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1 Statement of the Problem

FUNCTIONAL ANALYTIC CONTINUATION TECHNIQUES
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Abstract.

Often one has data at points inside the holomorphy domain of a Green’s

function, or of an Amplitude or Form—Factor, and wants to obtain information

about the spectral function i.e. the discontinuity along the cuts. Data may

be experimental or theoretical. Ir, QCD for example the perturbation expansion

is valid only for unphysicaL values of the energy: one would like to continue

this information to the cuts to find the resonance parameters. However, analytic

continuation off open contours is extremely unstable. Also, the straightforward

continuation of the truncated perturbation expansion will not do, since this is

itself analytic and continuation will thus yield exactly the same result.

This problem is solved by functional techniques, first by allowing small

imprecisions in the data to remove the uniqueness of the continuation, and then

by introducing a stabilizing condition suited to the particular physical problem,

which will suppress the functions with incorrect behaviour. The stabilizing

condition is expressed in terms of a norm giving a measure of the smoothness of

the Discrepancy Function — which is the Amplitude with the resonances removed.

The minimal norm computed from the data depends on the trial values of the resonance

parameters and enables one to select the best values for these. The corresponding

optimal amplitude is also constructqd.

An explicit solution is obtained for the case of a discrete data set; in the

continuous case the problem is expressed in terms of a Fredholm integral equation.

Analytic continuation is one of the main tools by means

of which prediction can be achieved in Physics. Nany functions

of physical interest have been proven (or assumed) to be

holomorphic in some domain of their relevant parameters —

energy, momentum transfer and so on. Analytic continuation

thus becomes-an ideal conveyor of information from those

regions where data is available to those of physical interest;

for instance up to the region of the cuts of the Scattering

Amplitude, in order to find the parameters of the resonances.

Data may not only be experimental. Analytic continuation

is also a valuable tool in purely theoretical problems, for

example in Field Theory in order to convey the information

provided by some specific procedure ( eg. perturbative

expansion) far outside its natural domain of validity. There

has been a strong revival of interest in these questions in

the last few years, especially in asymptotical.ly free field

theories (in Q.C.D.) where the perturbative series are

expected to yield sensible resultsonly for far, nonphysical

values of the energy.

The standard ways’ used so far1 to tackle these

problems are based on some specially weighted contour

integrals1,on Borel summations[2] which to some extent

(see [2]) are equivalent to the former method — or on moment

analysis [3]. Borel summations, for instance, make use of

the information contained in the numerical value of the

coefficients of the initial series, not in the form of their

sum (which may diverge), but in that of a suitable integral

representation which, provided some conditions are fulfilled,
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has a much larger domain of validity. Unfortunately, as

often happens when neLtries to apply existing mathematical

procedures to Physics,itisveryhardifnot impossible to

prove that these necessary conditions really hold in actual

situations. The classical counter—example given by Khuri in

[5] is a serious warning in this respect.

In order to understand the scope of this paper, it is

important to realize that this problem Lo no simply the

matter of a straightforward analytic continuation. Indeed,

since the truncated perturbation function is itselfan

analytic function of the energy, due to the uniqueness of

analytic continuation a straightforward continuation would

give exactly the same perturbative function, which is known

to yield false results in the resonance region. Bearing this

in mind, we shall proceed as follows:

a) we shall first remove the uniqueness of the continuation

by allowing (small) imprecisions into the initial data.

This is legitimate, since even where the perturbative

series converges well, the truncated perturbative

expression is still not exact;

b) we then introduce a functional filter in the continuation

procedure in order to “sieve out’ any function of

unwanted behaviour, as the truncated perturbative series

itself is. Since unsuitable expansions behave badly

especially around singular points (branching points,

second Riemann sheet poles, etc.) one is able to

investigate theoretically what kind of behaviour, for

example at threshold and infinity, one would have to rule

• out. It is perhaps good to stress that such a function—

filter is in fact required in a natural way by the

Functional Analysis, since without it, in the presence

of the least imprecision of the initial data, arzy

answer is permitted by the infinite instability of the

analytic continuation process (analytic continuation off

open contours is an ill-posed problem, in the Hadamard

sense). The mathematical effect of such a functional

filter is known to change the initial ball-topology of

the infinite dimensional function space into one using

neighbourhoods progressively flattened along the higher

dimensions.

This filter is introduced in the form of a suitably

defined norm (see eq. (2) below), the strictly positive

weight a(s) being chosen so as to enahnce the regions where

one would like to get predictions, and to dLvce if

integrated with any function of unwanted singular behaviour.

Of course this norm will depend in an essential way on the

kind of physical information one chooses to stabilize the

continuation process. In what follows we shall use the

hypothesis of the separability of the effect of the second

Ricmann sheet poles, i.e. of the resonances ( where it

holds). To this end we shall subtract from the as yet

unknown physical function A(s), a test function T(s)

containing the resonances and any other desired features

for A(s); T(s) depends on some as yet undetermined para

meters ç. We introduce then the Discrepancy Function [6j:

Dr(s) A(s) — T(5) Cl)
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and we define a norm related to the smoothness of its

imaginary part, on the cuts:

3 ImD’ Cs’) 2

6[D ] cii a(s’)ds’ (2)

cuts

It is clear that if TK(s) describes correctly the structure on

the cuts of A(s), [DKl will have a pronounced minimum for

that K K0 which corresponds to the true positions of the

resonances poles.

Of course, since on the cuts D<(s) is at this stage

as unknown as A(s) itself, ó[DK] cannot be computed directly.

The only available information is the data a(s)and dK(sj)

a(s.) A(s.) + c(s.)
1 1 1

dK(sj) = a(s)
— TK(s.) (3)

given at the points s c y inside the holomorphy domain of

A(s). The deviations a(s1) are unknown, but it is supposed

that they are subjected to the xa condition

x2[DK] E (DK(sl)—dK(sl))2n(s) E a2(S)n(S) 1
say say

1 1

(4)

where n(s1) is a given function.

Functional Analysis allows us to calculate effectively

the smallest of these norms [DK] —call it 0(K) — which is

still compatible with the data and theX2—condition, a.nd

with the analyticity of OK(s) . This .0(K) depends solely

on the data a(s1) given on y, the test function TK(s) and on

the weignts n(s1) and c(s). The position K = K0 of its

minimum corresponds to the smoothest possible discrepancy

function D(s) and hence, particularly if the minimal is a

—5—

sharp one,it is a reasonable surmise that K0 represent the

true resonance parameters. On the other hand if 0(K) does

not have any pronounced minima this result may still be

significant since if much structure is still left in the

discrepancy OK(s) whatever values are given to K , then the

hypothesis TK(s) has been shown tobe wrong. This demonstrates

clearly enough the interest of the approach[]. Moreover,

if this minimum does exist, one can const-uct explicitly the

extremal (most smooth) function D(s) whose norm

(eq. (2)) equals 50(K0), and hence, via eq. (1), the optimal

function A°(s) is obtained.

2. The Continuous Data Case

From now on we shall use the variable z = z(s) which

maps the cut complex s—plane onto the unit disk JzI < 1. The

weights n(s), c(s) will be changed by the mapping, but for the

sake of simplicity we shall use the same symbols as before.

Now, if the set y {z1) of points where the data d(z)

are given becomes a continuum (a real line segment) then con

dition (4) reads

x2[DKI = fCdK(z’) — DK(z’))2n(z’)dz’ < 1 (5)

Since the function DK(z) is determined by the boundary values

of its tangential derivative,3(Im D(Z’ = e’))/3,only up to

an arbitrary constant, eq. (2) does not really represent a

norm for DK(z). however if one considers the space X of

functions X(z) which vanish at some specific point z

(and which are holomorphic for Izi < 1 and have a tangential



C) U)
H 4)

13 -H U]
4.) -H

>1
‘—4

-H C) C)

CO ,— C) .3)
3-4 C)

3= (-4 C)
3) L_)

C) CO 4.)
-‘-4 ‘-C C)
(3 (--4 3)
3—< (U 0 --4
4)
(0 A
C - ‘1 C)
o N (-4 U]
C) - 3=

4—i

C) (-4-44

,C: 3= 3= S-I
4) 4-_I :3

CO 14-4 0
>i V 0

N H
C) ‘3) H H
C :3 13

C) -d
C) 43 •C)

C: C)
C) E C) -H
.0 1-4 .0
:3: ii

C) c3 43= -

U] -‘-I ,—$
(3 (U ‘C, C)
C)

4 4.) 3)
(-4 3=] 0) C)
:3 .0 0)
o - 0 (-4

4) ‘(3) (3)
C) C) 3-4 43-4

H 1 3= 43-4

0 -H
C.) (3) ‘3)

• C) .c3
1) C) E—4 3
U] C)
-d 0 (3)
:3 4.) 4)
(3 :3 (C)
> -d

0
‘—1 )
o 0

I .0 -d
- ‘C.) 4)

-0 C) (.1
‘3) (-4 C)

I (-i-i 1
4-I

N
Ci) 3)) (3)

3= .3:: .3:: >
r-;zr’ 4J4)-d

4.3
— U) .0) 13

-0- C) 4.) >
-d -H

C) H 3: (-4
-

.— H (1)
N - C) U) ‘ci

-0- 3:
0 -d 4.)

N (3) (0 U) C)
- C) C) C)

N > b-I
- (1) 3:)

N 0 -0- C) C)
H 4)

3:3 >1

>13:-I
— 1-4

-0- C) Co (3
-H (3 ‘Cl

L_1 (3) C)
—C - 1-4 •

I N 0 01-0
— ..- 43= 0)
-0- 0

N 0) C)
1) —.-

•, C) .3:1
- 4)

-0-
— 3=
N 4._i 5-4

44 00
- 3=4 3)t(-4

‘aN

4-4 - 0
•—‘ 0 f’ •H

>1
- c04J

-0- -0- b-I (3
(-=‘C5 ‘oo C) 4-4 )1

c_-I 0 ‘___. -H 0 C)1

.3:1 Ci)
(3= U] CO

HJ3= HJC’I -H C) H
$3 H C)

H I CO .0 P
> UI CO

--4 C) -0-
0) C) 4)

.3:1 C) $3
&4 > -H 3=

‘3=
0

C)
$3 C)
0 U]

-H
Li)

C)
— C) —

N 4.3
3= 0
$1) N

3=-i
C) L-i

—4
04

0’
0 c-i C)
C) -H

- .4.)
C) N -H
H - (-4
4.3 C) 3:

4.3

U] c--i C)
i I C)

.3:1
II

U]

-H

N
N -

N CO
4--)

• 0
N

C) ._- 33.4

C)
‘(-4 1-4
0 H

C) 43=

H (3 0
C) (-4
C) C) U]
(-4 - C)
C) C)

,S(3 C) -H
C) ‘C)

C) C) C)
.0 0 (1)
4.) :3 04

C) 04
C) Z (3)
(-4
C) (3) C)
H .0 .3:)
1:: 4)4.)

C)
.0
4.3

144

0

3:0
:3
0
C)
(-4

4.)

3=
C)

C)
-C)
4)

0’
o 4.)

N -H C)
‘U -H

2 C) C)3D) -H 3-4
‘(-4 4)

131 U]
‘4-4 3:3

0 o o
‘cS C)

4.)

C) C)
H H
4) 4.)

‘3) 4.) C)
‘CI

-4- (1) C)
(3) ;I
C)

N 3
‘U $-$

x
3= 3._i

II
0

- 0) H
N H Cd

.3:3 C)
2 0 0

CD) (-4 -H
:34 4.3

C.)
(-4 C)

:3
04-4

0 (1)
4) H :1

‘CI (3 01
C) C) C) -H

C) -H :3
3= 0 U] (3) .0
o >1 H C)
C) C) .01 0 .0 Ci)

H 04 0 0 .4)
— C) .0 -H (-4
CO £3 ((I ‘(4 4) 04 (-4

4.) C) 0 C) C)
C) C) H -d

O 4) :3 (3 H
o ‘t:) :3 4-4 0 04
(-4 H -H C) -H

14-4 :1 ci H 1-4 4)

0 1-1 C) 4.) H
0’ 3: 4) (--4 x :1
C) (1) 4-’ (3) 0

-H U) C) C)
04 -H 0 C) 14-4 (3)

04.0 C) 04 0 CO
C) 4.) U] C)
O (-4 ‘3 Cd

C) C) 3:) (-4
(3 .0 .0 -.-4 CO

43 4.) .0 C)
C) 0 H
H C) ‘4-4 U]

Ci 0 0 -H ‘CS
‘ti C) U] H C)
H 04 H >1 E-4 U]
:1 (II C) 4) -d
0 -H H
3: ‘CI -. 1> • C)

C) —. -H C) (-4

3) CO 4) Q C)
(-4 — -H C)

C) 0 UI 0 C)
U] C) • 0 U] CO
(11 01 04
C) C) Ci) ‘U C)

(1) ) £3
H 0 U] H Cd 4)

C) 4) C) 4.1

(-4 ‘CI CO
(3) .-- -H (3) —i C)
(3 3= U) H CO -d
0) 3= (3) -H k—-’ (0

C)’ ‘— .0 H 3)

C) II — - C)
3-4 3= 4) C)
0 >< C) U] Al >
0 ‘CI C) H

C) -H 3= f3 0
Cd C) U] C) (-I

((1 3:3 .iJ 3)
C) 04 0 :3 H U)

H CO C) -d — -H

‘Cl
‘--4

C) :i
(3) 0
.0 .0
4.3 3))

—S ‘Ci 3-4
o C) X
H (3

0
S 4)

c-C
.4.)

0 C)
4) C)

H 04
C) H U]
C) C) C)
0 (-4
-H ‘CI
4) .3:3

0 5 4)

43 44 -H

14-4
0) 41)

0) A C) 3>
H 41 Cd -H
4.) N 04 4)

U] (3
0’ — 3>

1-4 Ci) -H-
-H 3= .0 (-4
4.) L—J 4) (3)

C) CO ‘01
1 v ‘4-4

(-4 0
4) •4- 4’)
U] U] H
C) r, 4) C)
O 1-4 C) ‘Ci)
C) 3= C) (-4

I-_i 3)
>1 (-‘4 Ci)

.3:4 H U]
II (3) 3.3

S -H
c-_i C)

.0 (-4 3-4 4)
-H 3= (1) 111

C) -1 .0
1-4 4’ -(C 4)
(1) ‘N N
4)

(-ci 0’
U] C) C)
:1 3= -‘-4

-H C) H
H .3:: U]

3(3 C)

‘5,
C-I

‘-I

C)
‘—-I
H

-e

-(C’

C)
s-I

3=

-0-

-e

5= -0-

C4 0

H 3=

+

43.

0

-0-

,441

43

>1
C)
+

3-4
XC)

CO
44

Co

00
-H +

>1

(--4
3=

-Sc

3=4
‘-0

N

4>
‘C) (-4

::‘ 3=

N — - —5 - —

— .0 C)
:3 (‘4 (‘5
- H
N .‘--

— 5

,
N

3,— 0
- N

HJ3:t
‘-_:—

—S - - 3=’SI
N N -0- - a

3,3
-H

‘SI N -
—i N (‘4

-0- I 0 N
•r$ ‘‘ N

0) ,.- :3

• C) 1>
3:4

3:.) C) -0- ‘3

S
S -H >-

• 0 - (3)
,-_ 4-s N
N N H 3—
— H>— 0 .-

N C) ‘ 0

_ ‘-V----’
— N

N
‘Cl - -

-3= -0- - —. ‘CI
4--S ‘3 - N 3:-I

$$4.3- C) -

3-- 1-0- N
o I— i— ,

N

1-0- -)C’ ‘-‘ 3,-.
0’ -44---- 51) - ‘—S

C) PC’

-H jb
C) H>-
-H Ill - C)
4-4 -0-
C) — S H

‘3:.) -0- -0-
5— — 0

S (5 (3) ‘CI
Ci) .0
3= 4.)

0) (-4

.0 - 31

:3:

N

‘-0 —

-0-
CO

C) “—S

C) -S

H -- —

4.) c_i -
4-4 3-I

3=
4._J H

H 3=
0

U] III H
-H

-0- (0

.0 ‘3
C) .— II

-H -0- H
.0 — II

3: b -=---S
NO)

-D >1 -6- —.0
1-4 — —4)
ci (-4(4 (-4 5.4
‘33=3= co
C) C-)

° (-‘-i
:3 —5

0
.3:1

H>- -i-I ::q
C) C’)

£3 H 3=
4) ((3 0

C) 14.4

C) — 01

-0- — 0

((I

C)
C) —-i -0-
3> H — ‘CI

-H J (-4 C)
4) , 3= C)
(‘I ‘0 (-3)
3> (3) (3

-H 3= -H
(4 C)
Ci) H U)

‘C., ,> -H

-0-
‘3

4>

34
3=

0

-0- 4>
-H -H

0)0)

C)

HI>-

N

H

0

H

4>
‘3.)

-0-

3-3

-0-
-H

C)

N

0
N

Co
‘--5

H- 3=
(-4

0

N

(--C

‘-:1
—--C--)

N

C)

3:4

‘CI>

I’’

H

2
0)

3-C

I’

(-4
3=

CO



—8—

—9—

The value of the Lagrange multiplier A can be found then

by means of eq. (9). Once the optimal x() is found (by

solving eqs. 12), X°(z), and then D°(z) and A°(z) can be

computed respectively by means of eqs. (7), (8) and (1).

Finally the value of the important functional is obtained

• . . [io
by direc integration

2s

6(K) E 6[D°] = x)a() (13)

3. The Discrete Data Case

Often the set y of points z where the data are given, is

discrete. This is the usual situation when the data are

measured experimentally but this case is important also in

theoretical problems, especially where the relevant functions

are evaluated with a computer. This discrete case is discussed

at length elsewhere [11], we shall give here only a summary of

the relevant results.

Let d = d(z1) be the given, error—affected data and d

the (as yet unknown) corresponding values of the discrepancy

function, d1 S DK(zj), subjected to

N 2

x2[a.J a E (d. - d.)
(14)

i=l
1

For simplicity take the reference point z0 (see preceding

section) to be z1, so that

X(z.) S DK(zi) — DK(zl) = d1 — d1, X(z1) = 0 (15)

Now if X1(z) is some specific function satisfying eq. (15) , and

if M(z) is holornorphic for Izi < 1 and M(z1) = 0 for all

then X1(z) — N(z)’another x(z) satisfying (15). Hence 6 is

inf 11X1(z) - M(z)II
M

(M(z)=O

where flfl is defined by eq. (6). The effective computation

of i5 is much simplified by the duality theorem [11] which

transposes the above problem into a supremum one over linear

functionals y

Mfl susup <X1iY>

M fhy*IL
. <M,y’> = 0, for

Lan M, M(z)O.

The result has the form

N
= { Z (c) (do_do)(d_d)}½ (18a)

i,j=2

21T

1

1] 2r Jci.

The optimal d themslves are found by a Lagrange multiplier

method combining the minimum condition for eq. (18a) with the

[12] • • -

constraints o eqs. (14) . The explicit orm or the result

is given in ref. [11].

Hence,iflthe cases of both the continuous and discrete

data, there exists an explicit method which permits us to assess

the values of the parameters of the resonances (recall the

discussion at the end of the first section), and to construct

explicitly the Optimal Amplitude (Green functions, etc.)

A°(s), up to the cuts.

(16)

(17)

where

(18b)
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