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Nuclear Magnetic Relaxation by uadrupole

Interactions in Nou-Spherical Molecules

'

James McConnell

Dublin Institute for Advanced Studies,
Dublin 4, Ireland

Abstiract  The nuclear magnetic relavation times associzted with
guadrupole interactions are investigated by an analytical method
for molecules that may be linear or symmetric rotators, or may be
totally asymmetric. The moiecules are subject to random thermal
couples, and it is supposed that the consequent rotational motion
in Jrownian. The results are in agreement with thosc obtained

otherwise by Hubbard for the special case of spherical molecules.
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1. Iniroduction
The general theory of nuc!oar magnetic interaction by quadrupole interactions

has been expounded by Abrngam], and by HnbbnrdZ). Empleying a semi-ciassical

theory and a Fokker-Planck equation Hubbard derived analytical expressiens

for relaxation times when the molecule under consideration is spherical and

is undergoing steady-state rotaticnal DBrownian motion, inertial effeccts being

included in the calculations. The purpose of the present paper is to make use

of results deduced from Fuler-Langevin ecquations in order to embrace the cases

of molecules that are linear or symmetric rotators, or are asymmeiric rotators.
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As in recent studies of dielectricz) and of nuclear magnetic’’ relaxation the
stochastic rotation operator R(t) will appear prominently in the calculation eof
Brownian motion effects. In the next section earlier results required for our
calculations will be recalled and expressed in a form convenient for future use.
In section 3 the lincar rotator model will be considered. In section 4 the
asymnetric model will be investigated, and results for a symmetric retator

molecule will be deduced as a special case in section §.

2. Basic equations for quadrupole intecractions

We recall some results derived by Abragam and by Hubbard, which will serve
as a basis for our calculations. Selecting a molecule we fix ocur attention on
one of its unuclei having spin angular momentum R 3& quadrupole mement Q and
given gyromagnetic ratio, which is influenced by a constant magnetic ficld in
a fixed direction taken to be the z-direction of the laboratory cocrdinate system
S. We consider the interaction between the quadrupole moment and the electric
field produced at the nucleus by all the other charges in the molecule. The
interaction Hamiltonian h H is givin byS)

AH -2 VO _ )

where

(2)

2
(\)\,: eQ‘-—:T){: II—I(Ii-/)J (3




The quantities on the right hand sides of (2} refer to the body in its

position at time t. V is the electric potential at the nucleus of the other

charges in the molecule and these charges are regarded as fixed with respect
to the molecule. The subscripts to.V denote partial derivatives. All the
quantities in (1) refer £o the frame S. If the quantities on the right hand

sides of (2) were referred to a.coordinate system S' fixed in the molecule,

. - , v
they wouid all be constants.

The set Mw ﬁw~ uww transforms under spatial rotations as the spherical

. \ 1, I3 .
harmonies ¥ < < w:m so constitutes a spherical tensor of rank 2.
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In (4) T,V indicate components in the frame S and T',V' components in S'.
In (57 the ol{t), % Aﬂv.\\hﬁv are Euler angles defining the orientation of S'
at time t with respect to S, and we shall denote by R(t) the rotation operator

which brings §' at time zero to its orientation at time t. Using well-known
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properties of Wigner functions :o deduce from (5) that
£
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and the unitary property of R(t) we see from (6) that
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the n'n-element of the representative of nﬂfﬁnv with reference to the basis
J\ L ./« We may therefore express (4) as .
£ R
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In future we shall work in the five-dimensional space of spherical tensors

of rank 2. Applying (7) to Fq we obtain

¥
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the values of F,',F,', being constant as we saw above. We note that

A”ﬂlsm_ﬂlxcwdv vanishes for q'#q, p:u that
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which is independent of q. Since, from (2), Tj Vm\ ﬁ
ﬁ (t) ﬁ\av LR 1e) ?av Aﬁ (t) -ﬂzv (o
=< ﬂ ) F, (o1, "
so that ﬂ iﬁiv is real. Morcover, since we are concerned only with
steady mnmna soﬁyaz
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\bmv is mwmo an even fumction of t. Then defining

by (10), and moAm (t) 7

the Fourier transform M\?L of Aﬁ \h& \Q,vg«

Jiw) ﬁ.A ﬂ () W\Q e ar (12]
we see from (11) that
u,?,; = 2 \e AW\..MQW\QV Cos w LT, ‘ (13

which shows that Lmrc is an even function of w . We also see that

X
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where
i) = L < F;f/(:) E/ul>‘ (‘thdt (15)

Having established these preliminaries we are justified in accepting
the results of calculations of Abragam which are required for the introduction
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of quadrupole interaction relaxation times™’. If there exists an equation of

the type d (T_ -= — <—I§> ) < I}>o
dt

T g : (16)

I

where <?I;>L is the ensemble average of I_ for the equilibrium state, we call

T, the longitudinal relaxation time. Similarly if there exists an equation

Aa> . T
dt : T ’ (17

we say that T, is the transverse relaxation time. Equaticns (16) and (17)

will exist when the molecule has spin one, and then in our notation

CCQ o, | "
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where &J, is the Larmor angular frequency. Equations (16) and (17) will also
exist for an arbitrary spin I of the molecule in the extreme narrowing case
where it is allowable to approxiiate &J, by zero in the arguments of the

J-functions, and then

4L 3(21+3) (Q
T T LT - ) ) JVD/ (20)

Equaticns (18)-(20) are seen to agree with (2.44)-(2.46) of ref. 2 when it is

noticed that, since Fg is real,

Jper= T = ¢ f EEoye Gt - J,/w\/t_,c);—,\,,,f.wcd,_
3 f_,,,<h WF e e L Jio,

where we have employed (11).
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‘It appears from the above that the shape of the molecule and its random
motion enter into the calculation of the relaxation times only through Jﬁw}
By (9) and (12)

Jiw) = ”f Z g_w<(R(tZ,"~€-"w dt E‘NF,, (21)

ﬂn--—l
where Fp',Fy' given by (2) in the molecular frame are time 1ndcpendent.

We may also express (21) by (14), where

Tiw) = J— Z J < ’JZ(C)> _‘mt'

by (9) and (15).

F’ {22)
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3. Relaxation in linear molecules

The value of <jht£>when the molecule is linear has been expressed in

a form convenient for our calculations by the equatxong)

(Red-{E + X(J T i-e ) [art sz~ FE Reer bt )
(74T (Lw-’” L 1) Th - }
s P«p[*}’/g,{(J'],'}“ L)
+rV%Jﬂﬂ%,+~EJ5L71Vf"}@~

To derive this equation the motion was referred to the body frame cecordinate
system with origin at the centre and third axis along the line of the meleculé.
The moment of inertia about the first or second axis was denoted by II' The
frictional couple about either axis is I{Bj times the corresponding component

of angular velocity of the molecule and
LT

yf _1““3‘? (29)

a small dimensionless constant. The identity operator is denoted in (23)
T T
by Ek J. and J; are the usual rotation operators, the subscript 3 referring

to the rotating axes as do the n,n' in (21) and (22). In the five-dimensional
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the rows and columns being numbered in the order -2,-1,0,1,2. Since all the
matrices in (23) are diagonal and the elements of each wmatrix are equal for

n=X1 and for n=X2, we may siwplify (21) in the present molecular model to

Ju- 4 | [CRe) [ [va<Re) |F, oS Ry, [

L
§
o

z -l
£ A (26)

It is convenient to write the exponential in (23) as exp (-B,Gt) with

G- 1,\ T Tep(T-5 D)oy (BT-3 T LT=31T) v ) (1)

For coavenience we write
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Then from (23), {25), (27)
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T . - 3 o 3 3 3
o perform the integrations in (20) we empley laplace transforms.

J CRER, €t gy R_\?f\m\tv.. e G < e

o
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so that, from (22) and (25),

Let us
put

N
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On writing t\\vu =%’ we deduce from (28)-(34)
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Kmaw% note in passing that the spectral density for the spherical harmonies
is ?\N.l .ﬁmm \c; and that the correlation time is the real quantity

\N.nxxov.
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From- (14}, (35), (30), (38), {(40) and (2)
i 23+ e , oY N »
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On substituting from (42) into (15} and {19) we may obtain the values of the

longitudinal and transverse relaxation times for a molecule of spin one.
In the extreme narrowing case we have from (14) and (35)
2
Jiede Lreo) = = {’I‘ () !F ‘ +27 m)I

FT),
and from (37) (393, (41) e
Jio) - a, ( Li+sy- ;p]F}'ﬁr Lf‘s L )’+ F[
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It follows from (20) for a molecule of spin I that
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4  Relaxation in asymmetric molecules

To investigate the rotational Brownian motion of an asymmetric melecule
one takes a body frame S' with origin at the centre of mass and coordinate
axes coinciding with the principal axes of inertia, the relcvant mements of
inertia being I:,1¢,13 and the frictional constants }; B jB « Ford, Lewis
and McConne11'® <R(t)> and deduced from it the
value of the operator o(w) defined by

Tlw) = f( R e-tat

derived an expression for

In our five-dimensional representation with basis

\;f"' . '\/ the

matrix representation of ¢'(w) is given byll v b
A 0 D o F
(W) = % 'B 0 E 0 s O7wW) 'y
mn/ D 0 C 0 'D g
o tF o B o0
LF O D 0 A
where )
Ar(a_c-i‘)(w'&)—-add "F: 4+ LT -2k
alac-24% At
- a+a’l —‘2&&.’ D: ~2i+(a+c)xz-c{(&'+2')
C-Qdﬂ. b Q(‘a;_zdl)
E_-—fu«"réwzé F- dz+i(dz~az).
) AR ! alac-2d%)

= ’D +D +}1‘]>+“'" N (D+D3+?+Lu
¢ 3D +io ,d H" -(2(2-D.)

JD;PLA%_*()Q,

. %
3Gy 0 RG)

Ba
:Da_’ % +ip:’:

[3 .

and

(44)

(45)

(46)

47)

(4%
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where Dj is a swall correction given by eq. (4.8} of ref. 10.

In order to calculate J}G{) for the asymmetric molecule we note that

for steady motionlz)

CR > <Q\L> i \ (49)

if then we define the OHPIXCOTJ7ﬂJ)by
JOF f /R/L)) 5—‘“ | (50)
we deduce from (49) the general result

’ ’ *
Wu) " g*(w*) - (cf(to)) ) (51)

e ”'n nn

Working in the five-dimensioral representation and using (50) we express (21) as

ey
sz) =T, > )0{‘“"),“41 };: E (52)
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On substituting from (2), (45) and (51), eq. (52) yields

19+ 254 C CTL v SO
+% (B+ B -E-E*) ?,ﬁ?@% +E+E‘)’V;;
sE(OAAS PP (0 -0,) (53
e (AR F-FY

Equations (18) and (19} combined with (46)-(48), (53) provide the relaxation

times Ty and Ty for a molecuie with spin onc.

In the extreme narrowing case 0(w/)

is a real matrix and (53)
. ma'
reduces Lo

Jio) = 5“ '£+,,, 1 - )+%(’B—~Eﬂ§:
B4 e DL T e 5P

with () put equal to zero in (47). After some elementary calculation it
is found from (20} and (%4) that

(54)

-
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- Relaxation in symmetric molecules
“We consider what the results of the previous section yield when the third

G

{E

axis of the molecule is an axis of symmetry. Then I% =2i and it follows

from (46) and (47) that

:J’é'!O
Q= 5?12 + 4 j>1 e

P-E-F-0
’61 S—D’ r)irl'td‘ 6:624-(:&)

~ 92D, 4 7.0, ~ D
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When these values of A,B,C )xe substituted into (93) we obtwln

7) = 3 D
+ e ]}

?_L‘D tpf)-vlpj
/3) 3 3(
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This will provide the relaxation times for symmetric molecules with spin cne.

Ge)
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For the extreme narrowing case we put ¢ C7 in (56), so that
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Thus, frem {20},
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Let us apply these results to a spherical molecule. Then B;)‘- B,,DBTP
13

and to a first approximation in )« as defined in (24) we have

£T
Do Cieiy) T3

Hence, from (50), in the same approximation

IZ/ﬁz_)é;J’, ;—V / )L/ }}
:J—' '): 20 2(:/14,))/)"7_ \* T3 J
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In the extreme narrowing case we deduce from,(57) that

Lo, ) fed\ 2143 ‘
T T, 'io("}”) 1°(21-1) M(H Y/U V;g

M

ley v, ,U (59)

For the sphere the axes of the molecular frame S' may be taken in any
convenient direction. If we take them in the directions of the principal

axes of the tensor with components b Vlr e ,thcn in terms of the new

» % )ﬁ'.\),

3 0 .
coordinates X,Y,2 the quant1t1 es vanish. We choose the labelling

7
/\’1 ; 2% Y yy

¥,\,z such that Iv 7’V }) J"If and put

/:x 1-“\’ o
Equations (58) and {59} arc now ctg{e551ble as
Jooy = 4p e a8 17 g
3((4+;} ( @ ) AT
L - L 22+s¢7‘ I 9;

E o 2 @ - (60)

=
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The investigation of the spherical molecule may be carried cut dirsctly
and to two higher orders of approximation in ) by the method which we employed,
for the lincar molecule. The results of many of the preliminary calculations
are already availab]eld). To illustrate how they may be applied we consider
only the extreme narrowing case.

Since for the sphere the matrix ((32(t£11”, is real and a multiple of
the unit matrix, we have from (9) and (13) that

Jro)= 2 li( )%/,ft—} Fro»dt
53 L Lred, FUF
% [T RIS Z |F |-z

ﬂ b
\4
ﬂ
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vwhere

13 e my
[ T;Z‘”r(’*"i)‘ c ) tEeE) ) (61)

Then from (2) and (20)
/

A .3 {_i) ,«1*3 [V; %f +Yf ),._ 7 T.) W

R
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16)

This comprises the result of Hubbard and of (59) and (60) above.
If ¥, is calculated according to the Debye theory, (01) is replaced byll

1.5
TR

Thus the inclusion of inertial effects just gives a small correction of ordcr)/
to the common value of T1 and Tz in (62). This contrasts markedly with what

occurs for dielectric absorption in the submillimetre regionls).
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