DIAS Access to
Institutional Repository

Title	Nuclear Magnetic Relaxation by Quadruple Interactions in Non-Spherical Molecules
Creators	McConnell, J.
Date	1982
Citation	McConnell, J. (1982) Nuclear Magnetic Relaxation by Quadruple Interactions in
Non-Spherical Molecules. (Preprint)	
URL	https://dair.dias.ie/id/eprint/936/
DOI	DIAS-STP-82-12

Nuclear Magnetic Relaxazion by Gadrupole Tnteractions in Non-Spherical Molecules

James WcConnell

Dublin Institute for Advanced Studies, Dublin 4, Treland

Abstract The nuclear magnetic relavation times associeted with guadrupole interactions are investigated by an analytical method for molecules that may be linear or symmetric rotators, or may be rotally asymmetric. The moiecules are subject to random thermal couples, and it is supposed that the consequent rotational motion is Jrowniar. The results are in agreement with those obtained otinerwise by Hubbard for the special case of spherical molecules.

1. Iniroduction

The general theory of nuclear magnetic interaction by guadrupele interactions has been expounded by Abragam ${ }^{1)}$ and by hubbard ${ }^{2)}$. Empleying a semi-classical theory and a Fokker-Planck equation Hubbard derived analytical expressions for relaxation times when the molecule under consideration is spherical and is undergoing steady-state retational. Brownian motion, inertial effects being included in the calculations. The purpose of the present paper is to make use of results deduced from Euler-Langevin equations in order to embrace the cases of molecules that are linear or symmetric rotators, or are asymmetric retators. As in recent studies of dielectric ${ }^{3)}$ and of nuclear magnetic ${ }^{4}$) relaxation the stochastic rotation operator $R(t)$ will appear prominently in the calculation of Brownian motion effects. In the next section earlier results required for our calculations will be recalled and expressed in a form convenient for future use. In section 3 the lincar rotator model will be considered. In section 4 the asymmetric model will be investigated, and results for a symmetric retator molecule will be deduced as a special case in section 5 .
2. Basic equations for quadrupole interactions

We recall some results derived by Abragam and by Habbard, which will serve as a basis for our calculations. Selecting a molecule we fix cur attention on one of its nuclei having spin angular momentum $\bar{h} I$, quadrupole mement Q and given gyromagnetic ratio, which is influenced by a constant magnetic ficld in a fixed direction taken to be the z-direction of the laboratory cocrdinate system S. We consider the interaction between the quadrupole moment and the electric field produced at the nucleus by all the other charges in the molecule. The interaction Hamiltonian $\sqrt{ } H$ is given by ${ }^{5}$)

$$
\begin{equation*}
x^{2} H_{1}=\sum_{q=-2}^{2}(-)^{q} F_{-q} Q_{q} \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
\left.F_{0}=\frac{1}{2} V_{3 z}\right) F_{ \pm 1}=-\frac{1}{\sqrt{6}}\left(V_{z x} \pm i V_{z y}\right) \tag{2}\\
F_{ \pm 2}=\frac{1}{2 \sqrt{6}}\left(V_{1 x}-V_{y y} \pm 2 i V_{x y}\right) \\
Q_{0}=\frac{e Q}{2 I(2 I-1)}\left[3 I_{z}^{2}-T(I+1)\right] \tag{3}\\
\left.\left.Q_{ \pm 1}=-\frac{\sqrt{6}}{2} \frac{e Q}{2 I(2 I-1)}\left[I_{z} I_{ \pm}+\right]_{ \pm}\right]_{z}\right] \\
Q_{ \pm 2} \quad \frac{\sqrt{6}}{2} \frac{e Q}{2 I(2 I-1)} I_{ \pm}^{2}, I_{ \pm}=I_{x} \pm i I_{y} .
\end{gather*}
$$

where

$$
\begin{equation*}
\tau(\omega)=\int_{0}^{\infty}\left\langle F_{0}^{i}(t) F_{q}(0)\right\rangle e^{-i \omega t} d t \tag{15}
\end{equation*}
$$

Having established these preliminaries we are justified in accepting the results of calculations of Abragam which are required for the introduction of quadrupole interaction relaxation times ${ }^{8)}$. If there exists an equation of the type

$$
\begin{equation*}
\frac{d\left\langle I_{3}\right\rangle}{d t}=-\frac{\left\langle I_{3}\right\rangle-\left\langle I_{3}\right\rangle_{0}}{T_{1}}, \tag{16}
\end{equation*}
$$

where $\left\langle I_{z}\right\rangle_{0}$ is the ensemble average of I_{z} for the equilibrium state, we call T, the longitudinal relaxation time. Similarly if there exists an equation

$$
\begin{equation*}
\frac{d\left\langle I_{x}\right\rangle}{d t}=-\frac{\left\langle I_{x}\right\rangle}{T_{2}} \tag{17}
\end{equation*}
$$

we say that T_{2} is the transverse relaxation time. Equations (16) and (17) will exist when the molecule has spin one, and then in our notation

$$
\begin{align*}
& \frac{1}{T_{1}}=\frac{3}{4}\left(\frac{e Q}{\hbar}\right)^{2}\left(J\left(\omega_{0}\right)+4 J\left(2 \omega_{0}\right)\right) \tag{18}\\
& \frac{1}{T_{2}}=\frac{1}{8}\left(\frac{e Q}{\hbar}\right)^{2}\left(9 J(0)+15 J\left(\omega_{0}\right)+6 J\left(2 \omega_{0}\right)\right) \tag{19}
\end{align*}
$$

where ω_{0} is the Larmor angular frequency. Equations (16) and (17) will also exist for an arbitrary spin I of the molecule in the extreme narrowing case where it is allowable to approximate ω_{0} by zero in the arguments of the J-functions, and then

$$
\begin{equation*}
\left.\frac{1}{T_{1}}=\frac{1}{T_{2}}=\frac{3(2 I+3)}{4 I^{2}(2 I-1)}\left(\frac{e Q}{\hbar^{2}}\right)^{2} J 10\right) \tag{20}
\end{equation*}
$$

Equations (18)-(20) are seen to agree with (2.44)-(2.46) of ref. 2 when it is

$$
\begin{aligned}
& \text { noticed that, since } F_{0} \text { is real, } \\
& J_{Q}(\omega)=J_{\infty}(\omega)=\frac{1}{2} \int_{-\infty}^{\infty}\left\langle F_{0}(t) F_{0}(0)\right\rangle e^{i \omega t} d t=\frac{1}{2} \int_{-\infty}^{\infty}\left\langle F_{0}^{-*}(t) F_{0}(0\rangle\right) \cdot e^{i \omega t} d i^{\prime} \\
&=\frac{1}{2} \int_{-\infty}^{\infty}\left\langle F_{0}(t) F_{0}(0)\right\rangle e^{-i \omega t} d t=\frac{1}{2} J_{i(\alpha)}
\end{aligned}
$$

where we have employed (11).

Tt appears from the above that the shape of the molecule and its randon motion enter into the calculation of the relaxation times only through J(w). By (9) and (12)

$$
\begin{equation*}
J(\omega)=\frac{1}{5} \sum_{n, n^{\prime}=-2}^{2} \int_{-\infty}^{n}\langle R(t)\rangle_{n^{\prime} n} e^{-i \omega t} d t F_{n}^{\prime *} F_{n^{\prime}}^{\prime} \tag{21}
\end{equation*}
$$

where F_{n}, $F_{n^{\prime}}$ given by (2) in the molecular frame are time independent. We may also express (21) by (14), where

$$
\begin{equation*}
\tau(\omega)=\frac{1}{5} \sum_{n, n^{\prime}=-2}^{2} \int_{0}^{\infty}\langle R(t)\rangle_{n^{\prime} n} e^{-i \omega t} F_{n}^{* *} F_{n^{\prime},}^{\prime} \tag{22}
\end{equation*}
$$

by (9) and (15).

3. Relaxation in linear molecules

The value of $\langle R(t)\rangle$ when the molecule is linear has been expressed in
a form convenient for our calculations by the equation ${ }^{9)}$

$$
\begin{align*}
&\langle R(t)\rangle=\left\{E+\gamma\left(J^{2}-J_{3}^{2}\right)\left(1-e^{-B_{1} t}\right)+\gamma^{2}\left[(2 J ^ { 2 } - 5 J _ { 3 } ^ { 2 }) \left(\frac{5}{4}-e^{-B t}-B_{1}\left(e^{-B_{1} t}-\frac{L}{4} e^{-2 \hbar t}\right)\right.\right.\right. \\
&+\left(J^{2}-J_{3}^{2}\right)^{2}\left(\frac{1}{2}-e^{-B_{1} t}+\frac{1}{2} e^{-2 R t)]+\cdots\}}\right. \\
& \times \exp {\left[-\gamma B_{1}\left\{\left(J^{2}-J_{3}^{2}\right)+\right)\left(J^{2}-\frac{5}{2} J_{3}^{2}\right)\right.} \tag{23}\\
&\left.\left.+\gamma^{2}\left(\frac{8}{3} J^{2}-\frac{29}{3} J_{3}^{2}+4\left[J^{2}-J_{3}^{2}\right] J_{3}^{2}\right)+\cdots\right\} t\right]
\end{align*}
$$

To derive this equation the motion was referred to the body frame cocrdinate system with origin at the centre and third axis along the line of the melecule. The moment of inertia about the first or second axis was denoted by I_{i}. The frictional couple about either axis is $I_{1} B_{1}$ times the corresponding component of angular velocity of the molecule and

$$
\begin{equation*}
\gamma=\frac{-k T}{I_{1} B_{1}^{2}} \tag{24}
\end{equation*}
$$

a small dimensionless constant. The identity operator is denoted in (23)
by $\underset{m}{E} . J^{2}$ and J_{3}^{2} are the usual rotation operators, the subscript 3 referring to the rotating axes as do the n, n^{\prime} in (21) and (22). In the five-dimensional

($£)$	$\left(\cdots+l_{1} \frac{c_{1}}{41}+l l_{1}-1\right) l_{6}={ }^{2} y$
(zع)	
(IE)	$\left(\cdots+l_{2} \frac{l^{\prime \prime}}{6 L}+\Lambda^{\frac{1}{L}}+1\right) l_{s}=' g$
(6z)	$\left(\cdots+l^{\frac{5}{8}}+1+1\right)^{19}=00$
(88)	
(Lz)	
(9z)	
(5z)	$\cdot\left[\begin{array}{lllll} 7 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 & i \end{array}\right]=\left\{=\left[\begin{array}{lllll} 9 & 0 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 & 0 \\ 0 & 0 & 9 & 0 & 0 \\ 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 9 \end{array}\right]=[=1\right.$

From (14), (35), (30), (38), (40) and (2)

$$
\begin{align*}
& J(\omega)=\frac{1}{5 B_{1}}\left[\left\{\frac{2\left(1+6 \gamma+33 \gamma^{2}+\cdots\right) G_{0}}{G_{0}^{2}+\omega^{\prime 2}}-\frac{2\left(6 \gamma+4 \delta^{2} \gamma^{2}+\cdots\right)\left(1+G_{0}\right)}{\left(1+G_{0}\right)^{2}+\omega^{\prime 2}}\right.\right. \\
& -\frac{2 \mu_{r}^{2}+\left[\left(1+G_{0}\right)^{2}+\omega^{2}\right]}{\left[\left(1+G_{0}\right)^{2}+\omega^{\prime 2}\right]^{2}}+\frac{3 r^{2}\left(2+G_{0}\right)}{\left(2+G_{0}\right)^{2}+\omega_{0}^{2}}+\cdots \frac{1}{4} V_{\partial 3}^{2} \\
& +\left\{\frac{4\left(1+5 \gamma^{r}+\frac{85}{4} r^{2}+\cdots\right)\left(G_{1}-\frac{4\left(5 \gamma+3 . \gamma^{2}+\cdots\right)\left(i+G_{1}^{2}\right)}{\left(1+G_{1}\right)^{1}+\omega^{\prime 2}}\right.}{G_{1}^{2}+0^{\prime 2}}\right. \tag{42}\\
& \left.-\frac{28 r^{2}\left[\left(1+G_{1}\right)^{2}+\omega^{\prime 2}\right]}{\left[\left(1+G_{1}\right)^{2}+\omega^{\prime 2}\right]^{2}}+\frac{43 r^{2}\left(2+G_{1}\right)}{\left(2+G_{1}\right)^{2}+\omega^{\prime 2}}+\cdots\right\} \frac{1}{6}\left(V_{z x}^{2}+V_{z y}^{2}\right) \\
& +\left\{\frac{4\left(1+2 \gamma-S_{r^{2}}^{2}+\cdots\right) G_{2}}{C_{2}^{2}+\omega_{1}^{\prime 2}}+\frac{4\left(-2 \gamma+4 \eta^{2}+\cdots\right)\left(1+G_{2}\right)}{\left(1+G_{2}\right)^{2}+\omega^{2}}\right. \\
& \left.\left.+\frac{\xi 2 \gamma^{2}\left[\left(1+G_{2}\right)^{\prime}+\omega^{\prime 2}\right]}{\left[\left(1+G_{2}\right)^{2}+\omega^{\prime 2}\right]^{2}}+\frac{1 \epsilon_{1}^{2}\left(2+G_{2}\right)}{\left(2+G_{2}\right)^{2}+\omega^{\prime 2}}+\cdots\right\} \frac{1}{24}\left[\left(V_{11}-V_{y_{y}}\right)^{2}+4 V_{r_{n}}^{2}\right]\right] .
\end{align*}
$$

On substituting from (42) into (15) and (19) we may obtain the values of the longitudinal. and transverse relaxation times for a molecule of spin one.

In the extreme narrowing case we have from (14) and (35)

$$
J(0)=2 \tau(0)=\frac{2}{5}\left(\tau_{20}(0)\left|F_{0}^{1}\right|^{2}+2 \tau_{21}(0)\left|F_{1}^{\prime}\right|^{2}+2 \tau_{22}(0)\left|F_{2}^{\prime}\right|^{2}\right)
$$

$$
\begin{aligned}
& \text { and from }(37),(39),(41) \\
& J(0)=\frac{2}{5 P_{1}}\left(\frac{1}{6}\left[1+5 \gamma-\frac{32}{3} \gamma^{2}+\cdots\right]\left|F_{0}^{\prime}\right|^{2}+\frac{2}{5}\left[1+\frac{43}{10} \gamma-\frac{90 z}{75} \gamma^{2}+\cdots\right]\left|F_{1}^{\prime}\right|^{2}\right. \\
& \left.+\left[1+4 \gamma-\frac{26}{3} \gamma^{2}+\cdots\right]\left|F_{2}^{\prime}\right|^{2}\right)
\end{aligned}
$$

Then from (2) and (24)

$$
\begin{aligned}
& J(0)=\frac{2}{5} \frac{I_{1} B_{1}}{2 T}\left\{\frac{1}{2 L}\left(1+5 y-\frac{32}{3} y^{2}+\cdots\right) V_{33}^{2}+\frac{1}{15}\left(1+\frac{43}{10} y-\frac{702}{75} y^{2}+\cdots\right)\left(V_{z x}^{2}+V_{3 y}^{2}\right)\right. \\
&+\frac{1}{24}\left(1+4 y-\frac{26}{3} y^{2}+\cdots\right)\left[\left(V_{x+4}-V_{24}\right)^{2}+V_{y} V_{x y}^{2}\right]
\end{aligned}
$$

It follows from (20) for a molecule of spin I that

$$
\left.\begin{array}{rl}
\frac{1}{T_{1}}=\frac{1}{T_{2}}= & \frac{1}{80} \frac{2 I+3}{I_{-}^{2}(2 T-1}\left(\frac{2 Q}{4}\right)^{2} \frac{I_{1} B_{1}}{k T} \\
& \times\left\{\left(1+5 \gamma-\frac{32}{3} \gamma^{2}+\cdots\right) T_{z z}^{2}+\frac{8}{5}\left(1+\frac{43}{10} \gamma-\frac{90^{2}}{75^{2}} \gamma^{2}+\cdots\right)\left(V_{z x}^{2}+V_{z y}^{2}\right)\right. \tag{43}\\
& +\left(1+4 \gamma-\frac{26}{3} \gamma^{2}+\cdots\right)\left[\left(V_{N x}-T_{y y}\right)^{2}+1+V_{x y}^{2}\right]
\end{array}\right\}
$$

4 Relaxation in asymmetric molecules

To investigate the rotational Browian motion of an asymetric melecule one takes a body frame S^{\prime} with origin at the centre of mass and coordinate axes coinciding with the principal axes of inertia, the relevant moments of inertia being I_{1}, I_{2}, I_{3} and the frictional constants B_{1}, B_{2}, B_{3}. Ford, Lewis and McConnell ${ }^{10}$ derived an expression for $\langle R(t)\rangle$ and deduced from it the value of the operator $\sigma(\omega)$ defined by

$$
\sigma(\omega)=\int_{0}^{\infty}\langle R(t)\rangle e^{-i \omega t} d t
$$

In our five-dimensional representation with basis $Y_{2,-2 y} Y_{2,-19} \cdots Y_{22}$ the matrix representation of $\sigma(\omega)$ is given by ${ }^{11 \text {) }}$

$$
\sigma(\omega)_{m n^{\prime}}=\left[\begin{array}{lllll}
A & 0 & D & 0 & F \tag{45}\\
0 & B & 0 & E & 0 \\
D & 0 & C & 0 & D \\
0 & E & 0 & B & 0 \\
F & 0 & D & 0 & A
\end{array}\right]=\sigma(\omega)_{n^{\prime} n},
$$

where

$$
\begin{align*}
& A=\frac{\left(a c-d^{2}\right)(1+\tilde{a})-a d \tilde{d}}{a\left(a c-2 d^{2}\right)}, B=\frac{b+b \tilde{b}-e \tilde{e}}{b^{2}-e^{2}} \\
& C=\frac{a+a \tilde{c}-2 d \tilde{d}}{a c-2 d^{2}}, D=\frac{-2 d+(a+c) \tilde{d}-d(\tilde{a}+\tilde{c})}{2\left(a c-2 d^{2}\right)} \tag{40}\\
& E=\frac{-e+b \tilde{e}-e \tilde{b}}{b^{2}-e^{2}}, F=\frac{d^{2}+d(d \tilde{-}-a \tilde{d})}{a\left(a c-2 d^{2}\right)} .
\end{align*}
$$

In these relations

$$
\begin{aligned}
& a=D_{1}+D_{2}+4 D_{3}+i \omega, b=\frac{5}{2}\left(D_{1}+D_{2}\right)+D_{3}+i \omega \\
& c=3\left(D_{1}+D_{2}\right)+i \omega, d=\left(\frac{2}{3}\right)^{1 / 2} e=\left(\frac{3}{2}\right)^{1 / 2}\left(D_{1}-D_{2}\right) \\
& \tilde{a}=\frac{D_{1}}{B_{1}}+\frac{D_{2}}{B_{2}}+\frac{4 D_{3}}{B_{3}}, \quad \tilde{b}=\frac{5}{2}\left(\frac{D_{1}}{B_{1}}+\frac{D_{2}}{B_{2}}\right)+\frac{D_{3}}{B_{3}} \\
& \tilde{c}=3\left(\frac{D_{1}}{B_{1}}+\frac{D_{2}}{B_{2}}\right), \tilde{d}=\left(\frac{2}{3}\right)^{1 / 2} \tilde{e}=\left(\frac{3}{2}\right)^{1 / 2}\left(\frac{D_{1}}{B_{1}}-\frac{D_{2}}{B_{2}}\right)
\end{aligned}
$$

and

$$
D_{i}=\frac{k T}{I_{i} B_{i}}+D_{i}^{(1)}
$$

where $B_{i}^{(2)}$ is a snall correction given by eq. (4.8) of ref. 10
In orrer to calculate $J(\omega)$ for the asymmetric molecule we note that for steady motion ${ }^{12}$)

$$
\langle R(-E)\rangle_{m n_{i}^{\prime}}^{\prime}=\left.\left\langle R\left(L^{\prime}\right)\right\rangle_{n^{\prime} n}^{\prime}\right|^{*}
$$

If then we define the operator $\rho(\omega)$ by

$$
\begin{equation*}
\rho(\omega)=\int_{-\infty}^{\infty}\langle R(t)\rangle-e^{-i \omega t} d t \tag{50}
\end{equation*}
$$

we deduce from (49) the general result

$$
\begin{equation*}
\left.\left.f(\omega)_{n^{\prime} x^{\prime}}^{j}=\sigma(\omega)\right)_{x^{i} 1}^{j}+(\sigma(\omega))_{n i x^{i}}^{j}\right)^{*} \tag{51}
\end{equation*}
$$

Working in the five-dimensional representation and using (50) we express (21) as

$$
\begin{equation*}
J(\omega)=\frac{1}{5} \sum_{n, n^{\prime}=-2}^{n^{2}} \rho(\omega)_{n^{\prime} n} F_{n}^{\prime *} F_{n^{\prime}}^{\prime} \tag{52}
\end{equation*}
$$

On subsituting from (2), (45) and (51), eq. (52) yields

$$
\begin{align*}
& J(0)=\frac{1}{20}\left\{\left(C+C^{*}\right) V_{z z}^{2}+\frac{4}{\sqrt{b}}\left(D+D^{*}\right) V_{z z}\left(V_{x x}-V_{y y}\right)\right. \\
&+\frac{4}{3}\left(R+B^{*}-E-E^{x}\right) V_{z x}^{2}+\frac{4}{3}\left(B+B^{*}+E^{2}+E^{*}\right) V_{z y}^{2} \\
&+\frac{1}{3}\left(A+A^{*}+F+F^{-x}\right)\left(V_{x x}-V_{y y}\right)^{2} \tag{53}\\
&\left.+\frac{4}{3}\left(A+A^{*}-F-F^{*}\right) V_{x y}^{2}\right\} .
\end{align*}
$$

Equations (18) and (19) combined ath (46)-(48), (53) provide the relaxation times T_{1} and T_{2} for a molecule with spin one.

In the extreme narrowing case $\sigma(\omega)$ is a real matrix and (53) recúuces to

$$
\begin{align*}
J(0)= & \frac{1}{10}\left\{\left(V_{z z}^{2}+\frac{1}{\sqrt{6}} T\right) V_{3 z}\left(V_{1 x x}-V_{y y}\right)+\frac{4}{3}(B-E) V_{z x}^{2}\right. \tag{54}\\
& \left.+\frac{4}{3}(Q+E) V_{z y}^{2}+\frac{1}{3}\left(A_{1} F\right)\left(V_{x x}-V_{y y}\right)^{2}+\frac{4}{3}(A-F) V_{x y}^{2}\right\}
\end{align*}
$$

with ω put equal to zero in (47). After some elementary calculation it is found from (20) and (54) that

$$
\begin{aligned}
& \frac{1}{T_{1}}=\frac{1}{T_{2}}=\frac{3}{40}\left(\frac{e Q}{2}\right)^{2} \frac{2 I+3}{I^{2}(D I-1)}\left\{\frac{D_{1}+D_{2}+4 D_{3}+\left(D D_{1} D_{2}\left(\frac{1}{B_{1}}+\frac{1}{F_{2}}\right)+n D_{3}\left(\frac{D_{1}}{D_{2}}+\frac{D}{E_{2}}\right)\right.}{\left(D_{2}\left(D_{2} D_{3}+D_{3} D_{1}+D_{1} D_{2}\right)\right.}\right. \\
& +\frac{D_{1}+D_{2}+D_{2} D_{1} D_{2}\left(\frac{1}{B_{1}}+\frac{1}{B_{2}}\right)+\frac{4\left(D_{1}+D_{2}\right) D_{3}}{B_{3}}}{12\left(D_{2} D_{3}+D_{3} D_{1}+D_{1} D_{2}\right)}\left(V_{r x}-V_{y y}\right)^{2} \\
& \left.+\frac{4\left(1+\frac{4 D_{1}}{D_{1}}+\frac{D_{2}}{D_{2}}+\frac{D_{3}}{D_{3}}\right)}{3\left(4 D_{1}+D_{2}+D_{3}\right)} V_{y_{3}}^{2}+\frac{4\left(1+\frac{D_{1}}{B_{1}}+\frac{4 D_{2}}{D_{2}}+\frac{D_{3}}{D_{3}}\right)}{3\left(D_{1}+L_{4} D_{2}+D_{3}\right.}\right) \cdot V_{3 x}^{2}+\frac{4\left(1+\frac{D_{1}}{D_{1}+D_{2}}+\frac{4 D_{1}}{3\left(D_{1}+D_{2}+L_{1} D_{3}\right)} V_{x_{3}}^{2}\right.}{} \\
& +\frac{-D_{1}+D_{2}+4 D_{1} D_{2}\left(\frac{1}{B_{1}}-\frac{1}{B_{2}}\right)+\alpha D_{3} D_{1}\left(\frac{1}{B_{1}}-\frac{1}{B_{3}}\right)+2 D_{2} D_{3}\left(\frac{1}{B_{3}}-\frac{1}{B_{2}}\right)}{6\left(D_{2} D_{3}+D_{3} D_{1}+D_{1} D_{2}\right)} V_{z z}\left(V_{x x}-V_{y y}\right) .
\end{aligned}
$$

5. Relaxation in symmetric molecules

We consider what the results of the previous section yield when the third axis of the molecule is an axis of symmetry. Then $B_{2}=B_{1}, \mathcal{D}_{2}=D_{1}$ and it follows from (46) and (47) that

$$
\begin{aligned}
& d=e=\tilde{d}=\tilde{e}=0, D-E=F=O \\
& a=2 D_{1}+4 D_{3}+i \omega, b=5 D_{1}+D_{3}+i \omega, c=6 D_{1}+i \omega \\
& \tilde{a}=\frac{2 D_{1}}{B_{1}}+\frac{4 D_{3}}{B_{3}}, \tilde{b}=\frac{5 D_{1}}{B_{1}}+\frac{D_{3}}{B_{3}}, \hat{c}=\frac{6 D_{1}}{B_{1}} \\
& A=\frac{1+\frac{2 D_{1}}{B_{1}}+\frac{4 D_{3}}{B_{3}}}{2 D_{1}+4 D_{3}+i \omega}, B=\frac{1+\frac{5 D_{1}}{B_{1}}+\frac{D_{3}}{B_{3}}}{5 D_{1}+D_{3}+i \omega}, C=\frac{1+\frac{6 D_{1}}{5}}{6 D_{1}+i \omega} .
\end{aligned}
$$

$$
\begin{align*}
& \text { When these values of } \Lambda, B, C \text { c } 2 \text { re substituted into (53) we obtain } \\
& \begin{aligned}
J(\omega)= & \frac{1}{20}\left\{\frac{12 D_{1}\left(1+\frac{6 D_{1}}{B_{1}}\right)^{2}}{36 D_{1}^{2}+\omega^{2}} V_{3 z}+\frac{\frac{8}{3}\left(5 D_{1}+D_{3} /\left(1+\frac{5 D_{1}}{D_{1}}+\frac{D_{3}}{B_{3}}\right)\left(V_{3 x}^{2}+V_{3 y}^{2}\right)\right.}{\left(5 D_{1}+D_{3}\right)^{2}+\omega^{2}}\right) \\
& +\frac{\frac{4}{3}\left(D_{1}+2 D_{3}\right)\left(1+\frac{2 D_{1}}{B_{1}}+\frac{4 D_{3}}{B_{3}}\right)}{4\left(D_{1}+2 D_{3}\right)^{2}+\omega^{2}}\left[\left(V_{x x}-V_{y y}^{2}+4 V_{x y}^{2}\right]\right\}
\end{aligned}
\end{align*}
$$

This will provide the relaxation times for symmetric molecules with spin one.

$$
\begin{aligned}
& \text { For the extreme narrowing case we put } \omega=0 \text { in (56), so that } \\
& J(0)=\frac{1}{20}\left\{\frac{\left.1+\frac{6 D_{1}}{B_{1}} V_{z z}^{2}+\frac{8\left(1+\frac{5 D_{1}}{3 D_{1}}+\frac{D_{3}}{B_{3}}\right)\left(V_{z x}^{2}+V_{3 y}^{2}\right.}{3\left(5 D_{1}+D_{3}\right)}\right)}{}+\frac{\left.1+\frac{2 D_{1}}{B_{1}}+\frac{4 D_{3}}{B_{3}}\left[\left(V_{x x}-V_{y y}\right)^{2}+4 V_{y y}^{2}\right]\right\}}{3\left(D_{1}+D_{3}\right)}\right.
\end{aligned}
$$

Thus, from (20),
$\frac{1}{T_{1}}=\frac{1}{T_{2}}=\frac{1}{80}\left(\frac{e Q}{2}\right)^{2} \frac{2 I+3}{I^{2}(2 I-1)}\left\{\frac{1+\frac{6 D_{1}}{B_{1}} V_{33}^{2}+\frac{8\left(1+\frac{5 D_{1}}{D_{1}}+\frac{D_{3}}{D_{3}}\right)}{5 D_{1}+D_{3}}\left(V_{3 x}^{2}+V_{34}^{2}\right)}{}\right.$

$$
\begin{equation*}
\left.+\frac{1+\frac{2 D_{1}}{B_{1}}+\frac{4+D_{3}}{B_{3}}}{D_{1}+2 D_{3}}\left[\left(V_{x x}-V_{y y}\right)^{2}+4 V_{x_{y}}^{2}\right]\right\} \tag{57}
\end{equation*}
$$

Let us apply these results to a spherical molecule. Then $B_{3}=B_{1}, D_{3}=\mathcal{D}_{1}$ and to a first approximation in, as defined in (24) we have ${ }^{13}$)

$$
D_{1}=\left(1+\frac{1}{2} \gamma\right) \frac{k T}{I_{1} B_{1}}
$$

Hence, from (56), in the same approximation

In the extreme narrowing case we deduce from (57) that

For the sphore the axes of the molecular frame S^{\prime} may be taken in any conenient direction. If we take them in the directions of the principal axes of the tensor with components $V_{n x}, V_{x}, \cdots V_{y} V_{3}$, then in terms of the new coordinates x, Y, Z the quantiti es $V_{Y 2}, V_{2 x}, V_{Y y}$ vanish. We choose the labelling $x, 1, z$ such that $\left|V_{z z}\right| \geqslant\left|\nabla_{X X}\right| \geqslant\left|V_{Y Y}\right|^{2 x}$ and put

$$
\frac{V_{x x}-V_{i x y}}{V_{z z}}=\eta
$$

Equations (58) and (59) are now expressible as

$$
\begin{align*}
& J(\omega)=\frac{1}{20} \frac{\left.12\left(1+\frac{13}{12} \gamma\right)\left(1+\frac{1}{3}\right)^{2}\right)}{36(1+\gamma)+\left(\frac{I \cdot B_{1} \omega}{2}\right)^{2}} \frac{I_{1} B_{1}}{R_{1} T} V_{z 2}^{2} \\
& \frac{1}{T_{1}}=\frac{1}{T_{2}}=\frac{1}{80} \frac{2 I+3^{k T}}{I^{2}(2 I-1)} \frac{I_{1} B_{1}}{k_{2}}\left(1+\frac{11}{2} \gamma\right)\left(1+\frac{1}{3} \nu^{2}\right)\left(\frac{e Q}{R} V_{z 2}\right)^{2} . \tag{60}
\end{align*}
$$

The investigation of the spherical molecule may be carried cut directly and to two higher orders of approximation in) by the method which we employed. for the linear molecule. The results of many of the preliminary calculations are already available ${ }^{14 \text {). To illustrate how they may be applied we consider }}$ only the extreme narrowing case.

Since for the sphere the matrix $\langle R(t)\rangle_{n x^{\prime}}$ is real and a multiple of the unit matrix, we have from (9) and (13) that

$$
\begin{aligned}
J(0) & =2 \int_{0}^{\infty}\left\langle F_{n}^{*}(t) F(0)\right\rangle d t \\
& =\frac{2}{5} \sum_{m, n^{\prime}-2}^{2} \int_{0}^{\infty}\langle R(t)\rangle_{n^{\prime} n} F_{n}^{\prime x} F_{n^{\prime}}^{\prime} \\
& =\frac{2}{5} \int_{0}^{\infty}\langle R(t)\rangle_{n} d t \sum_{n=-2}^{2}\left|F_{m}^{\prime}\right|^{2}=\frac{2}{5} \tau_{2} \sum_{n=-2}^{2}\left|F_{n}^{\prime}\right|^{n},
\end{aligned}
$$

where ${ }^{15)}$

$$
\begin{equation*}
\tau_{2}=\frac{I_{1} B_{1}}{6 R T}\left(1+\frac{11}{2} \gamma-\frac{83}{6} \gamma^{2}+56 \frac{49}{72} \gamma^{3}+\cdots\right) \tag{61}
\end{equation*}
$$

Then from (2) and (20)
$\frac{1}{T_{1}}=\frac{1}{T_{2}}=\frac{3}{40}\left(\frac{e Q}{R}\right)^{2} \frac{2 I+3}{I^{2}(2 I-1)} r_{2}\left[\Gamma_{33}^{2}+\frac{4}{3}\left(V_{3 x}^{2}+T_{3, ~}^{2}\right)+\frac{1}{3}\left\{\left(\Gamma_{1-}-T_{4}\right)^{2}+4 V_{0}^{2}\right\}\right)$

This comprises the result of Hubbard ${ }^{16)}$ and of (59) and (60) above.
If γ_{2} is calculated according to the Debye theory, (6i) is replaced by ${ }^{17}$)

$$
\tau_{2}=\frac{I_{1} B_{1}}{6 k T}
$$

Thus the inclusion of inertial effects just gives a small correction of crde: ${ }^{\gamma}$ to the common value of T_{1} and T_{2} in (62). This contrasts markedly with what occurs for dielectric absorption in the submillimetre region ${ }^{18}$).

The mathematical methods dereioped for the application of the theory of rotational Bromian metion to the study of dielectric relaxation problems have been found very useful for deriving analytical expressions for longitudinal and transyerse relaxation times associated with muclear magnetic relaxation arising from quadrupole interactions. When the molecule under consideration is linear, ec. (4j) gives the relaxation times in the exceme narrowing case and (42) conbincd with (18) and (19) gives the times for spin one molecules when ron-vanishing values of the Larmor frequency are used. Similar results are provided for asymetric molecules by (53) and (55), and for symmetric molecules by (56) and (57). The relation of these wich earlier results For spherical molecules is briefly discussed.

References

1) A. Abragan, The Principles of Nuclear Magnetism (Clarendon Press, exford, 1
2) P.S. Hubbard, Fhys. Rev. 19 (1974) 481.
3) J. McConnell, Rotational Brownian Motion and Dielectric Theory (Academic Pr London, New York, Toronto, Sydney, San Francisco, 1980).
4) J. McConnell, Physica 111 A (1982) 85.
5) P.S. Hubbard, Phys. Rev. $\frac{180}{18}$ (1969) 319.
6) P.S. Hubbard, Phys. Rev. A 6 (1972) 2421, eq. (7.4), (7.5).
7) ref. 3 , sections 7.3 and 7.4 .
8) ref. 1, pp. 276-281, 313-315.
9) J. McConnell, Physica A, in press.
10) G.W. Ford, J.T. Lewis and J. McConnell, Phys. Rev. A 19 (1979) 907.
11) ref. 10 , eq. (6.17).
12) cf. ref. 3, p. 237.
13) ref. 3, eq. $(12,5.24)$.
14) cf. ref. 3 , sections 13.4 and 13.7 .
15) ref. 3 , eq. $(13,4.5)$.
16) ref. 2 , eq. (4.6).
17) ref. 3 , eq. $(13,4.7)$.
18) ref. 3, section 14.2 .
