

Title Conformal Properties of the BPST Instantons of the generalised Yang-Mills System

Creators O'Sé, Diarmuid and Tchrakian, D. H.

Date 1986

Citation O'Sé, Diarmuid and Tchrakian, D. H. (1986) Conformal Properties of the BPST

Instantons of the generalised Yang-Mills System. (Preprint)

URL https://dair.dias.ie/id/eprint/920/

DOI DIAS-STP-86-35

Conformal Properties of the BPST

Instantons of the generalised Yang-Mills System

Diarmuid O'Sé¹⁾ and D. H. Tchrakian²⁾¹⁾

- School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland.
- 2. Department of Mathematical Physics, St. Patrick's College, Maynooth, Kildare, Ireland.

<u>ABSTRACT</u>: A manifestly 0(4p+1) invariant formulation of generalised Yang-Mills (GYM) theory on $S^{4p}\{r|r.r=1\}CR^{4p+1}$ is given, and the corresponding BPST instantons and antiinstantons are shown to be solutions of the equations of motion.

Our main purpose in this note is to complement a paper by Grossman, Kephart and Stasheff¹⁾. These authors¹⁾ have found a spherically symmetric solution to the following duality equations in 8-dimensions

$$F_{\Lambda}F = {}^{*}(F_{\Lambda}F) \tag{1}$$

This solution is the analogue of the BPST instanton²⁾ in 4-dimensions, and (1) is the p=2 member of the hierarchy of duality relations in 4p-dimensions

$$F(2p) = \pm *F(2p)$$
 (2a,b)

where

$$F(2p) = F_{\Lambda} \cdots \Lambda F$$
 (2p times)

These are the duality relations pertaining to the generalised Yang-Mills (GYM) system³⁾⁴⁾ with action

$$\int tr F(2p)^2 d^4P \times . \tag{3}$$

The solutions of (2) yield a hierarchy³⁾ of BPST instantons.

Now an important property of the BPST instanton field configuration is its behaviour under conformal transformations $^{5)}$, as was stressed and exploited by Jackiw and Rebbi $^{6)}$. These authors noted that the BPST instanton was actually invariant under the action of an O(5) subgroup of the conformal group. Then they gave a manifestly O(5)-invariant formulation for the Yang-Mills (YM) system, by incorporating the SU(2) instanton and anti-instanton fields in an O(4)-algebra valued field on S 4 {r|r.r = 1}C R 4 . This formulation does generalise to dimension 4p, which we will give below.

In dimension-8 Grossman et al $^{1)}$ attempted to derive the solutions of (1) from the Euler-Lagrange equations of the SO(8) YM system on $S^{8}(r|r.r=1) \subset R^{9}$ and not from the p = 2 GYM system, whose instantons we

know³⁾ are the solutions to (1). Later in an Erratum⁷⁾, they pointed out that the GYM action (3) (with p=2) should replace the YM action in their work, but did not give the details of the formulation in this case, that Jackiw and Rebbi⁶⁾ have given in dimension 4. This is precisely what we present below.

For arbitrary p, the BPST instanton and anti-instanton connections 3) can be expressed, respectively, in the following forms

$$A^{\mu}(x) = \frac{x^{2}}{1+x^{2}} g^{-1} \partial_{\mu}^{\mu} g \tag{4a}$$

$$\widetilde{A}^{r}(x) = \frac{x^{2}}{4\pi x^{2}} \widetilde{g}^{-1} \partial^{r} \widetilde{g}$$
 (4b)

$$g = (x \cdot x)^{-\frac{1}{2}} \times \Sigma$$
, $\Sigma^{\mu} = \frac{1}{2} (1 + \Gamma_{q_{p+1}}) \Gamma^{\mu}$ (5a)

$$\tilde{q} = (\mathbf{x} \cdot \mathbf{x})^{-\frac{1}{2}} \times \tilde{\Sigma}$$
, $\tilde{\Sigma}' = \frac{1}{2} (1 - \Gamma_{qp+1}) \Gamma^{p}$, (5b)

where Γ^r are the 2^{2p} x 2^{2p} Γ -matrices in 4p-dimensions, and Γ_{4p+1} is the corresponding chirality matrix.

The corresponding field strengths are then given by

$$F^{\mu\nu}(x) = \frac{4}{(4+x^2)^2} \sum_{\mu\nu}$$
 (6a)

$$\widetilde{\mathsf{F}}^{\mu\nu}(\mathsf{x}) = \frac{4}{(4\pi\mathsf{x}^2)^2} \widetilde{\underline{\mathsf{Z}}}^{\mu\nu} \tag{6b}$$

where

$$\sum_{\mu} \Gamma_{\mu}(x) = -\frac{1}{4} \left(\frac{1 + \Gamma_{\mu}}{2} \right) \left[\Gamma_{\mu} \Gamma_{\nu} \right]$$
 (7a)

$$\widetilde{\Sigma}^{\mu\nu}(x) = -\frac{1}{4} \left(\frac{1 - \Gamma_{a_{1}1}}{2} \right) \left[\Gamma^{\mu}, \Gamma^{\nu} \right]$$
 (7b)

are spinor-representations of SO(4p), and for p=1 they are self and antiself-dual, respectively.

The 2p-forms used in (2a,b) then take the following forms

$$F_{\mu_1 \cdots \mu_{2p}}(x) = \frac{4^p}{(1+x^p)^{2p}} \bar{Z}_{\mu_1 \cdots \mu_{2p}}$$
 (8a)

$$\widetilde{F}_{\mu_1\cdots\mu_{2p}}(x) = \frac{4^p}{(1+x^2)^{2p}} \widetilde{\Xi}_{\mu_1\cdots\mu_{2p}}, \qquad (8b)$$

where $\Sigma_{(\mu)}$ and $\widetilde{\Sigma}_{(\mu)}$ are totally antisymmetrised products of $\Sigma_{\mu}(\widetilde{\Sigma}_{\mu})$ and $\widetilde{\Sigma}_{\nu}(\Sigma_{\mu})$ respectively, satisfying the following duality relations

$$\sum_{\mu_1,\dots,\mu_{2p}} = {}^{*}\sum_{\mu_1,\dots,\mu_{2p}} \tag{9a}$$

$$\widetilde{\Sigma}_{\mu_1\cdots\mu_{2p}} = -\widetilde{\Sigma}_{\mu_1} \quad \mu_{2p} \qquad (9b)$$

Then (8a,b) manifestly satisfy (2a,b).

To incorporate the instanton and anti-instanton field configurations (8a,b), we consider the co-ordinate inversion transformations

$$A^{\mu}(x) \longrightarrow \overline{A}^{\mu}(x) = \frac{1}{x^{*}} I^{\mu\nu}(x) A_{\nu}(yx) , \qquad (10)$$

$$I^{\mu\nu}(x) = \delta^{\mu\nu} - 2 x^{\mu} x^{\nu} / x^{*} .$$

Under (10), the 2p-forms (8a,b) transform as

$$F_{\mu_1 \cdots \mu_{-1} p}(x) \rightarrow \bar{F}_{\mu_1 \mu_{-1} p}(x) = \frac{1}{\chi^{-1} p} I^{\mu_1 \nu_1}(x) \cdots I^{\mu_{-1} \nu_{-1} p}(x) F_{\nu_1 \cdots \nu_{-1} p}(1/x) ,$$
 (11)

whence it can be shown easily that (2a,b) result in the duality relations

$$\overline{F}(2p) = \overline{+} F(2p)$$
 (12a,b)

From (2a,b) and (12a,b) one concludes that under inversion, which belongs to the conformal group, instantons and anti-instantons are interchanged. Also, since the topological charge of these instantons³⁾ are given by the 2p-th Chern-Pontryagin integrals, and the latter are integrals over the densities

it is clear that a q=1 BPST instanton will simply go over to a q=1 BPST anti-instanton, under the inversion (10).

This leads us to consider the composite field strength $F^{\mu\nu} + \widetilde{F}^{\mu\nu}$ in (6a,b). We denote this field simply as

$$\overline{F}^{\mu\nu}(x) = \frac{4}{(4+x^2)^2} \Gamma^{\mu\nu} \tag{13}$$

$$\Gamma^{\mu\nu} = -\frac{1}{4} \left[\Gamma^{\mu}, \Gamma^{\nu} \right] . \tag{14}$$

 $\Gamma^{\mu\nu}$ in (14) is simply the representation ($\overline{Z}^{\mu\nu}$ r $\overline{Z}^{\mu\nu}$) of SO(4p), and in (13) incorporates the q = +1 and q = 1 fields in (6a,b). Under an inversion transformation, these q = ±1 fields are interchanged. Under a full conformal transformation (inversion-translation-inversion) $F^{\mu\nu}$ is not invariant.

It can however be shown simply by adapting the demonstration given in ref.[6] (for p=1), that for any p the field (13) is invariant under an O(4p+1) subgroup of the conformal group O(4p+1,1). The O(4p+1) group in question is generated by $(M^{\mu\nu},R^{\nu})$, where $M^{\mu\nu}$ are the generators of 4p-dimensional rotations and

$$R^{\mu} = \frac{1}{2} \left(P^{\mu} + K^{\mu} \right) \tag{15}$$

is a combination of the translation and (special) conformal transformation generators P^{μ} and K^{μ} , respectively, in 4p-dimensions. The group generated by (15), for the p = 1 case, has been previously considered by Adler⁸⁾ and Fubini⁹⁾.

Following Jackiw and Rebbi⁶⁾, and in turn Adler⁸⁾ who first formulated (euclidean) electrodynamics on S*, we proceed to generalise the formulation⁶⁾ of the p=1 GYM (i.e. YM) system on S*, to the case of general p on S^{4p} $\{r|r.r=1\}\subset R^{4p+1}$.

We first summarise the necessary definitions and formulas $^{6)8)}$ appropriate to any p. The R^{4p+1} coordinates $r_{a} = r_{p}$, r_{ap+1} are defined by

$$\gamma_{\mu} = \frac{2 \times \mu}{4 + \chi^{2}}, \quad \gamma_{4\mu+4} = \frac{4 - \chi^{2}}{4 + \chi^{2}}, \quad (16)$$

and the O(4p + 1)-algebra valued gauge connections $\hat{A}_{\mathbf{A}}$ by

$$\hat{A}_{\mu} = \hat{A}_{\mu} - \chi_{\mu} \hat{A}_{\mu + \lambda}$$

$$\hat{A}_{\mu} = \frac{\lambda + \lambda^{2}}{2} A_{\mu} - \chi_{\mu} \chi_{\nu} A_{\nu}$$

$$\hat{A}_{\eta + 1} = - \chi_{\mu} A_{\mu} . \qquad (17)$$

The (antihermitian) representations of the 0(4p + 1) that we use are

$$\Gamma^{ab} = \left(\Gamma^{\mu\nu}, \frac{1}{2}\Gamma^{\mu}\right)$$
 (18)

with (''' given by (14). The gauge transformation formulas $^{6)7)}$ for the connections \hat{A}_{∞} are

where \boldsymbol{L}_{ab} are the following "angular momentum" operators

$$L_{ab} = \Gamma_{a} \partial/\partial Y_{b} - \Gamma_{b} \partial/\partial Y_{c}$$

$$L_{\mu\nu} = \chi_{\mu} \chi^{\nu} \partial/\partial \chi^{\nu} - \chi_{\nu} \partial/\partial \chi^{\mu}$$

$$L_{4pr4, \mu} = \chi_{\mu} \chi^{\nu} \partial/\partial \chi^{\nu} - (4 - \chi^{2}) \partial/\partial \chi^{r}.$$
(19)

In addition, these connections obey the constraint (6)7)

$$r_{\mathbf{a}} \hat{\mathbf{A}}_{\mathbf{a}} = 0 . \tag{20}$$

The curvature, or gauge covariant field strength, corresponding to $\hat{A}_{\bf a}$ is

$$\hat{F}_{abc} = L_{ab}\hat{A}_c + r_a [\hat{A}_b, \hat{A}_c] + \text{cyclic permutations in } a_b c. (21)$$
For p = 1, the invariant action is⁶

which can be shown, after converting the volume element dQ on S^4 to d^4x on R^4 , to be proportional to the p=1 GYM (i.e. YM) action. Then (22) was subjected⁶) to the variational principle, whereby the p=1 BPST solutions (instanton and anti-instanton) (13) werefound without reference to the self-duality relations (2a,b). This was precisely what Grossman et al¹⁾⁷⁾ set out to do for p=2, and which we present below.

To construct the action (22) for p = 1, all one needs is the definition (21) for the 3rd rank totally antisymmetric field strength $\hat{F}(s) = \hat{F}_{\mu} \epsilon_{\nu}$. For arbitrary p, we find that the generalisation of (22), leading to the corresponding GYM action (3) on R^{4p} , is

where $d\mathcal{L}$ is again the volume element of the S^{4p+1} coordinates, and $\widehat{F}(2p+1) = \widehat{F}_{a_1, \dots, a_{2p+1}}$ is a (2p+1)-th rank totally antisymmetric gauge covariant field strength on R^{4p+1} $\supset S^{4p}\{r|r,r=1\}$.

The definition of $\hat{F}(2p+1)$ can be made inductively from p=2 onwards. Therefore, in addition to $\hat{F}(3)$ given by (21), the only other gauge covariant field strength we need is a 2nd rank antisymmetric tensor field $\hat{F}_{ab} = \hat{F}(2)$, on R^{4p+1} , which should not be confused with the curvature field $F_{\mu\nu} = F(2)$ on R^{4p} .

This new field strength $\hat{F}(2)$ is

$$\hat{F}_{ab} = r_c L_{c[a} \hat{A}_{b]} + [\hat{A}_a, \hat{A}_b] - r_{[a} \hat{A}_{b]}.$$
 (24)

Once we construct $\hat{F}(5)$ for p=2, that procedure then can be systematically extended to any p. Here we will present the p=2 case in detail.

For p = 2, from (21) and (24), we define $\hat{f}(5)$ as

$$\hat{F}_{abcde} = \{\hat{F}_{[abc]}, \hat{F}_{de]}\}, \qquad (25)$$

where { , } denotes an anticommutator. It is easy to check that the action (23) for p = 2, with $\hat{F}(5)$ given by (25), is proportional to the GYM action (3) for p = 2.

It is clear that for general p, (25) must be replaced by

$$\hat{F}_{a_1 \dots a_{2p+1}} = \{ \hat{F}_{[a_1 \dots 2p-1]}, \hat{F}_{2p,2p+1} \}. \tag{25'}$$

hence this procedure generalises.

Before proceeding to apply the variational principle to (23), we note an interesting property of these field strengths $\hat{F}(2p+1)$ on R^{4p+1} defined by (25'). The dual of $\hat{F}(2p+1)$ is itself a totally antisymmetric field strength of rank 2p. It is therefore plausible that the 2p-forms F(2p), defined on R^{4p} and used in (2) and (3), can be related to those dual field strengths

$$(\hat{F}(2p+1)) \stackrel{\text{def.}}{=} \hat{F}(2p)$$
. (26)

This turns out to be true, and as an example we consider the p=2 case in detail.

Define

$$\stackrel{+}{F}_{abcd} = \frac{1}{5!} \epsilon_{abcdefghi} \stackrel{+}{F}_{efghi}$$
 (27)

Then it follows that *F(4), which is the 2p-form dual to

$$F(4) = F_{\mu\rho\sigma} = \{F_{\mu\nu}, F_{\rho\sigma}\}, \text{ cycl. perm. } \nu, \rho, \sigma,$$

defined on R^a , are related to ${}^*\hat{F}(2p)$ as follows

This relation, (28), is analogous to a relation noted by $Adler^{8}$ for the Abelian gauge system on R^4 :

$${}^{*}F_{\mu\nu} = 2\left(\frac{2}{4\pi\kappa^{2}}\right)^{2}\left(\hat{F}_{\mu\nu} - \chi_{\mu}\hat{F}_{5\nu} + \chi_{\nu}\hat{F}_{5\mu}\right), \qquad (28')$$

which also holds for the p = 1 non-Abelian case⁶⁾. (28') and (28) are the p = 1 and p = 2 members of a hierarchy of such relations pertaining to the GYM systems in 4p-dimensions and their projections on S^{4p} {r|r.r = 1} R^{4p+1} .

We now subject the action (23) for the special case p=2 to the variational principle. The resulting Euler-Lagrange equations are

$$D_{a}\{\hat{F}_{abcdi}, \hat{F}_{bcd}\} + r_{b}D_{a}\{\hat{F}_{abcdi}, \hat{F}_{cd}\} = \{\hat{F}_{abcdi}, \hat{F}_{abcdi}, \hat{F}_{bcd}\}, \qquad (29)$$
where D_{a} are the conformal covariant derivatives $D_{a} = r_{b}L_{bac} + [\hat{A}_{a}, \cdot].$

Finally, the p = 2 BPST instanton and anti-instanton field configuration (13) is given by the following most general spherically symmetric gauge connection on \mathbb{R}^{9}

$$\hat{A}_{a} = \alpha \Gamma_{ab} \Gamma_{b} \qquad (30)$$

Notice that α , which is a function of $r_a r_a = 1$, is a constant. Substituting \hat{A}_a from (30) into the Euler-Lagrange equation (29) we find

$$8(S_{ee}-5)(\alpha^{2}-2\alpha)^{3}(\alpha-1) r_{b} \{\Gamma_{abcd}, \Gamma_{cd}\} = 0$$

$$\Gamma_{abcd} = \{\Gamma_{ab}, \Gamma_{cd}\} , \text{ cycl. perm. } b, c, d.$$
(31)

It is remarkable that (31), pertaining to the case p=2, has the solutions $\alpha=0,2$ (three times), $\alpha=1$ (once) which, apart from the degeneracy for the $\alpha=0,2$ solutions, is the same as for the p=1 case⁶). In fact for arbitrary p there is always the solution $\alpha=1$, along with the degenerate solutions $\alpha=0,2$ ((2p-1) times). The latter (degenerate) solutions lead to pure-gauge connections, thus we have the unique solution

$$\hat{A}_{a} = \Gamma_{ab} \Gamma_{b} , \qquad (32)$$

for all p. To extract from (32), the SO(4p) valued gauge connections pertaining to (13) we follow ref.[6] by performing the gauge transformation

$$\mathcal{L} = \exp \left[i \int (r_{4p+1}) \Gamma_{\mu s} r^{\mu} \right]. \tag{33}$$

This removes the $\Gamma_{\mu s}$ components of \hat{A}_a in(32), thus leaving \hat{A}_a only O(4p)-algebra components. Then A_μ , the connections we seek, can be extracted from \hat{A}_a using the definitions (17). For the following choices of the functions $f(r_{4p+1})$ in (33)

$$f(r_{4p+1}) = \frac{\cos^{-1} r_{4p+1}}{(1 - r_{4p+1}^{2})^{3/2}}$$
 (34a)

$$\int (r_{4p+1}) = \frac{\cos^{-1} r_{4p+1} - Jt}{\left(1 - r_{4p+1}^{2}\right)^{1/2}}$$
(34b)

we find, for the required 4p-dimensional BPST instanton and anti-instanton connections, the two gauge equivalent expressions

$$A^{\mu}(x) = \frac{2}{4+x^2} \Gamma^{\mu\nu} X_{\nu} , \qquad (35a)$$

$$\mathbf{A}^{\mu} (x) = \frac{2}{(1+x^2)X^2} \Gamma^{\mu\nu} x_{\nu} . \tag{35b}$$

References

- 1. B. Grossmann, T. W. Kephart and J. D. Stasheff, Commun. Math. Phys. 96, 431 (1984).
- 2. A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, Phys. Lett. 59B, 85 (1975).
- 3. D. H. Tchrakian, Phys. Lett. 150B, 360 (1985).
- 4. D. H. Tchrakian, J. Math. Phys. 21, 166 (1980).
- See for example, R. Jackiw in, Lectures on Elementary Particles and Quantum Field Theory, 1970 Brandeis Summer Institute in Theoretical Physics, ed. S. Deser.
- 6. R. Jackiw and C. Rebbi, Phys. Rev. <u>D14</u>, 517 (1976).
- 7. B. Grossmann, T. W. Kephart and J. D. Stasheff, Commun. Math. Phys. 100, 311 (1985).
- 8. S. L. Adler, Phys. Rev. <u>D6</u>, 3445 (1972).
- 9. S. Fubini, CERN Report (unpublished).