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Statics and Dynamics of Classical
Yang-Mills-Higgs Systems: ~Some Recent Developments™

Jiirgen Burzlaff

School of Theoretical Physics
Dublin Institute for Advanced Studies
10 Burlington Road
Dublin 4, Ireland

ABSTRACT

Some classical Yang-Mills-Higgs solutions, all characterized by an
underlying nontrivial topology, are studied. First, the explicit
construction of magnetic n-pole solutions is briefly reviewed. Second,
theories which allow for noncontractible loops and static saddle points
which result from this type of nontrivial topology are exhibited. We
then turn to time-dependent solutions.  Here, we first state the
underlying ideas for the description of the scattering of slowly-moving
monopoles.  Finally, Segal's theorem is discussed and the existence
proofs for time-dependent vortices and monopoles, which apply to the
equations of motion without any approximation, are outlined.

* Lectures given at the 4th Symposium on Theoretical Physics ‘at Seoul,
Korea, August, 1985,

I. Introduction

We have good reason to believe that gauge theories can be used to
describe all the known interactions.  In particular, we believe, that
U{1) gauge theory describes-electromagnetism, the gauge theory of
general relativity describes gravitation, U(2) gauge theory describes
the electroweak force and SU(3) gauge theory describes the strong
force. ~Some physicists even think that a grand unified theory based on
the gauge group SU(5) or SO(10) or E(6) or another group unifies the
description of the electroweak and the strong force. Although the
strength of our faith varies considerably from electromagnetism to
grand unified theories there is no doubt that gauge theories deserve a
careful study.

In these lectures, we will discuss, :in particular those gauge
theories for which the Higgs mechanism has been invoked to explain the
short range of the forces. This mechanism has been used in the
phenomenological U(1) gauge theory of superconductivity by Landau and
Ginzburg]), in the U(2) gauge theory of electroweak interactions by
Weinberg2), and by salam3) and in grand unified theories?). we will
study all of these Yang-Mills-Higgs theories.

Given the importance of gauge theories it is also natural to study
their classical solutions. As far as electromagnetism is concernad,
this is-an integral part of the-education of any physicist, and its
relevance cannot be disputed. As for nonlinear gauge theories, the
relevare of classical solutions is leéss apparent.” On the other hand,
however, these theories admit soliton-1ike 'solutions which cannot be
present in a linear theory, such as vortices in the Landau-Ginzburg
model, saddle points in the SU(2) part of the bosonic Weinberg-Salam
model, or monopoles in grand unified theories.

In the following, I will address myself to -all of these solutions,

- discussing static as well as time-dependent versions. Naturally, I

will concentrate on work in which I am myself involved at the moment,
that is the study of static saddle points, and the theory of global
existence proofs for time-dependent solutions. Related, but by no
means less relevant, work can only be sketched and used as a. point of
reference in the 'small amount of time available.
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X N 5
0,(%) = Plexpifg Ajdx')o(Xo) = : wo (Xo)s (2.5)

which defines a map
w: S0 La/H,

where H is the Tittle group of ¢a(X,). We can therefore study the
homotopy group mp_y(G/H) and its homotopy classes [(A,¢)]. If G acts
transitively on S*°1, then [(A,e)] is equal to the homotopy class [e]
defined above.

With the above conditions on Di¢ we can furthermore show that the
winding number in case (A) is proportional to the magnetic flux:

LT 2 2.6a
(A) n 21 131 flx|<r 41z ( )

and that the winding number in case (B) is proportional to the magnetic
charge: :

(B) n=—lim J rdcﬁaaeg. (2.6b)

1
4n Yy |XI=

The corresponding configurations are called vortices and monopoles,
respectively.

In the following, we will discuss monopole solutions as well as
vortex solutions. We will also become acquainted with a different type
of nontrivial topology. In this case, it is not the topology of
configurations but the topology of families of configurations which is
relevant. . This nontrivial topology leads to saddle points and because
it is less familiar it will be discussed in more detail later.

III. Construction of magnetic monopole solutions

Let me remind you of one line of essential steps which led to the
construction of magnetic monopole solutions: We restrict our attention
to case (B) now, i.e., we discuss SU(2) gauge theory with a Higgs field
in the adjoint representation. We furthermore let 1 go to zero while

keeping the boundary condition |e} +1 for rse . This is the.
Bogomol 'nyi-Prasad-Sommerfield {BPS) 1imit6)7) . our assumptions
simplify the search for static solutions in the A,=0 gauge to such an
extent that we will be able to construct magnetic monopole solutions
explicitly.

Because of our assumptions we can formulate our problem as a
problem of finding time-independent solutions to pure SU(2) gauge
theory on R4, In fact, all we have to do is to identify the gauge
potential Ag with @. 'Then, we see that the Lagrangian

L = _%ngng (3.1

and the corresponding equations of motion

DYF,, = 0 (3.2)

reduce to (2.2) and (2.4) for xg4-independent configurations in the BPS
Timit r=0.

We are left with the problem of finding xg-independent solutions
to (3.2). Because of the Bianchi identities

DVF:\) = 0, F:\) = %Gp\:chpo, (3.3)

which hold by virtue of the definition (2.3a), we can simplify our task
even further. .If we are able to find a solution to the self-duality
conditions

Fov = Flys (3.4)
we are guaranteed a solution to the equations of motion (3.2) and

therefore to (2.4) in the BPS limit. With our identification Agz=e¢, the
self-duality conditions (3.4) are the Bogomol'nyi equations6)

B.:=}e.. FiK = & D, o (3.5)

The identity



E = aninl +3/d3%(8] = (Dle),)2 (3.6)

shows that solutions to the Bogomol'nyi equations minimize the energy
in a topological sector and are therefore stable.

The next step is to find a linear system associated to (3.4),
i.e., we are looking for linear equations whose consistency conditions
are (3.4). This is achieved by the linear system '

(Agy - EAg o)k = i34, -gaaz)k=:i0&k,&,a=l,2, (3.7)

in complexified coordinates x,€& € with

X = X,Qu Q= (ig, 1), (3.8) .
and

Ay dx% = A dx¥, (3.9)

KEGL(2,C), det k=1. (3.10)

The compatibility condition for (3.7) is exactly the self-duality
condition (3.4) in complexified coordinates (3.8). This guarantees
that for any k(g,x) with (D, kK)k~1 Tinear in £, the A, o defined in
(3.7) are automatically self-dual. Implicitly, we have found
solutions.

To construct solutions, we must pick k's for which (Dd K)k~T is
Tinear in ¢ and can be calculated explicitly. Furthermore, we are only
interested in solutions with the following properties: (i) A € Su{2)
in some gauge, (ii) A, x4-independent in some gauge, (iii) [Agl =le+1
for r +» with arbitrary winding number ne Z (iv) A, smooth, C% say.
We will discuss the explicit construction and the conditions (i) and
(ii) and refer to the literature8) as far as the conditions (iii) and
(iv) are concerned.

The explicit construction of Ay is possible if we find a G(g,x)

and k. holomorphic in CuC, with

det G=1, D; 6=0, k-G=k4, £€C. (3.11)
Here C is-an annulus in the g-plane and C4(C.) is the inside (outside)
of C. Now

(0, ky)ki! = (Dg kDKZT, geC, (3.12)

holds, which shows that both sides of this equation are linear in g.

Furthermore,
. 0,,,0,~-1 .0
A&.1 = 1(3&] k+)(k+) s k+:=k+(5=0),
(3.13)
Ryip = 10055 KD(KDT, K 2= kalE=s).

We have again shifted the problem. Our task now is to guess the
right G, which is called a transition matrix. This task is
considerably simplified by casting the Prasad-Sommerfield monopole7)
with n=#1, which had been found by a different method, into the above
language. For the Prasad-Sommerfield monopole, the transition matrix G
reads

D

Y

Y.a~Y
j , ol1) —eurv E78

0 ¢! (3.14)

Y = u-v, u=il{xpiEtxpn), v=i(x]]+x12£"]).

Because G is triangular it is easy to write out the condition kyG=k-
And to calculate kg explicitly, which, of course, leads back to the
Prasad-Sommerfield potentials.

The time-independence of the Prasad-Sommerfield solution and the
reality condition A € SU{2) can be checked on the level of the
transiton matrix G. To this end we transform G to



G =868 ' (3.15)
with
eV 0 0 -el
A= ’ A+ = . (3.16)
0 ev e’V gye” :

1

Because a, is holomorphic in CuC_, & can be split using k_=k_a"! and

E+=k+A+, which Teads to the same BotentiaIS because of Dga, = 0. The

G equivalent to (3.14) reads

eYop™Y =Y

! . S (3.17)
-1e~v ~Y

o

2

G is independent of X, because v is independent of Xg and satisfies the
condition '
(

G(E,U,V) = G _E—]a-va"u)! (3-]8)

which can be shown to guarantee A,€5U(2). The conditions (iii) and
(iv) are more difficult to check.
After 't Hooftg) and Polyakov
monopole and Prasad and Sommerfield”) had explicitly constructed the
corresponding solution in the BPS Tlimit, it took five years before
Ward]1), whose approach we have sketched here, and, independently using

10) independently had found the n=#l

a different method, Forgécs, Horvath and Pal1a'?) were able to write down

the corresponding 2-pole solution. Its transition matrix reads
eY-EZ_Y gze"Y
g - Y+n2/4 . (3.19)
g 2" (v2+a/8)e”Y

After this breakthrough everything fell into place. The transition

matrix (3.19) was generalized to

K =K
e N-1yi(-1)ng "n-1 n K

= n-1
Hn (-e)"%

(3.20)

@
]
.

-n e‘Kn—] Kn-1

£ Hpe

With appropriate conditions on the coefficients of K,_y and Hy, which
are polynomials in ¥, monopoles with arbitrary winding number and the
maximal number of parameters can be identified. For n=2, in principle
the constraint equations have been so]ved]3) and the potentials and the
Higgs field can be constructed explicitly, although nobody has done so.
We do not have time to discuss either Ward's construction in detail or

the different approaches to the monopole prob1em5)]2)‘4).

IV. Saddle points (Sphalerons)

4.1. Noncontractible lcops

We now ask the question whether the minima in the topological
sectors are the only smooth static finite-energy solutions. The answer
will be "no". In fact, we will show that there exist smcoth
time-independent finite-energy saddle points. To find these we cannot
use the Bogomol'nyi equations {3.5) or the associated linear system
(3.7). We can, however, use topological methods. It will turn out
that in this case not the nontrivial topology of the set of
finite-energy configurations itself is relevant but the nontrivial
topology of the space of loops of finite-energy configurations.

The underlying idea can be best explained with a simpie
finite-dimensional example: 'Let us consider the torus sixs! and the
function H(x) which for each point x on the torus is given by the
height of this point with respect to the plane on which the
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torus sits. The question we want to answer is whether the function H
has a saddle point. The answer is positive: P is a saddle point, and
a way to prove this is the following: For our problem, there exist
noncontractible loops (NCL) L and the minimum of H with respect to all
NCL of the maxima on each loop is a saddle point. This way of finding
a saddle point is known as Morse theory or Ljusternik-Snirelman
technique or min-max procedure.

If we want to apply this idea to Yang-Mills-Higgs systems we must
replace the manifold slxs! by the manifold of finite-energy
Yang-Mills-Higgs configurations and the function H by the energy
functional E[Aj,¢]. Taubes'® has shown that the standard Morse theory
does not apply to this situation because some of the necessary
conditions do not hold. Nevertheless he was able to give a weaker
analog of Morse theory and establish the existence of an infinite
number of finite-energy saddle points in each monopole sector of SU(2)
Yang-Mills-Higgs theory with a Higgs triplet in the adjoint
representation in the BPS limit, which is case (B) above.

Here, we will be content with less complicated examples. ~The toy
model we will study first is o4 theory]a- We will then discuss (C)
SU(2) gauge theory with a complex Higgs doublet in 3 space dimensions
(G=SU(2), »=4, D=3). Case (C) is the SU(2) part of the bosonic
Weinberg-Salam model and therefore an interesting and potentially
relevant example.

The o theory we want to study is that for a complex field in 1
space dimension with energy functional

E = J7 dx{3(age)*(ayge) + %(M?—U?}. (4.1)

Under the necessary smoothness conditions

Tim a(x) = o7 = el® (4.2)

X +-c
holds for finite-energy configurations. A loop of these configurations,
i.e., a family of Higgs fields parametrized by u(0su<2r) with
®(u=0) = ¢(u=27) = 1, now obviously defines a map

¢ :slasl,

Therefore, the space of loops is topologically nontrivial.
Furthermore, we can easily write down noncontractible loops in the form

o(i,x) = F(x)eM+1-F(x) (4.3)

with f +1 for x+-=, where different loops are given by different f's.
Our next step is to maximize the energy on each loop. Because

E(w) = Zjdx{f'zsinz,;+ 2aF2(1-7)2 sint L (4.4)

holds for (4.3), we are led to u=w and the maximal configuration on the
loop

o= 1-2f(x) € R. (4.5)

To exclude the trivial configuration we exclude f+1 for x++= which
results in f +0 for x ++« by the finite-energy condition.

Before we minimize the energy for (4.5) we check that a stationary
point with respect to variations within the ansatz (4.5) is a
stationary point of the full energy functional (4.1). We can do this
explicitly by proving that the variational equations of (4.4) with p=w
are the equations of motion of (4.1) for the ansatz (4.5).

Minimization now guarantees a solution and the minimum of the energy
for the real ansatz (4.5) is, of course, attained by the kink solution

o = tanh./%‘—(x-xo), (4.6)

which is stable in a real o theory, a saddle point however in a
complex o4 theory.



For case (C) we proceed analogously. Because a complex Higgs
doublet breaks the SU(2) symmetry completely we must study

15(G/H) = w,(SU(2)) if we are interested in finite-energy configurations,

and n3(SU(2)) if we are interested in loops. This shows that there are
noncontractible loops and we follow Manton17) to construct some: For

a nontrivial map from 53 to S3 the obvious ansatz is

sin u sin s cos ¢

sin u'sin 6 sin ¢ [ (eRe) +i{eRe)?
0Re = w(n) , 0% = (4.7)
sin p cos e (¢§e)3+i(¢§e)4
COS u
{0gugm). With
1
1
W= (4-8)

cosp ~sinu
sinu COSH

we have achieved
2=(6=0) = m (4.9)

and have defined a loop ¢=
To find the corresponding A7, we write

v = 0=(9), u=esu(2) (4.10)
and solve
3=+ 1ATe™ = 0 (4.11)

for Ajy:

AT = i(aU") (U (4.12)
The noncontractible loops are now

¢ = h{r)e= + [1-h(r)] (4.13a)

ie'lll

cos ul’

A; = f(r)AY (4.13b)

with h>1 and f>1 for r +=. Here, we have used all the gauge freedom
to achieve (4.9) and x;A;=0. Given the noncontractible Toops we will
use the min-max procedure to establish the existence of a saddle point
in the next section.

~4.2. A saddle point in the SU(2) part of the bosonic
Salam-Weinberg model

For our toy model we went through the following procedure: We
maximized the energy on the loops, checked the consistency of the
resulting ansatz, and minimized the energy for the ansatz., If the
minimum is obtained, we have found a solution. We want to repeat these
steps here for the loops (4.13).

First, we calculate the energy. This yields

E = 4vf:dr{4f'2 sinyu + strzh'2 sinlu

8.2 2 il 212912 <54
+ —fC(1-F)¢ sinTu + Iarc(hc-1)¢ sin™u
2 ' (4.14)

+ [n2(1-£)2 sinu - 2Fh(1-h) (1-f) cos?u sinéu
+ £2(1-h)2 cos? u sin ull.

We find that if the conditions

0<f,hs1l, (4.15a)

(1+/2)h(1-f) > f(1-h) (4.15b)



hold; then u=7/2 is a maximum. :The corresponding configurations are

o = (We)ad), a=i%E,

(4.16)
A;= 4 2'Fél") (a0)0",
which is the ansatz written down by Dashen, Hasslacher and Neven!8)
long ago and later independently by Boguta]g),both before NCL in this
model were studied. To make the existence of a saddle point less
mysterious we have discussed the underlying topology.

Next we have to check that the variation within the ansatz (4.16)
leads to the full Euler-Lagrange equations for the ansatz (4.16). This
can be shown explicitly. Furthermore, it can be shown that the ansatz
(4.156) supplemented by aj=0 for a further U(1) potential is not
compatible with the U(2) gauge theory, which is the full bosonic
Salam-Weinberg model. We will come back to this point Tater.

" For SU(2) gauge theory, we can go on and establish the existence
of a solution by proving that the energy for the ansatz (4.16)

E = 4nf°(;dr(F'2 + 3rly'e
(4.17)
+ LZFZ(F—Z)2 + 3212 + Jr2H(He2))
2r

attains its minimumZO). That this is likely to happen-can be seen by
inspection of (4.17). In fact, the submodel (4.17) is topologically’
nontrivial because the finite-energy condition (with the necessary
smoothness assumptions) leads to the boundary conditions

0,2+— F—+0. (4.18)
r+0 r +e

The boundary conditions (4.18) show that there are two inequivalent
classes, and the minimum in the nontrivial class is our candidate

solution.
For a rigorous proof, we use the Tyupkin-Fateev-Shvarts methodZ]),

whose essential steps are the following: First, we consider a
minimizing sequence (Fp,Hy),

Tim E[Fp,Hy) = inf E, (4.19)

n 4w

and prove that
(P oI = (e (FZer?ig?) + FR(T) + DERE (4.20)

holds. Second, we show that the Hilbert space defined by (4.20) has the
Bolzano-Weierstrass property, i.e., each sequence in this space has a
weakly converging subsequence. This defines a weak 1imit (Fy,Hy).
Third, we show that the energy functional has the property of
sequential weak lower semicontinuity, i.e.,

E[FgysHy ] \<n112 E[Fp,Hy ] (4.21)
holds. However, because the r.h.s. of (4.21) is inf E, the equality
sign holds and (Fg,Ho) attains the minimum. We have proved the
existence of a solution. .

There are, however, still a few points to be clarified:
(i) Because we considered the nontrivial class we chose Fp+2 (r+0)
for our minimizing sequence. We must show that Fy -2 (r=0), i.e. that
we have not proved the existence of the trivial solution with E=0.
This is ruled out by the inequality

r 12 r %
IFq(r)-2l € (f dsFy“(s)f ds) < c/7 (4.22)

with an n-independent constant c. It shows that for sufficiently small
but nonzero r,F is already arbitrary close to 2. (ii) -We must prove
regularity which is a rather technical proof and will be omitted herezo).
Finally, (iii)  We must reconsider the question of instability because
the inequalities (4.15) are not guaranteed to hold for the solution
(fo,ho). Instead of trying to prove (4.15) for the solution we simply

generalize the ansatz {4.16) to
@ =cose +i%X sin 6. (4.23)

Now, (4.16) is the special case @=n/2 of the family of ansatze (4.23).
The corresponding energy is

E = 4WI;Hr(F'2 sinZo + 3r2uh2
(4.24)
+ &l sin o + 282 sint e+Y2),



which implies
E(Fn/z, H,"/z, 0 < 11/2) < E(F'"/Z, Hﬂ/z’ 0 = 7\'/2). (4.25)

Qur solution is a saddle point.
We know already that we cannot embed our SU(2) solution into the
bosonic Salam-Weinberg model. In fact, for this solution the U(1)

current
J; ~ g'le*Dje - (Dje)*e] (4.26)

is nonzero and we cannot satisfy the U(1) equation ajfij = J; of the
U(2) model by putting a;=0. Klinkhamer and Manton 22),however, adopt
the attitude that the nontrivial topology of the Toop space is reason
enough to expect the existence of a solution and that the SU(2)
solution should be a good approximation for g'<<l. They therefore
calculate the first order correction in g' to the SU(2) solution and
the energy of the solution with a result of approximately 10 TeV..  They
find that in this approximation the U(2) configuration has an electric
dipole field with magnetic moment u=0.216 GeV™1(x=0).

This concludes our discussion of the classical solution itself.
What is left is a discussion of its relevance. Kuzmin, Rubakov and
Shaposhnikov23) have made some contribution to this discussion together
with some calculations of the baryon-number nonconservation by
electroweak processes. They argue that, whereas at T=0 instantons
describe the tunnelling between topologically inequivalent vacua, for
higher temperature the system can pass over the barrier between the
different vacua and that the dominant contribution to the rate of the
vacuum decay comes from the saddle point. The aim of their calculation
is to estimate the generation of baryon-asymmetry of the universe by
electroweak processes. The result is negative for a second-order phase
transition and nonconclusive for a first-order phase transition, and
more work has to be done to give the final answer to the question of
the relevance of saddle points.

V. Remarks on the scattering of slowly-moving monopoles

Bafore we turn to the discussion of existence proofs for
time-dependent solutions of the exact equations of motion I would like

to make a few remarks on some exciting new results describing
slowly-moving monopoles. These results are based on-an idea by Manton24),
Manton argues that the scattering of slowly-moving BPS monopoles is
controlied by a geodesic motion in the parameter space of the static
multi-monopole solution we have discussed before.

To find these geodesics Manton suggested to determine Ay first by

solving Gauss's law
D;E; = [Dye,0] (5.1)

for the n-pole configuration (Aj(s(t)), s(s(t))) with 4n time-dependent
parameters s, (For time-independent s this configuration is the
static solution discussed above.) The next step is to read off the
metric Is, from the kinetic energy term

E o = HAEZES + (D 0)2(D 0)%] = 6, 545" (5.2)
Given the metric the final task is to calculateé the geodesics.

Because a lot has heen learned about the parameter space since
Manton put forward his idea, Atiyah and Hitchinzs) were able to carry
out his programme without following literally each step. Using general
results and symmetry considerations they were able to write down the
metric for the 2-pole solution and find some interesting geodesics.. To
interpret these geodesics one has to know that 3n of the 4n parameters
are the coordinates whose time-derivatives are the momenta, and that n
of the 4n parameters are phase angles whose time-derivatives are the
electric charges. - With this 1hterpretation one sees that monopoles can
be converted into dyons, which is the most exciting result Atiyah and
Hitchin found.

VI. Global existence proofs

6.1. Segal's theorem

We go back to the discussion of the full Yang-Mills-Higgs
equations ‘without any approximation. This is, of course, a difficult
problem, and we have to be content with some mathematical results and
cannot expect to make easily contact with the results of the above
treatment of monopole-monopole scattering. The result we will derive



is that of global existence of solutions which should act as an
underpinning of all approximation techniques.. We will show that for
initial value data from certain spaces solutions exist and do not
develop singularities. That this is not a physicaly irrelevant
statement can easily be seen by comparing this result to the situation
in general relativity. There, a global existence proof does not exist.
In fact, it is known that regular initial value data can develop a
black hole singularity in a finite time.

Qur existence proof is based on Segal's theoremZG)

, which we are

going to state, discuss and illustrate now.

Theorem: Let W(s,t) be a function from ordered pairs (s»t) in T=[0,=)
to linear, continuous transformations on a Banach space B, such that

WL, W(E',t) = Wit ,t), Wit,t) =1, (6.1)

for tgt'<t". For each teT, let K¢ be an operator on B which,
uniformly on each finite interval in T, is locally lipschitzian:

\\J/ HKt(u)—Kt(v)Ilsf(c,tﬂiu-vlL {6.2)
t',c u,veB flc,t")

Hull, flvii<c
te [0,t']

and such that K (u) is a continuous function of (t,u)e TxB.

Then for any given element uj of B, the maximum interval [0,t)
of existence of the necessarily unique continuous function u from such
an interval to B such that

t
ult) = W(t,00u  + Ju(t,s)K_(u(s})ds (6.3)
0 o s
has positive length, and is either all of T, or else
flu(t)l] »= as t-t. (6.4)
In his proof, Segal considers the sequence

U (t) = W(t,00u + fult,s)K_(u (s))ds. (6.5)
n+1 0 0 S n

He shows by induction that upsy is continuous and that up does not

[V}

blow up -locally, if uy is continuous and its norm is bounded. This
shows that u, is a sequence in B. Using the Lipschitz condtion (6.2)
he can then show that u, is a Cauchy sequence. Because B is a Banach
space the limit of the sequence up exists, and it can be shown that it
satisfies the equation (6.3). This is the local result. To establish
the global result assume that (6.4) does not hold. Then, by repeating
the*gbove arguments for t, we can extend the interval of existence to
[0,t+¢€). ~If the norm never blows up we can extend the interval of
existence to [0,=).

So far we have only discussed the integral equation (6.3). Segalzs)
also addresses himself to the corresponding differential equation

d

Eiu(t) = Ault) + K¢(u(t)), (6.6)

where A is defined by

lim L{W(t+e,t)-Tly = Ay, yeDa. (6.7)

E+O €
He shows that ueDp for t ¢ [0,t) and that u satisfies the differential
equation (6.6) if the following conditions hold: ({i) A generates a
1-parameter semigroup on B. (i1} K¢(u) is cl. (411) u satisfies the
integral equation (6.3). (iv) u(ty) € Dp.

Let us illustrate Segal's theorem by appiying it to the simple

example of @4‘theory. The equation of motion is

2

20 = aiqs-@?’, o(t,x)ER. (6.8)

The corresponding integral equation reads

Wt) = ePty(0) + fzdseA(t's)K(‘b(s)) (6.9)
with
9 0 1 ( 0 }
Vo= , A= , K= . 6.10
T=310 a%-mz 0 m2®-¢3 ( )

For the linear problem (K=0) alone we have the result that A generates
a 1-parumeter semigroup on each Sobolev space HgyiXHg with s3>0, where
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6.2, Time dependent vortices and monopoles

The general theory we have discussed above has been applied to
gauge theories by many authors, including mm@mdmwv himself. As far as
the global existence proof is concerned, the main contributions have
been made by Moncrief?8) for the Maxwell-Klein-Gordon field in 2+1
dimensions, and by Eardley and zo:n1mmﬁm@v for Yang-Mills-Higgs fields
in 3+1 dimensions. The treatment of these authors, however, excludes
topologically nontrivial fields, which are those we are particularly
interested in. Using the background field method, the mm:m1m_
techniques have therefore been adopted to treat vortices30) and
ao:ovodmmuﬂv. Here, we will discuss the main points of the proofs
without going into the many technical details.

For the Landau-Ginzburg theory (A), we subtract the background
fields Ay, o

o] [o]

A= Agray, ¢ = o, (6.23)

and impose the following conditions on them:

o] [+] o o]
>O = wﬁPA. = m.ﬁe = Ou vym>.m = Ow
o o]

sup_laj 9j...0] <= sup_lasay...Ajl <=, m=0,1,2, (6.24)
Mm%m e wmwm JX

m m-1
o oo o .00 o )
lel2-1€12, vio = a0+ iAjeeH,, Fy € H,, wm>um Hye

It can be shown that background fields which satisfy these conditions
exist. In fact, the known rotationally symmetric static vortex
moACﬁio:mwmv satisfy all of these conditions.

We now work with the subtracted fields

b= AmO.TOum._vv._.wmqu.Guﬂv'
(6.25)
Pyr=3ta,, me = atd+iagd,

and base our choice of Banach space on the results for the
corresponding linear problem given by the operator A of the
Landau-Ginzburg model. ~Because A generates a l-parameter semigroup on
each Sobolev space His): - Axm+_x:mva for s3>0, we attempt to work in
:on first. This is not possible, as can be seen by looking at the
component K7= -iag¢. If ag,¢ € Hy we cannot conclude Ky€ Hy. However,
if f& Hy, then the inequalities (6.12) guarantee ||fllj» <=~ Therefore,
35,0 Hy Tmplies Ky€ Hy. We can work in xﬁﬂv, which because of the
higher order, will complicate the global existence proof considerably.

Another problem we have to face is a result of the gauge freedom.
If we impose the Lorentz condition a,a¥ = 0, as we do, the fields must
satisfy the constraint

bag-agasay = il(o+e)(n*-qage) - (449 (x+iagd)], (6.26)
so, not only do we have to prove that a solution exists but we also
must prove that the constraint (6.26) is propagated. Both can be done
locally in IAAV for the integral equation and in ISv for the
corresponding differential equation.

For the global existence proof we must show that the xﬁ_v - norm
of ¥ does not blow up. For this, it is not enough to use energy
conservation alone. In addition, we must show that the higher order

pseudo-energy

E, = &amxﬁwAmﬁmuvm + wﬁmimwxvm + _cmcoe_m
(6.27)
2 i o) 2
+ _oﬂoqe_ + mAecﬂa + ecwev }
does not blow up. By repeated use of the Gagliardo-Nirenberg
inequalities (6.12) one can show easiest in Coulomb gauge that for a

local solution the gauge invariant quantity (6.27) satisfies



t

1 3

Ez(t) < EZ(O) + Gt + 3C]t + fods CéEz(O) o
Co(t-s )

+ Cys + 3Cys3le 2lt=s)

This guarantees that E, does not blow up, and some further estimates
show that the H(1) - norm of ¥ does not blow up either. This completes
the global existence proof. What is left is to add the result for the
winding number n: n(t) is defined for all t and equal to n(0) given by
the background field.

In the monopole case3]), additional difficulties have to be
overcome. Again, we try to model cur proof on the topologically
trivial case which in this case is the Eardley-Moncrief proofzg).
However, for.a technical reason already the choice of Sobolev space
must be different. Eardley and Moncrief work in the Ay=0 gauge which
implies the constraint

B-iFO]- = [Foi’Ai] - (Doo.Tao)Ta =1 p. (6.29)

They formally solve this constraint:

FS, = - Lasadc el (6.30)
4 ‘

Ix-x"1

and show that for their choice of Sobolev space:

(A1,Foi»®,Do0) € (HpxH1)Z, (6.31)
nge Ho holds. ‘In the topologically nontrivial case, we cannot prove
c
Foi€ Ha- ‘

In the topologically nontrivial case, we subtract the background
o]
fields o and Aj, and put all the following fields into Hy:
[o]
ai,atai,bi S eijk( ajak + 333K + [Aj’ak])’

o
8,340,05 t = 3;0 + aj + 2aje + Ajo.

That means, we work in a higher Sobolev space for which we have to pay
in the global existence proof. Furthermore, we introduce additional

fields bi and b3 into the equations of motion, which means there are
additional -constraints whose propagation in time has to be guaranteed.
AT1 these problems can be solved and a local existence proof in the
spirit of Segal27) or Ginibre and Velo33) can be given. Global
existence is established by pushing the Eardley-Moncrief technique to
the necessary order.

A1l of these results are very technical. They constitute,
however, the first rigorous results concerning time-dependent vortices
and monopoles. They may therefore help to decide definitively whether
vortices and monopoles are solitons in the sense that they emerge from
a collision essentially unchanged.
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