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1. Introduction

Recently there has been a great revival of theoretical interest in the
one-dimensional barrier crossing problem, and its applications to nmany physicals

—chemical systems/1-7/.The problen has been modelled essentially by a 'Brownian

particle' moving into a double-well potential V. S

We mention the results for multidimgnsional systems in the overdamped znd under-
damped 1imit/9/; the effeéts of anharmonicities in the potential form/7/, the
role of non-Gaussian white thermal noise/1,10/, the effect o a rats enhancemen’
via parametric fluctuations/11/ and finally the influence due to the non-Markov:
statistics of the heat bath/2-6/.

At the same time some authors addressed the problem of the derivation of
exact Langevin equations(LE), i.e. the LE derived from a Liocuvilie eguation;

and of their reduction to the mathematically more tractable phencmesiolomiccl

=

LE employed for modelling real physical-chemical systems/12-15/. Monhanty et al.,

studied in great detail the time dependence of the momenta of twé Drownian
g

particles of mass M interacting with a harmonic potential in a fluid of =a

of mass m. Under the conditions M >y m and WTLL, where Lo iz

of the Brownien cscillator and T, is the relaxation time of the bath particles,

very general LE can be derived. Eventhough suzh ceonditions

4.
TONLY



assumed at in the gquoted literature/1,11/, the structure of these exact LE is

still more comglicated than that of the phenomenological LE actually treated.

In particular, the friction coefficients are functions of x(t), where x(t) is

the separation of the oscillator particles, and the noise terms are generalized

{(i.e. not éurely additive or purely multiplicative), Gaussian and non-stationary.

The various approximations which must be made to reduce the LE derived irom
the Licuville equation to the simple one-dimensional LE, so far discussed, are of
three types: (i) The terms which describe the rotation of the oscillator in the

fiuid must be negleééed; (ii) It is necessary to approximate ad hoc the x(t)

. dependence of the friction coefficients which arises from the interactions between
the Brownian particles; (iii) The term involving the mean force exerted by the
fluid on the oscillating Brownian particles must be either neglected or approxi-
mated by a linear term in x(t)~xo, where Xy is the equilibrium interparticle
separation of the oscillator.

With a few necessary restrictions, detailed in ref.15, we can finally recover

e phenomenological LE

o

v
X<V,

g N'x)-dv - 2X, XV ~ }xle\/ +.?Uc)+><"}/(t) , (1.1)

where £(%t) and yl(t) are white Gaussian noises with
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Di_ = >‘L kg L (k. Boltzmann constant) (1.2

Here V(x) denotes the harmonic potential Lbzxz/z. These LE have been obtained
first by Lindenberg and Seshadri/14/ by studying explicitly a specialized vers:
of a model Hamiltonian introduced by Zwanzig/13/ for a one-dimensional system

interacting with a heat bath. Such a model admits as a peculiar feature an exa
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Langevin equation that can be derived by direct integration. The LE o
be then recovered by employing the Markovian approximation which consists on
assuming that the exact noise terms are delta-correlated Gaussian stochastic
processes.

Although criticism on ref.15 is limited to the problem of the description
oscillating molecules in a fluid via one-dimensional LE with simple noise stru
most arguments introduced by Mohanty et al./15/ and by Lindenberg and Seshadri
apply also to the problem of modelling the decay of a metastable state. This
problem plays a central role in many areas of science, most notably in chenmica
kinetics, electron transport in semiconductors, and nonlinear opticts. In the
recent literature detailed experimental work has been ca?ried out by several

groups/16,17/ in order to answer-the basic question: To what éxtent is a one-



—dimensional barrier crossing picture applicable to actual physical-chemical
systems? Experimental ~discrepancies with the fundamental theory of Kramers/s/
have been explained by having recourse to one or more of the correcting mechan
isms quoted above. Memory effects due to the non-Markovian statistics of the
heat bath coupled (phenomenologically) to the 'Brownian particle' associated with
thé reaction coordinate x(t), are pointed out as being the most important cause
of the remarkably increased activation rates of a number of chemical reactions
in-the high frietion 1limit/1-6,17/. The consequence of including such additional
mechanism is a 'frequency éependent friction'/2-5/, which is supposed to account
$‘for the unclear separation between the heat bath relaxation time scale T, and
the 'mechanical' time scales related to the characteristic frequencies of the

driving potential V(x).

On the contrary, nobody has heeded the advice, implicit in the exact approaches

of ref.12, that friction terms appearing in the LE modeiling any single process
under ‘investigation may involve a dependance on the reaction coordinate itself
which generally will be non-factorizable. The present paper is aimed at extending
Linderberg ans Seshadri's approach to the case when the Brownian particle. is
driven by a doublefwell potential in the underdamped and overdamped limit. The
x-dependent fricticn terms are éhown to affect the rate of - escape over the

parrier (i.e. the relaxation process) distinetly in the two regimes. Our main

conclusion is that the specific nature of the coupling between the Brownian
particle and the heat bath cannot generally be neglected by substituting the
generalized friction term with an effective one (- >\eff§(t))/ld/, somehow  pro-
portional»to the solvent viscosity (hydrodynamic assumption)/i7/.

The organization of this paper is as follows. in Section 2 we discuss, via
projection operator techniques, the derivation of the LE (1.1)=(1.3) from
Zwanzig's model Hamiltonian. Corrections due to the presence of anharmonicities
in the Hamiltonién describing the heat bath and the coupling with the system of
interest are accounted for. In Section 3 we adapt the Lindenberg and Seshadri's
model to the problem of the decay of a metastable state. The corresponding
corrections to the Kramers' activation rates are estimated in the case of small
x~dependent friction terms both in the overdamped and underdamped regime. In
Section 4 Lindenberg and Seshadri's derivation/14/ of the LE (1.1)-(1.3) is im=
proved by taking into account the effects of non-Markovian statistics of the he
bath. Finally, in Section 5 we summarize our findings and discuss their implica

tions in the applications to chemical-physical problems.
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where ~al(x) is the 2N-dimensional column vector (a](x), ...,aN(x),f}, L.450)0 A )
_ w5 a

-
7

<
"

N
L

v ’
detailed derivation of the generalized LE, eq.(2.9), can be found in refs.13 and 14.

The related Liouvillian operator L defined as i[H, :[, where [..., ...]
F(t) is the initial condition-dependent portion whose statistical properties can

denotes the Poisson brakets, can be separated into an unperturbed part ( LO )
be assimilated to those of a Gaussian noise with zero mean value and auto-correlation

and a perturbation part ( L ):

I
functions
F \FT(") k T w2 cos [ Wu (t-t") o' F e L =Z(~fi.9_ +.ij\,§_>, (:
(o) B o)y = K h wy co (5.;_( vl (2.10) ° my 98, Py ,
»
L: P2 W Vi 2 -Z(mf&vg. -2 2 >a‘vcx).(z
In order to obtain the LE (1.1)-(1.3) Lindenberg and Seshadri choose a quadratic M 9x P v Jip M Jow

form for the coupling components a v(X) and, in addition, introduce the Markovian For clarity we give further details of our perturbation technique in the Appe

spproxination so that the random forces F(t) on eq.(2.10) result to be delta- This applies in the presence of a clearcut time scale separation between the heat

~correlated. bath relaxation process énd the mechanical driving by the potential V(x) - & T
An alternative procedure consists in employing an equivalent Fokker-Planck oy in notation of ref.15. Our final result is a FP equation of the type:
) 2
‘ 9 . - ' .
formalism. The corresponding Fokker-Planck(FP) equation can be obtained by means 5—{’: T(xr P)t) = Z_. E—:. ?(X' Pi JC) (
=0 &
of an adiabatic elimination procedure/18/ which allows us to eliminate the bath .
where f(x,p;t) is the reduced distribution function in the relevant canonical
veriables provided that ¢O T <1, where now 1/ %) denotes a suitable mechanical )
o coordinates of the system under study and Tr are the perturbation terms of
time scale related to the effective potential V{x). By changing the bath variables
) order r-th of the corresponding FP operator. In particular we find,
Do~ P, 9, — Q, =9, - &, (2.11)
v v - g—;; _%;3_ +>\[(x)9_ ) . (I
X .
the Hamiltonian eguations corresponding to the total Hamiltonian of eq.(2.7) can I()P
z
. ~ T=M[Hx)(kT3 L1 2p {
be re-written as 4 ' BT o— — ’ e
0 it M 0P

;Z:p/f’l

., . (2.12) where
}.) : ',\] () + % vaGv o, 00
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(ob
E’(N;X)E dt 22 A Q X)cos/ SN t)
\ L,
0 (2.18)
With the choice of ref.14 for a y(x),
H
a, )= [,x + B x"/2 (2.19)
we readily obtain<*)
Yr,x) = A,ow 20X s e X (2.20)

We remark that the FP equation (2.15)-(2.17) with the friction terms given by
eq.(2.20) corresponds  exactly to the LE (1.1)-(1-3). The Markovian assumption is
now implicit in the truncation of the series of eq.(2.15) at r=1.

' Before going beyond such an approximation by calculating E: , we briefly
discuss the critical choice (2.6) for the interaction Hamiltonian Hep- Although

a very general choice of HSB makes the model untractable, we can slightly improve

our understanding of its role on assuming that the linear term HgB is perturbed

by nonlinear corrections of the type:

for any n>1. The additional interaction modifies the perturbation part EJI of

the Liouvillian operator as follows:

- - i n / n-io .
Lo Lt(e‘i‘(z‘u‘)) “Zv [Qv bv ) - n Q v &,

(2.22)

©) n
H ' -
B~ H = Zv Q, b, (2.21)

Vv

"~ and [1

- 4y -

The third term on the r.h.s. of eq.(2.22) does not contribute to.our FP equation
(see Appendix). Without loss of generality we assume for instance n even so that

ﬁﬂI can conveniently re-written as:

L - ‘-El 3 + ( \II(K) - ;Z €Q:m

I

’ \D
” Ev ()0)5.?

1 2 " > .2 2 ] e, 00
- - & .
%‘ L QV ( w‘) VL G\; b\;(x)> DP H @\j v
On applying the perturbation technique outlined in the Appendix we find for P

the same formal expression of eqs.(2.16) and (2.17) respectively,

where V{x) now reads

V= Uw-

3
z

2 6} alw - 2 oot (") =100

and Y(H})exhibits an explicit dependence on kBT. The explicit dependence bn the

' temperature is due to the averages <ZQT Y taken over the umperturbed equilibrit

bath distribution (see Appendix).

The corrections to the isolated nonlinear potential U(x) are the exact couter-
part of the mean force exerted by the fluid on the melecular oscillator as it v
appears in the LE obrained by Mohanty et al./15/. If a y(x) and Eb(x) are chosen

to be polynomials in x, X’(rhx) assumes a form still resembling that of eq.(2.20):

Z ) (T ‘ B (2.2

«{ (M, x) =



It is noteworthy that the same kind of corrections to egs.{(2.16) and (2.17)
can be determined also on assuming that the heat bath consists of nonlinear oscillators
provided that nonlinearities can be treated perturbatively. If we add a nonlinear
perturbation term to HB in eq.(2.3) and change variables as in eq.(2.11), such a
result follows immediately from our perturbation approach. We conclude that the
T-dependence exhibited by both the phenomenological potential V(x) and the friction
terms K(Tik} see eqs.(2.24) and (2.25) - is general in its nature and should be
traced back to the intrinsic nonlinear features of the total system and namely of
;he Hamiltonians HB and HSB,.In Section 5 we discuss the physical relevance of such
-4 dependence for applications to chemical-physical systems. For the purposes of
Sections 3 and 4 however nonlinear corrections to HB+HSB can be disregarded with-
~out loss of generality.

With the choices of eqs.(2.3) and (2.6) for Hg and HSB’ we can easily compute

Ez of eq.(2.15). On employing our adiabatic elimination technique we readily
find
Lo o8 ) 27k T2 [-_?, 2 +ch>1} N
: : DPL ¢ ML H ox Ip
+ G (Mx) 2 [J.’.Q. SV 0D [k;{‘@. +_?,] - (2.26)
op L M oox % pooM

(XY

where o s

Qj t 2
S, [N, x)= L ds, Z 0, x) W} co5(f_o_v- s°> ds,
5 e 4

>, 2 {
° 0 v :
® °
- . ) 5
S, x) = _51: ds,{ [/ Q) Wleos| &y (s.g)ds,
> _— xJ i (2.
(132 W)
0 0 ’

4 S
(M) = 2 1ds, V70 g ) w?
§3 ) 5 E S, j %l Q.\)U() Q'\)Od w\i COS{% (So"st):} AS“ ' (2.

° °

The structure of E; is rather complicated. On following the procedure adopted for

[L » by choosing an exp]icit form for a V(x) and assuming the convergence of th

integrals in eqs.(2.27), %; 1 §§ 2 and é; 3 can be given the form of pofynomia]s

in x: eight new parameters (three from Q: 1 and 452 each and two from ég 3) contro
the non-Markovian corrections at the lowest perturbation order. In Section 4 we
shall study numerically the role of the non-Markovian statistics of the heat bath
under some stronger assumptions in order to gain a deeper comprehension of the

underlying dynamics.



3. Activation rates in the Markovian limit.

In Section 2 we discussed under which assumptions the phenomenological LE (1.1)
can be employed as a sensible description of a chemical reaction. Apart from the
possible T-dgpendence of both the effective potential V(x) and the friction
terms arising from the inevitable nonlinearities of HotHogs the Markovian statistics
of the heat bath are understood in the system of egs.(1.1) as the main assumption.
In the present Section we estimate the quantitative corrections to the rate of
gscape due to the mu]tjplicative friction terms in :X 1 and jﬁz provided that these
can be regarded as small in‘comparison with the usual dissipation term -.Zov of
;he Kramers theory. Our treatment applies also to more general choices for V(x)

and~g(Ngﬁ*s those on egs.(2.24) and (2.25) respectively.

a) the overdamped Timit

We study first the limit most discussed in the literature/2-8/ of high viscosity
and large activation energy. For simplicity we assume our effective potential to be
modelled as

V(X) . _ax*/2 4 b X4/4, (3.1)
It represents a - symmetric double-well potential with two stable fixed points,

= £{a/b}%, an instable fixed point in x=0 and activation energy defined as

AV <« VO -V (xs) = ot L (2.2)

[
L

The height of the barrier AV is assumed large compared to the thermal energy kBT.:
Furthermore the characteristic mechanical time scale mentioned in Section 2 i§
now given by Ja ,being V''(0)=a and V''(x )=2a. Here high viscosity means that
5\O>71E; » since we chose to consider the x-dependent friction terms as comparative
small. This is the well known overdamped limit of our system.

We proceed further by applying the Standard analysis/1,3,7/ which consists in
eliminating the variable velocity perturbatively. We employ again the perturbation
technique in the Appendix.

The FP operator corresponding to the LE {1.1)-(1.3) can be divided into a

perturbation part E; and an umperturbed part f; such as:

Fo=%(§V+kgTﬁi>

v o Ayt (3.3)
Foov2 e Vg2 (0, %%+ 23, %) 2vek T2 )
1 )X v (z 1 l}-:a\’ & by (3.4)
The result of our projection technique can be finally written as follows:
D n(x;t) = & 2 DY A prxst) + L [; (x) 2 Aex) -
5{:? ] >\° ax 3 F A: DX:) ;)XJ
(3.5)

IX*

- 2 /j%x)} F(x;x':)
where

x (3.6)
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odd in x vanish exactly for symmetric potentials.

We make now two relevant remarks:
(i) The restrictions under which our perturbation technique is valid can be determined
from ea.(3.14). The assumption of a definitive positive diffusion kBTD(x) within

the bistable region is satisfied when

), kT D, ('éeff) « 1. (3.15)

[R5

= ~G 3 —_

) )\o Q. ;\0

n
AL

Such an inequality corresponds to impose that the x-dependent friction terms are
small compdred to - %,Ov/14/.

(ii) The effects of the intérnal multiplicative noise (:A 1> A 2#O) on the activation
rate are determined by the prefactor H(ZEL, %g)-]: The dependence on the temperature

AR

15 no 1om§er controlled by the Arrhenius factor in eq.(3.13) solely even assuming Vv

.
w

o

[y

that ’> 0 >\] and IA 5 éonstant; the rate of escape increases or decreases depending Vv
cn whether > % is smaller than % DAZ or not. In Section 5 we shall discuss some
consequences of the main results of the present Section for application to pra:ztical
chemical-physical problems.

b} the underdamoad limit

Let us now face the problem of ‘small’ friction terms and large activation ~
energies. Following -Stratonovitch/20/ and adopting notation of ref.14, we describe

he system by LE for the deplacement x and the energy envelope E,

{

E= v o V| | (3.16)

The energy envelope technique is based on the assumption that the average energy
envelope < E(t)) varies slowly compared to the average displacement ¢ x(t)>
This condition places two restrictions on the parameter values for which the
technique is valid: the damping must be weak in comparison with the characteristic
mechanical frequencies, and the variations in the average energy envelope must be
slow in comparison with the average period of oscillation inside a single potentis

well. We shall justify the application of such a technique to our problem at the ¢

On changing variables -
X—=x = V- E
the FP equation corresponding to the LE (1.1)-(1.3) reads/14/:

D R4 E;) - { O [2[e-VIlZ ¢z (A, «23,x <D x)
ot X

%

O TE-V)] - (D, +2Dx+D x*) & 2({ Dy +2D X =+
aEE ] ( ¥ 1)()96 * ( H

pA ’

z + 3\ =

b ) 2 Le-Verl] Box, &4
1 de

where the probability density P(x,E;t) is related to fD(x,v;t) occurring in (2.1

by
P(X,E;U dx dE = )O(x,\/;t) dxdv .

P(x,E;t) can be exactly written as the product/20/
B(x,E;¢) = w (X,%}E) Pe (E:%),
N

where w(x,t] E) is the probability density that the displacement at time t is x
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conditional on its energy envelope being E (and also conditional on the initial
conditions). The method of Stratonovitch is based on the assumption that, in~
dependently of the initial condition (x(0),E{0)), w(x,t|E) is proportional to the
time that the system -with energy envelope E- spends at x. The time spent at x is

in turn inversely proportional to the velocity at x, i.e. to v(t). Thus we obtain
! AR
'a.v'(x,'t}r_:_) - )chpm[E-'\fm]z} (3.21)

where

Oe) LE- Veol® dx

1

/ (3.22)
I

.and the prime denotes & derivative with respect to E. The region of integration R
in (3.22) defines the domain of x for which EV(x). On substituting eqs.(3.20) and
{3.21) into eq.(3.18) and integrating over x, we find an approximate FP equation for

the reduced probability density pE(E;t)/14/:

x?(EU:H’Q[%a @E\_D‘, + sz(E)"DZSL/(E)J+
e B0 e '(E) ¢'(E)
(3.23)
~Z S(e) + !
+:§):‘ [ D.o </ C){ Dz %(E)] S PE (t,t) ,
oc” (E)
I
where
WIE) = J xt [ E‘_\r(x)]ic‘xx . ‘ (3.24)
R/ . ° N

Note that in this approximation the contributions of the terms proportional to A 1
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The equilibrium distribution 5t(E) of the FP equation (3.23) can be readily

calculated ( o/ is a normalization constant):
— ! — Lryl
5.6 < o 80 wp - 2/5T)
We propose the following definition of activation time TE in the underdamped

Timit: TE coincides with the average time needed for the energy envelope (E(t) >

to reach the value of the activation energy A V starting from its mean value E,
AV
" dE

, 5 () dE’
P (£) D(E) £

Eio 0

where D(E) is the diffusion coefficient on eq.(3.23):

DE) = (Dofb(E) + D, V/(E)>/¢'(E)

The expression (3.26) is the counterpart of eq.(3.11) and has been obtained by so!
the corresponding MFPT problem as outlined in ref.20.

In order to estimate Eo we must calculate explicitly é? (E) on eq.(3.22). Tha
integral involves complete elliptic integrals of first and second kind. In the Tir
of high activation energies however we can suitably avoid the d{?ficulty‘ approxin

‘huD \
ting V(x) by to upright branches of parabola intersecting in x=0. The height of the

barrier is kept equal to AV and the frequencies of such parabolas are as those

cbtained by linearly expanding the pbfential V(x) around X, and x_ respactively.
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. . . - |
Thus we find an approximated expression for (@(E):

HiE) = @O[E)sz Je- ax® dx

"

el

E , ©(3.28)
and analogously for #/(E):

‘ g 3.29
Yy o E (3.29)

It is noteworthy to remark that such an estimate works fairly well in the limit

i
AV/kBT» 1 and that the first corrections to A‘) (E) are proportional to @O(E)(—E—)z-
av

@

On substituting &)O(E) into eq.(3.25), we determine
| | 'EO:kBT (3.30)
We are now in a position to work out eq.(3.26). Substituting eqs.(3.25) and (3.27)
with eqs.(3.28) and (3.29) into eq.(3.26) yields: V
o YR © AT
e

Sel) _ B | G ) e dEL gy
° J - dPo(E) +(}L/>ko> %(E)

kL o

On integrating by parts the integral on the right , we obtain

&Y E
g/k,T _E'/kT
T *‘( ¢ le | & E) “de
T (kT) - (k. T) - ek RS E (3.32)
€ ——— )
e Jk;: E) +0/) LE) ]
o n ! 1— r"
NS .qu A O AJ/kEL -
where terms OioY jw111 be negligible compared to terms tﬂ( 9, from (3.32).
Ly
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We can now separate TE(kBT) into two parts as follows:

T (T) = <>+ §¢T

where " E
A
g/k,T &k T
& dE d)O(E') e JE /
Q)

0 kBT

and

o ‘ E
/T T

-2 =
Seye - (kT ) 2 | 0,(E) e dE| D) e de’
| | L Do dE) +1, vE) |

ke

0

Here {t7 denotes the Timit of TE(kBT) for } 5 = 0, while 5417 is the correcti
due to the x-dependent friction terms.

The integrals on eqs.(3.34) and (3.35) can be calculated explicitly by substit

eqs.(3.28) and (3.29):

TS = a%. [E&,(%}T> SE ()]
o 3

§{Ty = _i[E«;(& o A )-E&(4+_'i__.>

B}
(D Bk

e

where GS = ;\z/ha A() and Ei(x) denotes the exponential-integral funftion/Zl/,

which can be expanded as:
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|
hus we find an approximated expression for  (E):

—JE- ax® dx

R

it

el

E (3.28)

V% (E) - n g? (3.29)

It is noteworthy to remark that such an estimate works fairly well in the limit
1
DV/k,T> 1 and that the first corrections to 4) (E) are proportional to é (E)[ E .
B I0 Z—V}

7 .
On substituting @O(E) into eq.(3.25), we determine

i

=k, T (3.30)

We are now in a position to work out eq.(3.26). Substituting eqs.(3.25) and (3.27)

with egs.(3.28) and (3.29) into eq.(3.26) yields: v

€
E/k&T 'EABT
b, (E) e dE' L (5

On integrating by parts the integral on the right , we obtain

g/ ) _E'/e,T
-2 e/ A - ¢ (r") e & C{ /
T (k. T) = (kT £ o E (3.32)
T e /A RE
k,T o
VSR &V/k T
where terms (9(92: \lwﬂ] be negligible compared to terms (9( e, ) from {3.32).

\
Kt o
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We can now separate TE(kBT) into two parts as follows:

T, (6T) = <>+ § ¢ 4
where " £
PN
. e/k,T | _E/kT
(T = (‘Br}f_\ & dE G, (E") e 4
Ag L @c(ii) {
[ 0
and
o7 E ,
" E/k,T B /T
Sy (e, T) 0 | 0,6 e dE| OE)e de’

| '
e Q&) +A, YE) )
€T ¢ o
Here {17 denotes the limit of TE(kBT) for >\ 5 ¥ 0, while 5(127 is the correctic
due to the x-dependent friction terms.
The integrals on egs.(3.34) and (3.35) can be calculated explicitly by substitt

eqs.(3.28) and (3.29):

wy- & [E(LL) -8i®] <
by ke T

o =

Vi - Bt
g('ﬁ)"-i-[Er{.(__\L +£_)__Ek(¢+ 4 >‘Bv \z/
Do A , . f

s

where (3

which can be expanded as:

%2/43 AO and Ei{x) denotes the exponential-integral function/21/,.
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On employing eq.(3.38), we can determine the leading term on eq.(3.36):

TS = -:— ‘(_’L‘E cexp ( A—\/-/ke,T> ! (3.39)
Ao AV

In'view of the approximations introduced in egs.(3.28) and (3.29), contributions
k

E) » k> 1, are meaningless. The inverse of <T) on eq.(3.39)

LYV

coincides exactly with the well-known rate of escape found by Kramers/8/ in the

proportional to {T> (:»

@ )
underdarped  1imit. This result makes us more confident of our approach based on the

energy envelope technique and on the definition (3.26) of activation time.

Analogously, expanding eq.(3.37) at the first order in kBT/A V, we find :

ey e - KT (7 g)" exp (67/KT)
(>

(3.40)
<
On putting eq.s.(3.39) and (3.40) together, we conclude:
— _ &V
Lo (g, T) = <> (i“ k& ' (3.41)
- 4+ pOV
We make now some relevant remarks:
(1) ‘The activation rate in the underdamped limit,
(3.42)

-4
HE(%‘J, ,’\‘Z-) = r'[’E ( lz%T) !

-

is an increasing function of % o In the frame of the Stratonovitch method, eqs.(3.:
and (3.27) prove this immediately. In the limit of high activation energies - see

egs.(3.28) and (3.29)- from eq.(3.41) we obtain:

o (2 0,) = o (44 (sav) = Mo () (i:e]i S

where )41; Ha) is the inverse of the Kramers escape time for AO/ [a — 0 given
in eq.(3.39). If we compare this result to that of egs.(3.12)-(3.14) for the over-
damped limit we conclude that the x-dependent friction terms play a different role

in the two 'viscosity regimes.
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. Y !
E'\ (‘7\) = & Z (\/C". ). v
i
K= X (3.38)
On employing eq.(3.38), we can determine the leading term on eq.(3.36):
o -
TS = A ;_C,”_JL P exp ( A\I/EE,T> ! (3.39)
RRNY
In view of the approximations introduced in egs.(3.28) and (3.29), contributions
proportional to T EzEZ » k) 1, are meaningless. The inverse of <T) on eq.(3.39)
LV
coincides exactly with the well-known rate of escape found by Kramers/8/ in the
s N
underdamped  1imit. This result makes us more confident of our approach based on the
¢nergy envelope technique and on the definition (3.26) of activation time.
Analogously, expanding eq.(3.37) at the first order in kBT/zs V, we find :
-4 LT
o _ 3 I ,
Ao f
On putting eqs.(3.39) and (3.40) together, we conclude:
3 A\
- A AV
?EU'_EL') ~ LTS <i~ ! : (3.41]
4+ pOV
We make now some relevant remarks:
{1) The activation rate in the underdamped limit,
(3.42)

-4 : N
HE(’/\O/ ,'}‘L) .i ‘.I)E ( k3T> /

e -

is an increasing function of % 2 In the frame of the Stratonovitch method, egs.(3.
and (3.27) prove this immediately. In the limit of high activation energies - see

eqs.(3.28) and (3.29)- from eq.(3.41) we obtain:

-t i a
VE(A"/)Z) = 41D (i-\‘&A\f) g He(’h)’(d’*%\i ;_Zg)” 3

where ﬁE (ﬁ;) is the inverse of the Kramers escape time for A O/’fg_wa 0 given
in eq.(3.39). If we compare this result to that of eqs.(3.12)-{3.14) for the over-
damped limit we conclude that the x-debendent friction terms play a different role

in the two viscosity regimes.
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On employing eq.(3.38), we can determine the leading term on eq.(3.36):

LT =

Lok cexp ( AV/!ZBT) . (3.39)
:’\o LV

In view of the approximations introduced in eqs.(3.28) and (3.29), contributions
k
proportional to (’C}(,‘Ea?_) » kK 1, are meaningless. The inverse of <T) on eq.(3.39)
oV
coincides exactly with the well-known rate of escape found by Kramers/8/ in the
u;daﬁaqxﬁ Timit. This result makes us more confident of our approach based on the

energy envelope technique and on the definition (3.26) of activation time.

Analogously, expanding eq.(3.37) at the first order in kBT/AV, we find :

-4
5\/:> = - EET‘; ( AV o+ 4 ) @XP (A’\}'/ic&rf) ‘
>

N (3.40)
On putting eqs.(3.39) and (3.40) together, we conclude:
T, T) = <o <¢‘ Lot ’ (3.41)
4+ pOV '
ke maxe now some relevant remarks:
{i) The activation rate in the underdampéd limit,
- \ _ (3.42)

HE(;O, (’\«) = iTE ( kBT/ !

[R]

is-an increasing function of />\ 2 In the frame of the Stratonovitch method, egs.(3.:
and (3.27) prove this immediately. In the limit of high activation energies - sece

eqs.(3.28) and (3.29)- from eq.(3.41) we obtain:

_ _ \
e (3 0) = e (wepat) = o) (£ok £,

where ﬁg (L) is the inverse of the Kramers escape time for 2 O/ [a =0 given
in eq.(3.39). If we compare this result to that of eqs.(3.12)-(3.14) for the over-
damped limit we conclude that the x-dependent friction terms play a different role

in the two viscosity regimes.
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{i1) The restrictions under which eq.(3.32) for Te is valid can be summarized
as follows:

(3.44)

(small friction),

- 27 -
potential well is certainly satisfied- note that ZBV/kBT 3> 1. In order to adopt
e
/&?f/fﬁ(eff‘ >>i (high activation energy),
}O(i—l’_‘-’; j") (4{_0:'
, A6b

q.(3.43) as a reliable estimate of the activation rate in the under

amped 1imit,
(3.45)
The second inequa]ity can be justified by noting that its first term plays the

d
we must further impose the restriction that contributions proportional

L
l{

to 3
are larger than the inaccuracies implied by the approximations on eqs.({3.28) and
role of an ‘'effective' friction constant in P‘E( ) O"A 2) -see eq.(3.43)-
and that

(3.29). Since the larger corrections are proportional to M .( AO)(kBT/élv)*,
E(>\O) has been obtained in the limit A g <€ ta. The same conclusion

3/

(3.47)
). When @> AV (i.e. A

1
~
we must require that the following inequality is satisfied (beside 2 g Kra )
' . 2
e by (é_\f )-’-
. hrg '
A, Jba gl
) . . C o > WO(E) :
scan be reached by supposing that the 'effective' friction constant s B
. AR
_1in the denominator of the first integral on eq.(3.32) is very small compared to
—
va /14, () £ denotes the average with respect to the energy equilibrium
distribution (3.25

In other words, our analytical expression for Q*E( Q 0 A 2) is of praéfica]
2)

use only if the value of AZ is not too small.

is small then (3.45) reduces to
simply Stratonovitch's original weak damping condition A 042 a . On the other

hand, when DA V is large, relation (3.45) restricts the range of values of ﬁ 0
J
{ 4
anc ’> 2 o

{111) £q.(3.4

(3.46)
§) implies that there are ranges of parameter values in which the
multiplicative fluctuations and the corresponding damping can have very strong

dynamical effects. In such a range the condition that the energy envelope

variations are slow compared to the average pericd of oscillation inside a single
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4. Activation rates in the presence of memory effects.
Y

This subject has been treated by many authors/2-6/ on using different
approaches. In the present Section we study a particular case of the first-order
correction to the Markovian 1imit analyzed in refs.14 and 15. A completely general
derivation has been studied in Section 2, however eqs.(2.26) and (2.27) are of
no use for practical purposes due to the presence of too many unknown parameters.
Since we are interested in a qualitative description of the effects of the non-

—Markovian,statisticsiof the heat bath, we can simplify our problem as follows.

Let us assume that a;)(x)sa(x) for any ¥=1, ..., N. In this case

2qs.(2.9) can be re-written as:

X =V % .
Ve oV () o) dz HD“'E) [Q {XCE»V“)J ) (4.1)
o}
o) % () ,
where M has been chosen unit and
Qi) = L wl cos(_('iz 'c)‘ (4.2)
~ firc,,

£q.{4.1) is a generalized Langevin equation and the function HD(t) defined on
eq.{4.2) plays the role of memory-kernel. Generalizing the technigue expounded
in ref.3 we make the problem (4.1)-(4.2) Markovian by introducing enough additional

A
variables. In our case the Laplace transform gQﬁz) of yQ(t) admits a continued

- ¢y -

fraction expansion/12c/:

A 2
Q) = & 2e AL (5.3}
2~ = '?'*Yw

Eqs.(4.1)-(4.3) are then equivalent to a set of n+2 Markovian equations:
v = Vo +c>~'c><)§d

o 2

= . v
g Y6, - A bV g,

a7 €, 43,

L i - m e e = .

éw: ‘\{,\, gw“"Ai gw-a. + q/(t)

where the random force &1/(t) is a Gaussian white noise of zero mean and correl:
. T 2 A T o (+ ) ' (4.5
Axl(i)vl/(OD = 2k \(n AT..o b, Slt),
and the function b(x) is suitably related to a(x):
! 2
by = ¥, Q) /A
We assume that 90(t) is approximated by means of an exponeﬁtial function,
exp(—?{]t), which corrects the Markovian limit QO(t)= c;(t) on ref.l4: this
implies that n is chosen equal 1.
From now on we follow the perturbation approach described in Section 2. The
FP operator corresponding to the set of egs.(4.4) with n=1, must be seﬁarated

into a an unperturbed part ,

. 2 sty Db . (4.7)
FD " ,Xg, 5-21 gi + 431> (72:— ’



and a perturbation part

|} SV ) w\ o) g 2 L8 bave (4.8)
v

v 23, "’

Calculations are straightforward. The operator I on eq.(2.26) should be

2

now replaced by {(M=1):

ﬂ Sox) 2 [_va +.<13|o. a' (x) Wpﬂp FV -
5 o

a%l EN, X OV oV
(4.9)
S0y 0 [k T2 v -V +<o:b< .
J\ M.Q EN X 0

The FP equation for the reduced probability ﬁ?.fi corrected up to the first-

-order in % ﬂ, can be re-written in a more compact manner as follows:

_ DA / mw .hx
4 oﬁip?o ) +

Ve

D ookuvit) =) -2 4
hmwu:..ﬁi 2 40

. v " (4.10)
22 [ 6t s dw e % %mx:ﬁ.wv ,
A Y
where j(x) is defined on eq.(3.6) and
AV) = kT 2 .v. . (4.11)
J ® oV

Cn adopting for a(x) the choice of eq.(2.19), i.e. ,Jx + ,®x~\N. , we write

rfrum

a' (x)%= y~x~ L2A X%,

a'(x)a"(x)= yN X+ VP .
Therefore the parameter controling the relevance of the non-Markovian corrections
is &, 1+ For d, 1 — @ the Markovian limit is recovered.
Following the prescription of refs.3 and 18 we define the escape time from

the reactant well, e.g. x_, to the product well, e.g. x_, as the area below the

1
T

curve < x(t)}>/{x(0)> . For fairly .E..@.: values of the barrier AV, Ihis curve
is somiv.\. an exponential throughout the whole time dominion but a narrow region
close to t=0. This fast relaxation significantly depends on the ‘mﬁm«.ﬁs@ point
distribution, %Lx.fov\mm\. Let us assume w?.fov to be given by Mﬁx-x-v.
This choice possibly enhances the mjnmnﬂso the short time relaxation on our

definition of rate of escape:

Al

W= O (0 (4.13

where @ {0) is the Laplace transform of £x(t)> / <x(0)> at zero frequency.
However, for large enough values of ><\xmﬁ _E_ can be relied on as a suitable
estimate of the activation rate of the process. Definition (4.13) is especially
suited for computational purposes.

To apply the analytical approach of the foregoing Section to the FP equation

(4.10) would be cumbersome and of no practical use. For that reason we chose to



to employ a numerical algorithm which has been shown to give excellent perform-
ances in such computations/22,23/. This algorithm(CFP), based on a continueq
fraction expansion a la - Mori/12/, is now reviewed in ref.23. Fig.1 displays our
results. The most remarkable effect of the non-Markovian corrections is the

\ -1
increase of | as the heat bath relaxation time X} increases. Curve 1 refers
to the choice a(x)= Iﬂx, ie. A 1° A 2=0. The small discrepancy with the
Markovian limit M (7\0) of eq.(3.13) is to be accounted for as an effect of the
interplay of inertia and anharmonicities in the potential form/7/. These have
been disregarded when we worked out eqs.(3.9) and (3.11) using the steepest descendent
method in the Smoluchowski approximation. The more accurate values of Larson and
Kostin/77 are reproduced with a precision of some percent.

Curve 2 refers to the case ;\ 0" >]=ikz=1 -see €q.(4.12}. In tﬂe Markovian
limit, “f}~vCD , the smaller rate of escape confirms the predictions of eqs.(3.12)
and (3.14) provided that M ( A o) of eq.(3.13) is substituted with the Larson
and Kostin's rate/7/. The dependence of the activation rate on the parameter in
for > 1 and % Z#O is the main finding of the present Section. Curve 1 closely
rep}oduces restlts a]reaéy obtained in ref.3. In the forthcoming Section we shall
discuss the relevance of these results in view of applicaticns’to chemical-phy

sical problems.
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Cow r,(m r]. ,.J/) crmwcz kg,
5. Summary and conclusions. v

In this Section we wish to draw some conclusions about the relevance of the
phenomenological LE to applications to chemical-physical systems.

In Section 2 we reviewed Lindenberg and Seshadri/14/ derivation of the LE (1.1
starting from Zwanzig's model Hamiltonian/13/ which describes a qon]inear one-
-dimensional system coupled with a heat bath of harmonic oscillators. If smali non-
linearities are included in the interact{on term - or in the heat bath Hamiltonian
a formally identical set of LE,(]F])-(1.3), can be recovered where both the effecti

potential V(x) and the friction coefficients j& now depend on the system tempera

5
ture T. In Section 3 we determined quantitatively the effects of x-dependent
friction terms on the activation rate of a process modelled as the escape of a
Brownian particle from a well (the reactant well) to another one {the product well)
Corrections to the Kramers theory in the overdamped limit are shown to depend on th
relative magnitude of A % and A()XZ' In Section 4 the effects due to the non-
-Markovian statistics of the heat bath are accounted for in a simplified case where
the relevance of such a property is regulated by means of one new parameter only,
?? {]E TLO. A finite heat bath correlation time T 0 is proved to inérease the rate

of escape of the Brownian particle over the barrier. The main analytical tool emplo

throughout this paper is the perturbation technique of adiabatic elimination of
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fast ré?axing variables described in the Appendix.

When in refs.16 and 17 experimenters claim that the Kramers theory fails in
describing a number of chemical-physical processes, they usually refers to the
phenomenological model (1.1) with A = 2 5=0 (Wang-Uhlenbeck LE/24/) and to the
corresponding rate of escape which for high friction constants coincides with
Kramers' rate H (90) on eq.(3.13). Theorists improved/1-9/ such an estimate on
accounting for & variety of additional effects all of which, however, assume the

Wang-Uhlenbeck model as a starting point or as the zero-order approximation of their

i

-nerturbation approaches. The description obtained first by Lindenberg and Seshadri/14/

end discussed in detail by Mohanty et al./15/ is to be regarded as a more realistic
basic picture for real chemical-physical systems. This can be reduced to the well-
-known Wang-Uhlenbeck model under some restrictions and approximations/15/.

We now summary the properties exhibited by the model of egs.(1.1)-(1.3) in
comparison wjth the naive Wang-Uhlenbeck picture.

dependence on the temperature. If the viscosity is kept constant in the overdamped

limit the activetion rate is supposed to depend on T by the Arrhenius law - see eq.(3.1

Irview of the findings of Sections 2 and 3, we suggest however that deviations

—y

rom that fundamental rule could be revealed by means of detailed measurements. The

physical origin of such corrections is twofold. First, when we approximated the

Liouville description of the global system through a set of LE we pointed out that
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the potential of the isolated Brownian particie U(x) was to be replaced by an
'effective’ potential V(x), (2.8). This is the potential whose parameters (activati:
energy, characteristic frequencies, etc.) can be obtained from the experimental dat
of any single process., The inevitable anharmonicities of the real heat bath (HSB+HB
determine the T-dependence of V(x), (2.24), and of ;} 1.,(2.25). Second, even if
we neglect this kind‘of dependence and we refer to the 'zero-oﬁdér approximation',
eqs.{1.1)-(1.3), the x-dependent friction terms imply that a more reliable expressio
for the ac?iVation rate would be now ﬁ (ki,) on eq.(3.12), where the tempe
enters into the correction prefactor H( 21 s 2&; ) as well. STight deviations from
A Al
the Arrhenius law have been méasured recently for instance in ref.f?: a more detail

analysis should be of great interest.

dependence on viscosity. When the experiméntal results for the dependence of the

activation rate on dissipation are compared with Kramers' predictions (i.e. with
the Wang-Uhlenbeck model), it is common/16,17/ to assume . a sort of hydrodynamical

model for ) o in which

}_o < ’*’L | : (5.

s
where 1) i the solvent viscosity. If we adopt the LE {1.1)-(1.3) as an alternative

phenomenclogical model, a new difficulty arises. Since we cannot fit oo many
parameters to the experimental data, one could think to take 42 proportional to an

2

‘effective' or ‘average’ dampin§734/. Unfortunately this choice is inconsistent wit



our results of Section 3 where we showed the x-dependent friction terms play a

distinct role in correcting the activation time in the overdamped and underdamped

lTimit. In eq.(3.12) we should define A as :%OH( 3;,, 33) while in eq.(3.43) A
Ao Ao

would be read 7\0(1+ BAV). Therefore it is no surprise that many experimental

papers conclude claiming the breakdown of the Kramers theory because of an incorrect

prediction of the viscosity dependence of the activation rates/16,17/.

denendence on heat bath relaxation time. This is an example of the additional

~

mechanisms introduced/1-6/ to account for the discrepancies in the 7’—dependenca
ééﬁtiOﬂEd above. Thesevimproyements are no doubt well founded from a physical point
¢F Vview, but are still to be regarded as perturbation corrections to the Wang-
-ghlenbeck model. When we tried to app1y one of those approaches/3/ to the phenom-
enological LE (1.1)-(1.3), we found that the well-known increase of the activation

rate with t,o='y ;] depends dramatically on the choice of the friction parameters

B .
Ay -see fig.l.

We conclude remarking that the LE (1.1)-(1.3) are just an example of a generalized

version of the Wang-Uhlenbeck model and therefore, before using one-dimensional
shenomenological LE of tnis type, one would be well advised to check under what

assumptions these equations are valid descriptions of the dynamics of the specific

chemical-physical system under investigation.

Appendix

This Appendix is aimed at giving some technical rules for applying the AEP

(adiabatic elimination procedure) of ref.25 to the system of eqgs.{(2.12).

We found it easier to carry out our projection procedure by using a new set

of heat bath variables:

){I‘LV - PV

M= - B2
LAWYy

y 1Ny

fl‘ Wy

-

o

Ky

(ved, ., M)

The canonical equilibrium distribution f eq is defined &as:

L, Veq =

while in the new one, (A.1) and (A.2),

S)eq ( T vlz\l)

UVO QXP

0

14
with U? a suitable normalization constant.

(A.

(A2

(A.

In the new variables { !l]y, \lzu) the unperturbed, (2.13), and perturbation

part, (2.14), of the FP operator can be re-written as:

0

L. _sz

a Wy

—
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v]./iv 2 =
( 3¥L 4v

2 y
qzzv 5:izv >
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- ) - Y v )
/;mv mri( N\N/\
respectively.

Two basic rules of our AEP (see ref.25, Section 3) are then to be recast as

follows:
L+t %t
P2 e 2 P e Vv D , (A.8)
I - T )
\;\wc . QQLZ
Lt o, ~ny. "
v o] ..\.l Y TP.DV
P e éi. P e Voo

where 1=1,2 and

4
_ (A.10)

Q-
Yoo umepv 20y .

Here we used notation as in ref.25. In particular P is the projection operator on

to the relevant variables (x,p) subspace. Finally, eq.(A.5) yields:

T AT
@V~ (A1)

L0, - Voo o= ok

.wun;ﬁ wvvno. We are now in a position to apply straightforwardly the

s
-

and /\\;\

v

rturbation technique described in many details in ref. 25 : egs.(2.16)-(2.18) and

(2.26)-(2.27) are readly recovered.

%mv is based on

ot
°s

eatment of the perturbation (nonlinear) corrections to H

the counting rule expounded in ref.25 {Section 3): Since meﬁu<00<v is a Gaussian

function in the variables ou\u the integral-product of terms from MLH whose global

- 39 -

power in Q <Aﬂox any ¥) is odd vanish. On employing this rule results as in eqs. {2

and (2.25) are easily determined.
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Discrepancies between our formulas (2.8),(2.10) and {(2.18) and the corresponding

2

ones of ref.14 are due to some minor mistakes therein.

nag. v
It is not our purpose here to establish the conditions under which the convergence
of integral {2.18) can be proved. The assumption is appropriate for instance, if

—
N is largs and AJQ//qulv are to each other as irrational numbers.
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