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Abstract.

Often one has data at points insidc the holomorphy domain of a Green's
function, or of an Amplitude or Form-Factor, and wants to obtain information
about the spectral function i.e. the discontinuity along the cuts. Data may
be experimental or theoretical. In QCD for example the perturbation expansion
is valid only for unphysical values of the cnergy: one would like to continue
this information to the cuts to find the resonance paramcters. However, analytic
continuation off open contours is extremely unstable. Also, the straightforward
continuation of the truncated perturbation expansion will not de, since this is
itself analytic and continuation will thus yield exactly the same result.

This problem is solved by functional techniques, first by allowing small
imprecisions in the data to remove the unigqueness of the continuation, and then
by introducing a stabilizing condition suited to the particular physical problem,
which will suppress the functions with incorrect behaviour. The stabilizing
condition is expressed in terms of a norm giving a measure of the smoothness of
the Discrepancy Function - which is the Amplitude with the resonances removed.

The minimal norm computed from the data depends on the trial values of the resonance

parameters and enables one to sclect the best values for these. The corresponding
optimal amplitude is also constructed. .

An explicit solution is obtained for the case of ‘a discrcte data sct; -in the
continuous case the problem is expressed in terms of a Fredholm integral equation.

[

1 Statement of the Problem 2

Analytic continuation is one of the main tools by means

of Which prediction can be achieved in Physics. Many functions
of #hysical interest have been proven (6r assumed) to be
holomorphic in some domain of their relevant parameters -
energy, momentum transfer and so on. Analyti¢ continuation
thus becomes-an ideal conveyor of information from those

regions where data is available to those of physical interest;
for instance up to the region of the cuts of the Scattering
Amplitude, in order to find the parameters of the resonances.

Data may not only be experiméntal. Analytic coﬂtinuatiop
is also a valuable tool in purely theoretical problems, for
example in Field Theory in order to convey the information
provided by some ;pecific procedure (.eg. perturbative
expansion)far outside its natural domain of validity. There
has been a strong revival of interest in these guestions in
the last few years, especially in asymptotically Yfree field
theories (in Q.C.D.)Kwhere the perturbative series are
expected to yield sensible results only for far, nonphysical
values of the energy.

The standard ways[l'3] used so far[4] to tackle these
problems are based on some specially weighted contour
integralsil], on Borel summations[zj — which to some extent
(see [2]) are equivalent to the former method — or on moment
analysis [3]. Borel summations, for instance, make use of
the informatién contained in the numerical value of the
coefficients of the initial series, not in the form of their
sum (which may diverge), but in that of a suitable inﬁegrbl

representation which, provided some conditions are fulfilled,



has a much larger domain of validity. Unfortunately, as
often happens when bngptries to apply existing mathematical
procedures to Physics, it is very hard if not impossible to
prove that these necessary conditions really hold in actual
situations. The classical counter-example given by Khuri in
[5] is a serious warning in this respect.

In order to understand the scope of this paper, it is
important to realize that this problem {4 noi simply the
matter of a straightforward analytic continuation. Indeed,
since the truncated perturbation function is itself-an

analytic function of the energy, due to the uniqueness of

- analytic continuation a straightforward continuation would

give exactly the same pertuibative function, which is known

to yield false results in the resonance region. Bearing this

in mind, we shall proceed as follows:

a) we shall first remove the uniqueness of the continuation
by allowing (small) imprecisions into the initial data.
This is legitimate, since even where the perturbative
series converges well, the truncated perturbative

expression is still not exact;

b) we then introduce a functional filter in the continuation

procedure in order to “sieve out" any function of

unwanted behaviour, as the truncated perturbative series

itself is. Since unsuitable expansions behave badly
especially around singular points (branching points,
second Riemann sheet poles, etc.) one is able to

investigate theoretically what kind of behaviour, for

example at threshold and infinity, one would have to rule

out. It is perhaps good to stress that such a function-
filter is in fact reguired in a natural way by the .
Functional Analysis, since without it, in the presence
of the least imprecision of the initial data, any
answer is permitted by the infinite instability of the
analytic continuation process (analytic continuation off
open contours is an ill—posed“problem, in the Hadamard
sense). The mathematical effect of such a functional
filter is known to change the initial ball-topology of
the infinite dimensional funcﬁioﬁ space into one using
neighbourhoods progressively flattened along the higher

dimensions.

This filter is introduced in the form of a suitably

defined norm (see eqg. (2) below), the strictly positive

weight o(s) being chosen so as to enahnce the regions where

one would like to get predictions, and fo diverge if
integrated with any function of unwanted singular behaviour.
Of course this norm will depend in an essential way on the
kind of physical information one chooses to stabilize the
continuation process. In what follows we shall use the
hypothesis of the separability of the effect of the second
Riemann sheet poles, i.e. of the resonances ( where it
holds). To this end we shall subtract from the as yet
unknown physical function A(s), a test function TK(s)
containing the resonances and any other desired features
for A(s): T (s) depends on some as yet undetermined pa*a—

meters x. We introduce then the Discrepancy Function [6]

D (s) = als) =T _(s) (1)



and we define a norm related to the smoothness of its
imaginary part, on the cuts:

3 ImD _(s'), 2
S (actity

— o(s')as'}? (2)
cuts °°

It is clear that if TK(s) describes correctly the structure on
the cuts of A(s), G[DK] will have a pronounced minimum for

that x = which corresponds to the true positions of the

“o
resonances poles.

O0f course, since on the cuts D, (s) is at this stage
as unknown as A(s) itself, §[D,] cannot be computed directly.

The only available information is the data a(s;)and dK(si)
a(si) = A(si) + E(si)

dK(si) = a(si) - TK(si) (3)

given at the points s; €Y inside the holomorphy domain of
A(s). The deviations E(si) are unknown, but it is supposed

that they are subjected to the x? condition

x* [Dy]

I (De(s;)=d(s;) V" n(s,)

2
I € (si)n(si) <1
s, ey i

ey

w

(4)

where n(si) is a given function. A

Functional Analysis allows us to calculate effectively
the smallest of these norms 6{DK] —call it §_(x) — which is
still compatible with the data and the x*-condition, and
with the analyticity of D (s). This &O(K) depends solely
on the data a(s;) given on vy, the test function T (s) and on
the weignts n(si) and o (s). The position «k = Ko of its

minimum corresponds to the smoothest possible discrepancy

function Di(s) and hence, particularly if the minimal is’a

. hypothesis 7k(s) has been shown to be wrong.

sharp one,;it is a reasonable surmise that Ko represent thé_
true resonance parameters. - On the other hand if 8§ o(K) does

not have an& pronounced minima - this result may still be
significant since if much structure is still left in the
discrepancy Dx(s) whatever values are given to x , then the

This demonstrates
clearly enough the interest of the % aéproach[7]. Moreover,
if this minimum does exist, one can construct explicitly the
extremal (most smooth) function Dgpfs) whose' nozm G[Dgg]

(eq. (2)) equals SA(KJ, and hence, via eq. (1), the optimal

function A° (s) is obtained.

2. The Continuous Data Case

From now on we shall use the variable z = z(s) which
maps the cut complex s-plane onto the unit disk |z| <.1. The
weights n(s), o(s) will be changed by the mapping, but for‘ﬁhe
sake of simplicity we shall use the same symbols as before. .

Now, if the set vy = {zi} of points where the data dr(zi)
are given becomes a continuum (a real line segment) then con-

dition (4) reads
x*[p ] =J(dK(z') - Dy(z"))*n(z')dz' <1 (5)
‘ Y

Since the function DK(z) is determined by the boundary valués
of its tangential derivative, 3 (Im DK(z' = ei¢))/e¢,only ué to
an arbitrary constant, eg. (2) does not really represent a
norm for DK(Z). However if one considers the space X of
functions X(z) which vanish at some specific point z = E
(and which are holomorphic for |z| < 1 and have a tangential
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The value of the Lagrange multiplier A can be found then
by means of eq. (9). Once the optimal xi(@) is found (by
solving egs. 12), Xo(z), and then Di(z) and Ao(z) can be
computed respectively by means of egs. (7), (8) and (1).

Findlly the value of the important functional §, is obtained

by direct integration[loJ
27

8 = 5[p7] = o= X '
o) = 8[0] = 5% | @b 26 ate) (13)

3. - The Discrete Data Case

‘Often the set Yy of points zi where the data are given, is
discrete. This is the usual situation when the data are
measured experimentally but this case is important also in
theoretical problems, especially where the relevant functions
are evaluated with a computer. This discrete case is discussed
at length elsewhere [ll], we shall give here only a summary of

the relevant results.

Let di = dK(zi) be the given, error-affected data and di

the (as yet unknown) corresponding values of the discrepancy

function, di = DK(zi), subjected to
-~ N . 2
2 T = _ < (14)
x*[a,] = iil(di a;) ny <1

For simplicity take the reference point z, (see preceding

section) to be z so that

ll

De(z,) = D(z)) =a, - a, X(z

"

X(z,) l) =0 . (15)

Now if Xl(z) is some specific function satisfying eg. (15), and
if M(z) is holomorphic for |z| < 1 and M(z,) = O for all z's,

is
then xl(z) - M(z)Vanother x(z) satisfying (15). Hence 60 is

-9 = ‘
§ = inf  ||x*(z) - M(=2) ]| (16)
°© M
(t1(z ) =0)
where ||.|] is defined by eq. (6). The effective computation

of §,is much simplified by the duality theorem [11] which
transposes the above problem into a supremum one over linear

functionals y¥*
1 1 %
6, = inf|[x" - M| = SUFSHF <XT,Y¥>
M iyl

<M,y*> = 0, for
all M, M(zi)=0.

: (17)
The result has the form
eoe (D (), (ma0) (-2 (18a)
8y = (e Ty g5 (dy=dy) (dy=dy ,
i,3=2 ) .
i
where
2T { ,
o1 s i¢ . 16, = a
%54 = I Jo N(zyizg.e )N(zl,zj,e Yo T (¢$)de
(18b)

The optimal ég themselves are found'by a Lagrange multiplier
method combining the minimum condition for eg. (18a) with the
constraints of egs. (14)[123. The explicit form of the result
is given in ref. [11].

Hence, in_the cases of both the continuous and discrete
data, there exists an explicit method which permits .us to assess
the values of the parameters of the resonances {recall the
discussion at the end of the first section), and to.construct
explicitly the Optimal amplitude (Green functions, etc.)

A% (s), up to the cuts.
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