W (18a)

where Lab are the following “"angular momentum" operators

Lo = | 6, Ofavy — Toofora
Lrv = xrb/axv — Ry [N (19)
Lapes,p = 2 &7 070X — (1-x*)3/2x"
In addition, these connections obey the constraint6)7)
fah, =0 (20)

~

The curvature, or gauge covariant field strength, corresponding to A, is

r ~ ~ »~
Fooe = LagRe v+ Vo [~ A\ + cyclic pernutations inabe. (21)

6)

For p = 1, the invariant action is
oo+ Ful | (22)

which can be shown, after converting the volume element dS. on S* to d*x
on R*, to be proportional to the p =1 GYM (i.e. YM) action. Then (22) was
subjectedB) to the variational principle, whereby the p = 1 BPST solutions
(instanton and anti-instanton) (13) werefound without reference to the self-
duality relations (2a,b). This was precisely what Grossman et a11)7) set
out to do for p = 2, and which we present below.

To construct the action (22) for p =1, all one needs is the defin-
ition (21) for the 3rd rank totally antisymmetric field strength ﬁ($]= 6;LL-

For arbitrary p, we find that the generalisation of (22), leading to the

corresponding GYM action (3) on R4p, is



6 -
a8l Y ?( )t
\ « Faprn)t 2

where 42l is again the volume element of the 54p+]

F@pet): Fa, . “apr
covariant field strength on R4p+])t)54p{rlr.r = 1}.

coordinates, and

js a (2p+1)-th rank totally antisymmetric gauge

The definition of E(2p+]) can be made inductively from p = 2 onwards.

Therefore, in addition to E(3) given by (21), the only other gauge covariant

~ A G}
field strength we need is a 2nd rank antisymmetric tensor field Fab = F(2),0n K ”;

which should not be confused with the curvature field Fuv = F(2) on de.

This new field strength f(2) is

~ A a ”

A 4
F.;\' = 1 LC{@ Ay k{A‘,A;] ~ T Ay - (24)
Once we construct f(5) for p = 2, that procedure then can be systematically
extended to any p. Here we will present the p = 2 case in detail.

For p = 2, from (21) and (24), we define f(5) as

ﬁamdt = {ﬁph .&“33 ) (25)
where [, denotes an anticommutator. It is easy to check that the action
(23) for p = 2, with F(5) given by (25), is proportional to the GYM action
(3) for.p = 2.

It is clear that for general p, (25) must be replaced by

¢

avepe U e Fapapeny § (25")
hence this procedure generalises.

Before proceeding to apply the variational principle to (23), we note
an interesting property of these field strengths F(2p+1) on R4p+] defined
by (25'). The dual of ?(2p+]) is itself a totally antisymmetric field
strength of rank 2p. It is therefore plausible that the 2p-forms F(2p),
defined on R*P and used in (2) and (3), can be related to those dual field

strenqths

“(Frapey) & “Fap - (26)

-7 -
This turns out to be true, and as an example we consider the p = 2 case in

detail.

Define
#* b ~

alocd = %ﬁ Eabeoefahs Fc;aL; : (27)
Then it follows that *F(4), which is the 2p-form dual to

Fla) = Frpe = § P Fgea s cyel. perm. v,
defined on R*, are related to *?(Zp) as follows
* 4, A A A ~ A
Y . - ~ (28)
Fr'rr - <n—x‘) (F,w(r - Xp E\vt«.—+ Xy q(..,r'—"qufr./* )“"Fq,n’f)
This relation, (28), is analogous to a relation noted by Ad]erB) for

the Abelian gauge system on R“:

¥* 1

- 2

» P %) (28")
which also holds for the p = 1 non-Abelian cases). (28') and (28) are the
p=1and p = 2 members of a hierarchy of such relations pertaining to the
GYM systems in 4p-dimensions and their projections on S4p {rlr.r = 1} qu*].
We now subject the action (23) for the special case p = 2 to the

variational principle. The resulting Euler-Lagrange equations are
Dul Foci s Fuea § * Bl Funeai, Fea § = Sevot i, Frad s (29)
where D_ are the conformal covariant derivatives D, = qli + 1L A‘)- 1.

Finally, the p = 2 BPST instanton and anti-instanton field configur-
ation (13) is given by the following most general spherically symmetric

gauge connection on R
A" = o Rbﬂ - (30)

Notice that a, which is a function of rafa = 1, is a constant. Substitut-

ing ﬁa from (30) inté the Euler-Lagrange equation (29) we find
. 3
8(5,.-5) (er-2ot) (x-1) 7 { Taned, Ty} =0 (31

Cod = 1T, Nand » cyel. perm. b, d .
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It is remarkable that (31), pertaining to the case p = 2, has the solutions
References
o = 0,2 (three times), a = 1 (once) which, apart from the degeneracy - for —
the @ = 0,2 solutions, is the same as for the p =1 cases)- In fact for 1. B. Grossmam, T. W. Kephart and J. D. Stasheff, Commun. Math. Phys. 96,
431 (1984).

arbitrary p there is always the solutiona =1, along with the degenerate
2. A.A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin,

solutions a = 0,2 ((2p-1) times). The latter (degenerate) solutions lead
Phys. Lett. 598, 85 (1975).

to pure-gauge connections, thus we have the unique solution
3. D. H. Tchrakian, Phys. Lett. 1508, 360 (1985).

Ao = T 1o (32) 4. D. W. Tchrakian, J. Math. Phys. 21, 166 (1980).

for all p. To extract from (32), the SO(4p) valued gauge connections per- 5. See for example, R. Jackiw in, Lectures on Elementary Particles and
taining to (13) we follow ref.[6] by performing the gauge transformation Quantum Field Theory, 1970 Brandeis Summer Institute in Theoretical
Physics, ed. S. Deser.

; [l
W oo erp v () e T (33) 6. R. Jackiw and C. Rebbi, Phys. Rev. D14, 517 (1976).

This removes the V}, components of ﬁa in(32), thus leaving Ra only 0(4p)- 7. B. Grossmann, T. W. Kepharl and J. D. Stasheff, Commun. Math. Phys.

algebra components. Then Au. the connections we seek, can be extracted 100, 3N (1985).

from ia using the definitions (17). For the following choices of the 8. S. L. Adler, Phys. Rev. D6, 3445 (1972).

: : 9. S. Fubini, CERN Report .......... (unpublished).
functions f(r4p+]) in (33)
et
flrgpa) = (34a)
(1- r‘irn )
§ (faprs) = €’ gy =T (34b)

S \Z
(4" r‘!rn)z

we find, for the required 4p-dimensional BPST instanton and anti-instanton

connections, the two gauge equivalent expressions

APGo = 2 T x (352)
Moy = 22— . (35b)

(Ar) x? 4



