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Nuclear Magnetic Reiaxatir,n by (:uidrupoic

Interactions in Non—Spherical Molecules

James McConnell

Dublin Institute for Advanced Studies,

Dublin 4, Ireland

bst;’act The nuclear magnetic relaxation times associated with

quadt upole interactions are investigated by an analytical method

for molecules that may be linear or symmetric rotators, or may be

totally asymmetric. The moieules are subject to random thermal

co1pies, and it is supposed that the consequent rotational motion

in rewnian. The renults are in agreement with thosc obtained

otherwise by Hubbard fr the spociai case of spherical molecules.

1. Introduction

The general theory of nuclear magnetic interaction by qitadrupele ineraerions

has been expounded by Abragam1 and by )Iubhard2). Employ in.c a semi—classical

theory and a Fckker—P]anck equation Hubbard derived analytical expressions

for relaxa ti on times when the molecule under consideration is splieri cal and

is undergoing steady—state rotational. Brewnian notion, inertial effects being

included in the calculations. The purpose of the present paper is to make use

of results deduced from Euler—Langevin equations in order to embrace the cases

of molecules that are linear or symmetric rotators, or are asymmetric rotators.

As in recent studies of dielectric and of nuclear magnetic relaxation the

stochastic rotation operator R(t) will appear prominently in the calculation of

Brownian motion effects. In the next section earlier results required for our

calculations wil 1 he recalled and expressed in a form convenient for future use.

In section 3 the linear rotator model will he considered. In section 4 the

asymmetric model, will be investigated, and results for a symmetric rotator

molecule will he deduced as a special case in section 5.

2. Basic cquations for quadrupoic interactions

We ret-all some results derived by Abragafn and by Hubbard, which will serve

as a basi.s for our calculations. Selecting a molecule we fix our attention on

one of its nuclei having spin angular momentum , quadrupolo moment Q and

given gyroniagnetic ratio, which is influenced by a constant magnetic field in

a fixed direction taken to be the z—direction of the laboratory coordinate system

S. We consider the interaction between the quadrupole moment and the electric

field produced at the nucleus by all the other charges in the molecule. The

interaction ilamiltonian Ii I. is given
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where

J0 <,(t) E101? (15)

Having established these preliminaries we are justified in accepting

the results of calculations of Abragam which are required for the introduction

of quidiupole interaction relaxation timcs8 If there exists an ‘qu-tion of

the t3pe

- - < I>
T ‘ (16)

whLre is the ensemele average of I for the equilibrium state, we call

the longitudinal relaxation time. Similarly if there exists an equation

-

___

I
we say that T2 is the transverse relaxation time. Equations (16) and (17)

will exist wen ti-c molecule has spin one, and then in our notat3on

-i (J 8
T

(1)

+ iJ(j0)),
(19)

where &) is the Lamer angular frequency. Equations (16) and (17) will also

exist for an arbitrary spin I of the molecule in the extreme narrowing case

where it is allowable to approximate (&2 by- zero in the arguments of the

3—functions, and then

L L iLL i? I
I T I1(l1)

/ 0/, (20)

Equaticns (1)—(20) are seen to agree with (Z.44)—.2.46) of ref. 2 when it is

noticed that, since F0 is real,

ji) j () = j <1Vo) (e‘-

L<EttEo-’’ ,

whert we hare employed (II)

—5—

It appears from the above that the shape of the molecule and it random

motion enter into the calculation of the relaxation times only through J,).
By (9) and (12)

J() =

11,41’ —2

where F’,F’ given by (2) in the molecular frame are time independent.

We may also express (21) by(14), where

+L (22)

by (9) and (15).

3. Relaxation in linear molecules

The value of <R(ewhen the molecule is linear has been expressed in

& form convenient for our calculations by the equation

(JJ)(i- Q

L
t( J J ‘ — t e ,‘j - j

[y(JLJ1)+) (J%j3

+[-i’JJ)+

To derive this equation the motion was referred to the body frame coordinate

system with origin at the centre and third axis along the line of the molecul.

The moment of inertia about the first or second axis was denoted by I. The

frictional couple about either axis is I1B1 times the corresponding component

of angular velocity of the molecule and

—UT
LB’

a small dimensionless constant. The identity operator is denoted in (23)

by E. and are the usual rotation operators, the subscript 3 referring

to the rotating axes as do the n,n’ in (21) and (22). In the five—dimensional
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From (14), (35), (30), (38), (40) and (2)
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3Y2+ (;)

( Ci+
L 4

r 0 V
o o

o.((A)) I
‘n’ Q C

o F 0

(&c-i÷a)--d

C
ac -C

E- Jm

4 Rd axati on in asymmetric molecules

To investigate the rotational Drewnian motion of an asymmetric molecule

one takes a body frame S with origin at the centre of mass and coordinate

axes coinciding with the principal axes of inertia, the relevant moments of

inertia being and the frictional constants Ford, Lewis
10) . . /o \

and McConnell derived an expression for \(t)/ and deduced from it the

value of the operator o(t) defined by

L<Rt -e’
In our five—dimensional representation with basis Y the

111
matrix representation of ot) is given by

1ziH (_ZC’
L (L

(1 ç’ (42)

4 #.
Li tcc,Y+ f 2] ()it J & t

14(1
+

(
(..i i,,, t.

4. C;. (4,

On substituting from (42) into (18) and (19) we may obtain the values of the

longitudinal, and transverse relaxation times for a molecule of spin one.

In the extreme narrowing case we have from (14) and (35)

3(o) 2(Q) (jo +Tw)IFI+o( ci))
and from (37), (39), (41) —,

([l÷ct-. 1

tLJ*41- I
Then from (2) and (24)

+ - ( .
( - r J

It follows from (20) fr a molecule of spin I that

I I +3teQ
-1; -1 o 12T-i) t

(43)

f

o F’

E O

o

b0

o A
where

07(4))

,

______

11.

.{r -

D 2L+(+L-t.t-Z)
) ,(ac—L2)

tL(c-

(44)

(45)

(46)

(47)

(4S)

In these relations

C :3 ( + C’ € (t -)

2
. _;I. -

+) ,c? •-- -e •:
• 2’

and

4T
p---- +iL’3.

I.
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1O

- 3 eQY
(2).

where Pj is a siiall correction given by eq. (4.8) of ref. 10. I

In order to calcu1ateJ( for the asymmetric molecule we note that

for steady motion2 R
+

i (>
-ni-n

If then we define the oPeratorf1)hY
4((’ )

3OiP) 3±,53)
3÷h) 1k(50)

-

we deduce frem (49) the general result + _L

(5’)

5 Relaxation in symm etric molecules

WorkIng in the five—dimensioni representation and using (50) we express (21) as We consider what the results of the previous section yield when the third

axis of the molecule is an axis of symmetry. Then and it follows

fi”) 1— F (52)
from (46) and (47) that

‘S.-’) .c
,.- “

d - 0 , F 0

On substituting from (2), (43) and (51), eq. (52) yields - 5) *

J /
,-‘ ,-‘ -ir 2.

) + ()‘ (r i) -
4

12 ‘ W” )

2 .4V3 c p3

__

4—

( //

____

+
(53)

When these values of A,B C qro substituted into (53) we obtain

+ (4- F-Fi1 /2V 1r1/ — 1 + I( ,)J()
(ç +

)t -

Equations (i8) and (19) conhined with (46)—(48), (53) provide the relaxation + _)

2, ).#P3\tames Ti and 12 for a molecuic with spin one. ‘4 /)( i t_-)rV_V.) -yJ)In the extreme narrowing case 3( is a real, matrix and (53) +
reduces to

7r (y 9
(54) This will provide the relaxation times for symmetric molecules with spin one.

I-f fri
, For the extreme narrowing case we put in (56), so that

% ‘?x, Vj
1 + L (

with t put equa] to zero in (47). After some elementary calculation it J(o —
_____

-y--
‘L ÷ I(r ÷

is found from (20) and (54) chat
0

3(P, .?-)
22, i22

+ 1 4 +
I 3
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j-, from (20), The i uvesti gation of the spherical molecule m he carried out d irect Iv

/ - I fl *3 f / + g(
P3) and to two higher orders of approximation in by the method which we employed

- -ii ir for the line2r molecule The results of many of the preliminary calculations
3’i

(57)
are already availabieh1. To illustrate how they may be applied we consider

1 only the extreme narrowing case.
+__

jj Since for the sphere the matrix is real and a multiple of+
-7,

V

the unit matrix, we have from (9) and (13) that

Let us apply these renults to a spherical molecule. — i°< Fit—i J(0)’dt
13)

and to a first approximation in

)
as defined in (24) we have

Cd

L <1E)>
V1 17

(i ) 2.

Hence, from (56), in the same approximation j
gf-) I7,7,

7, ,1,—

“

T
,/2(I),

/f/ (::) where

(58)
z

TI- )
(61)

In the extreme narrowing case we deduce from (57) that

Then from (2) and (20)

.1— feQ” 1f3 LB7
(59)

I,
%_J.

/ i- 3 (7f 7r’ ) (i r ) 7
—

V(i—i) i— ‘
“ (62)

ror the sphere the axes of the molecular frame S’ may be taken in any

convenient direction. If we take them in the directions of the principal This comprises the result of ilubbardló) and of (59) and (60) above.

axes of the tensor with components then in terms of tile new If is calculated according to the Pehye theory, (61) is rep’aced hy1

coordinates x,l’,z the quantiti es i ],r vanish. We choose the labelling 2.
‘(2 , 2

\z such that hi and put

—lr —- —v-
Thus the inclusion of inertial effects just gives a small correction of erder)”

—---—---- 9 . to the common value of T1 and T2 in (62). This contrasts markedly with what

Equations (58) and (5Q) are now expressible as
occurs for dielectric absorption in the submillimetre regionlS).

7- 2-

Jo - 7Z’ -

‘(‘÷,‘-) +(&4 ,T
I - -T :j, 7 - go ‘(1

(60)
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4)

5)

6)

7)

8)

9)

10)

ii)

12)

13)

14)

15)

16)

17)

18)

3, p. 237.

eq. (12, 5.24).

- 3, sections 13.4

eq. (13, 4.5).

eq. (4.6).

eq. (13, 4.7).

Section 14.2.

3. Cneliisjon

The mathematical methods d04eIOped for the application of the theory

of rota t ional Jlrcwnion moc.nn to rue study of diciecii relaxati cu problems

have been fonud very useful for deriving analytical cxprcssions for longitudinal

and transverse rolxatjon times associated iith unclear Prignetjc zelaxation

arising from quadrupole Interactions. When tiw snIecuie wider consideration

is linear, cc. (45) gives the relaxation times in the axeme narrowing case

and (42) combined with (18) and (19) gives the times for spin one molecules

when r:on-vanishing values of the Larmor frequency are used. Similar rëults

are provided for aaynimetric molecules by (53 and (55), and for symmetric

‘olecu1.es by (56) and (57). The relation of these with earlier results

for spherical molecules is briefly discussed.
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