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THEORY OF DIELECTRIC RELAXATION’

James McConnell

2. DEFINITIONS

1. INTRODUCTION

The theory of dielectric relaxation proposed in 1913 by Debye has been

extremely useful in accounting for many experimental observations. However

with the development of submillimetre spectroscopy the Debye theory became

inadequate. During the period 1974—1980 theoretical investigations of

dielectric relaxation based on rotational Brownian motion were carried out

at the Dublin Institute for Advanced Studies. The present lectures give

a summary of these investigations and of their implications for dielectric

relaxation experiments. A fuller account with detailed explanations and

calculations, together with a bibliography, may be found in ref. 1.

In the next section basic physical quantities encountered in the study

of dielectric relaxation will be defined. In section 3 the Debye theory is

described and in section 4 a summary is given of mathematical formulae required

for a discussion of Brownian motion. These are applied to the calculation of

complex permittivity for orientational polarization in section 5. In the

following section the relation between theoretical and experimental results

is considered, and the final section consists of a brief conclusion.

*Based on lectures given at the Riunione Scientifica Annuale, Cortona,

Italy, 20—22 ottobre 1982, of the Cruppo Nazionale di Struttura della Materia

del Consiglio Nazionale delle Ricerche, Settore “Spettroscopia Ottica e Propriet

Dielettriche dei Solidi.”

Dublin Institute for Advanced Studies

Dublin 4, Ireland

We begin by explaining what is meant by dielectric relaxation.

Suppose that we have a molecule like Na Cl (common salt) or CR Cl3 (culorofoi’m)

or CH3 C Cl3 (methyl chloroform) that has a permanent electric dipole. We call

such a molecule a polar molecule.

In the case of methyl chloroform the molecule

is approximately a sphere. Let us therefore

put down a sphere,and suppose that the dipole

has strength,, and that its axis lies along a

radius. Imagine that the sphere is being tossed

around by random couples, as happens if it is in Fig.1. A polar spherical molecule.

a heat bath. We denote by a unit vector in the direction of the dipole

moment at time t, so that the dipole moment vector,l) ,wnI)1

VN

V

Orientation of dipoles
influenced by a static

field F0.

revert to a random arrangement.

we assume that each polar

the quantity (to) .jft)

Next let us consider a dielectric composed of polar molecules. If a

constant electric fie]d has been applied in a fixed direction for a long time,

the dipoles will tend to orient themselves somewhat in the same direction. In

order to keep the picture as simple as > F0

possible we assume that we have a spherical

portion of the dielectric, that the material

is isotropic, that it is uniformly polarized

and that electric fields are so weak that we

may employ a linear theory. Then the induced

moment of the dielectric will be in the direction

of the constant field. At time t0 the field Fig. 2.

is removed and the system under the influence

of the thermal motion of the environment tends to

This process is called dielectric relaxation. If

molecule relaxes independently of its neighbours,
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or C )‘fl.) will be a measure of the relaxation of the molecule. On

averaging over all the molecules of the system it will follow that the

relaxation of the whole dielectric sample will be related to <(it1O). ‘ftft-)>

the mean value of ( 41(0) t(t) ). We call <(.m/o)’nf))>the autocorrelation

function oft).

The next idea that we introduce is permittivity for an isotropic medium.

As you know from the theory of electrostatics, there is associated with a static

field F0 in a fixed direction an electric displacement D5 given by

B5 = F0

The factor of proportionality is the static relative permittivity. The

electric displacement due to a periodic field in a fixed direction F0 cos&t

which has been applied for a long time will have frequency but will be

a linear combination of cos and sint0t . To obtain this combination we

may put F0 = F, write

(1)

and equate real parts on each side. We call () the complex relative

permittivity and, to conform with the convention adopted by engineers, we

write

f) (aj) — L “ii..>).

When we have the static case and so

//

‘1 2) (02 0.

There is another constant permittivity denoted by , that will appear later

in our calculations. When the frequency is sufficiently high, the dipole

axis will not rotate. By we mean the permittivity for a frequency just

sufficiently high to prevent this rotation.

The quantity ‘() is called the relative permittivity, and ‘‘L.) is

called the loss factor because it is related to the loss of electromagnetic

radiation in its passage through a dielectric. If for different values of

we plot the points C (a), ?() as cartesian coordinates referred to

rectangular axes, we shall obtain a curve called the Cole—Cole plot due

to the brothers K.S. and R.H. Cole. This plot is often used by experimentalists.

We shall now relate complex permittivity to the absorption and dispersion

of electromagnetic radiation in a dielectric. According to Maxwell’s equations

the quantitites F and B in (1) satisfy

V7E’ i
v r

On taking a plane wave solution of this equation it is found that the index

of refraction is a function n(4of the angular frequency given by

/n(Lv):J ((1)1+ (LA))

(3)

where 1.1 denotes absolute value. This gives the dispersion effect in the

dielectric, that is, the way in which the index of refraction depends on the

frequency. Secondly we may deduce from (2) how electromagnetic radiation is

absorbed when it passes through the dielectric. Indeed we find that the intensity

of radiation decreases by a factor in a distance 73 given by

J3L.3/ /

cV ü)j’ £ic)

We call O.(W,)the absorption coefficient. It is usually expressed in neper cm1.

This is the reciprocal of the number of centimetres in which the intensity drops

by a factor€ . The graph of 1’,)as a function of, or of frequency or of wa

number which is just the reciprocal of the wave length, is called an absorptie

curve and a similar graph of/fl(w,)is called a dispersion curve.

In future when speaking of the polarization of dielectrics we shall confine

our attention almost entirely to orientational polarization, that is. the

polarization caused by the rotation of permanent dipoles in molecules. If we

assume that the polar molecules relax independently of one another, then for

orientational polarization the complex permittivity €&o) is connected with the

autocorrelation function of n(t) by the Kubo relation

/ 4’,
(5)

where the mean value ( . is taken when the constant field has been switched

off and the system has reverted to a steady state.

As an illustration of the Kubo relation let us suppose that the autocorrelatio

function < (o)i(tdecays exponentially with time, so that

(2)
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Then, from (5),

/

1+ L
(7)

By equating real and imaginary parts of both sides of this equation and employing

(3) and (4) we may deduce the values of £‘%.‘), “,‘) a(,)7’t).

3. BEBYE THEORY

Having dealt with these preliminaries we proceed to an exposition of the

theory of dielectric relaxation starting with the investigations of Debye, who

about 1913 developed the idea that dielectrics contain polar molecules. Neglecting

the mutual interaction of these molecules he considered the statistical behaviour

of a single molecule. Debye took the molecule

to be a sphere with a dipole of momentJ, at

its centre. If an electric field of intensity

F in a fixed direction acts on the molecule and

if 9 is the angle between the directions of

the dipole axis and the field, the equation of Fig. 3. A polar molecule influenced

by an electric field F.
motion may be written

0 l _,FsinO + thermal couple. (8)

In this equation I is the moment of inertia of the molecule. The external

field produces a moment ‘—,Lbsin9 . The environment produces a thermal

couple and this gives rise to a frictional couple proportional to the angular

velocity 0 , provided that the Rayleigh — Stokes law holds. This assumes that

the environment consists of particles whose linear dimensions are small compared

with the radius of the molecule. It also assumes that the macroscopic laws of

hydrodynamics are applicable to a microscopic system.

Let us look at (8). We have for convenience written the frictional couple

as IBO . On comparing the first two terms of (8) we see that B has the dimensions

of a reciprocal time and we therefore define a friction time t by

Zr•: fr.
Another quantity with the dimensions of time is7p defined by

2&T’

where k is the Boltzmann constant and T is the absolute temperature. We call

the Debye time and we see that the product of the two times,

I

whose value is known once we know the moment of inertia I of the polar molecule.

Then

‘rF &T
—

J-D
—2

a quantity which is found from experiment to be of order 10 , so that

In order to solve (8) Debye neglected the 19— term saying that the

acceleration effect is negligibly small. We shall not enter into the details

of his calculation, and we shall express his result in the notation that we

have been employing above. Essentially the result is

<(o.t>r

On comparing this with (6) we deduce from (7) that the complex permittivity

is given by

_______

- /

Writing as before —c.’c)we obtain

/ l...

_______

?O+

//

(9)
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6)
From these equations we find that the

Cole—Cole plot is a semi—circle in

the upper half plane with centre at

), 0) and radius

so that it intersects the ‘— axis

at and . The highest point of the o , -

semi—circle is reached when a. satisfies Fig. 4. The Cole—Cole plot in the Debye

theory.
When n() and o.o) are

calculated from (3), (4) and (14), the dispersion and absorption curves are

as shown below.

w) . -

:

___

Fig. 5. The dispersion curve in the Fig. 6. The absorption curve in the Debye

Pebye theory. theory and the corresponding

experimental curve.

One should note the behaviour of the theoretical lJebye absorption curve,

expecially for largeLA2. There the curve flattens out to what is called the

Pebve plateau. In fact experiments on dielectric absorption give curves which

agree well with the Dobye curve at low frequencies but rise to a maximum greater

than the height of the Debye plateau and then drop down to zero.

4. INTRODUCTORY INERTIAL THEORY

We now attempt to develop a theory of dielectric relaxation based on

rotational Brownian motion that is valid at high frequencies and is applicable

to non—spherical rigid polar molecules. Solutions of different aspects of this

problem were published in a number of papers that appeared in the period 1974—1979

as a resu].t of col].aboration between G.W. Ford, J.T. Lewis, J. McConnell

and B.K.P. Scaife. For the relaxation process we may put FO in (8), so

that we have for a spherical molecule

9 —
÷ thermal couple. (15)

As we have mentioned, Debye omitted the term on the left hand side saying that

the angular acceleration 9 is small. The neglect of 19 could also be interpreted

as the neglect of the moment of inertia of the molecule; that is to say, as

the neglect of inertial effects. We want to construct a theory in which 19 is

retained. Now this causes mathematical difficulties. In fact the action of

the thermal couple is envisaged as producing a quick succession of discontinuous

changes in 9 . Since 8 is discontinuous, 9 does not exist and equation (15) as

it is stands is meaningless.

To derive an expression for the thermal couple in (15) one has to study

in some detail random processes and in partiular Markov processes. It is found

that we may express the thermal couple as , where W(t) satisfies

/] f()’>
ctt d’ / (16)

7 is a constant and S(t—t) is a Dirac delta function. W(t) is called a

Wiener process. We therefore rewrite (15) as

d -d1iJ
(17)

dG
with . This is called a Langevin equation.

We must then solve the equation for angular velocity c(t),

d dW
iE D F? ) (18)

Cl’,.,
and we recall that does not exist. To give the last equation a meaning

we adopt the procedure of Doob. For our purposes this means that we interpret

(18) as signifying that for f(t) any non—stochastic, that is, non—random,
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continuous function of t

J) dt(t) — f(dt3t)dt+f/t) d W(. (19)

On employing (16) and putting f(t) it is found that

KT -1t-i•
<a(t) L&)) (20)

This important result implies that, when the molecule is spherical, L(t) is

a Gaussian random variable.

In the study of rotational Brownian motion and its application to dielectric

relaxation a key rle is played by the rotation operator. If M My, M are the

cartesian components of the quantum—mechanical orbital angular momentum of a

particle, we define J, Jy, by

NJ,H*J, M.
If a rigid body is rotated through an angle about an axis whose direction

cosines are ‘, the corresponding rotation operator R(t) is given by

(,J)]. (21)

Since the angular velocity about the axis of rotation, we deduce

from (21) that

(J.w(t))(C)
(22)

When the motion is Brownian, the value of R(t) is random. Thus R(t) is a

stochastic function of the time: it is called the stochastic rotation operator

and it obeys the nonlinear stochastic differential equation (22).

To link R(t) with dielectric relaxation we recall that the rotation of

a rigid body is specified by Euler angles whose values at time t we denote by

(t). In the three—dimensional representation for which the basis

elements are the spherical harmonics Yi,_i, Tio, Y11

)(c (&), ‘it), 1I’t)),

where B denotes a Wigner function. In particular

) le), fl/C/,If))

When considering dielectric relaxation we interpret fl(t) as the angle between

n(0) and ,(t), so that

-

/ -

Thus we require only the value of <Ri 00,wre R(t) obeys (22).

5. COMPLEX PERMITTIVITY FOR ORIENTATIONAL POLARIZATION

Before proceeding to solve (22) we must know the angular velocity variable

i(t). When we were dealing with the sphere, we saw that it obeyed the Langevin

equation (17), that(t) is a Gaussian random variable and that it satisfies (20).

However we shall be concerned also

with the case of a rigid polar molecule I3
which has no axis of symmetry. We then

take rotating axes of coordinates

through the centre of mass and in

the directions of the principal axes

of inertia; call them 01, 02, 03.

We suppose that the dipole axis is

along a line through the centre of

mass and that it has components

,fl./U.t,/Akreferred to the above

-n <4:5 p1t> < 7? (&>L
and the Kubo relation (5) is expressible as

(23)

Fig. 7. The asymmetric rotator.

coordinate frame. Let Ii, 12, 13 be the
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dW
+

We call these the Euler—Langevin equations. We need not delay over the method

of solution of these equations, since it is essentially the same as that which

we shall explain presently for the solution of (22). For our purposes the

important results are

2. —7.8 l/—I
1t),1 >

7-J? I -sJ (J2.1YPT)
+I I,2J3

(25)

x [‘ - ($-)l-si-e

(,/ (i.j

(e) (I (26)

where , is the identity operator and a small dimensionless parameter. The

non—stochastic 4R(t)> obeys an equation

÷ )<J)> (27)

1

Employing (25) we may deduce from (26) and (27) expressions for P It), Ft)
€j7j”te) * for substitution into (26) and (27). The

final result for R(t)), which is all that is required for (23), is given by

4T
— + a term of small order of magnitude.

On account of the three friction constants B1,B2,B3 it will be difficult to

assess the experimental implications of (29).

Let us therefore take the special case of a polar molecule that is symmetric

about the third axis. By symmetry the dipole lies along this axis and (29)

principal moments of inertia and tJ
,

the components of angular velocity.

We assume that the frictional couple has moments proportional to and

write them I1B1)1,12B2&2, I3B’3. We express the components of the thermal

couple as Then the equations expressing the law that the

rate of change of angular momentum is equal to the sum of the moments of the

impressed couples are

/ -r d1J
1,t)1 (IL3)1Lo3 .Li1 , +

7—(-I,)w3,= (24)

is expressed by

/ -- (i
2.

K1t) I+ £V( €Vt.)([ (28)

fJI

where,V, are determined operators.

We substitute (28) into (23) and after lengthy calculations obtain for

an asymmetric molecule

____ ______

1

________

+ -3
£1

/ (29)

+, .4-.,

In this equation

(30)

L(&)to(S)’> 0

On account of the second term on the right hand side of (25) the components

of angular velocity are not Gaussian variables.

To return to the solution of (22), we employ a method that goes back to

Krylov and Bogoliubov in tho 1930’s and

was later expounded by Bogoliubov and

Mitropolsky, by K.M. Case and by

N.G. Van Kampen. We shall follow the

exposition of G.W. Ford. The solution o.. t
consists of a slowly varying ensemble Fig. 8. The fluctation of R(t) about<R(t)>.

average <1t-)>, about which there are random fluctuations, and the solution
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reduces to
Goulon etai.2), who investigated absorption through liquid chloroform at 25°C.

— /
6. THEORY AND EXPERIMENT

L4.)
a

(. We shall now say something about the applicability of the theory that has(31)

been outlined above to dielectrics in different phases. It has been assumed that

the mutual interaction of the dipoles in polar molecules may be neglected. This

We see from (30) that to a first approximation situation may be realised for a dielectric in the gaseous phase. It may also

be realised for a liquid dielectric which is in dilute solution in a nonpolar

€ ()_ € / solvent. It has also been assumed in this case that the linear dimensions of

—
- (ic;) (/ (32) the particles in the solvent are small compared with the dimensions of the solute

particles, so that it may not be too implausible to suppose that the frictional

where couple is proportional to the angular velocity.

With regard to applications to solid dielectrics’, it is known from

experiment that there are crystals which when raised above a certain temperature

enter the rotator solid phase in which reorientation of the molecules is possible.

Examples of such molecules are CR Cl3 (chloroform), CR3 C Cl3 (1,1,1 — trich—

and, from (ii), we know that TF4Tv . We call (32) the Rocard relation. loroethane or methyl chloroform), H Br (hydrogen bromide), HI (hydrogen iodide).

It is essentially the same as a result deduced in 1933 by Rocard from a The orientation is due to thermal motion communicated through Van der Waals forces

differential equation which contained an 19 — term and so gave rise to the
with a Lennard—Jones or Stockrnayer potential. The same forces will also produce

difficulties mentioned with regard to equation (15). The result (32) for a

symmetric rotator will hold for the special cases of a polar molecule that is a frictional drag. Hence it is reasonable to apply our theory to polar crystals

a spherical rotator or a linear rotator. in the rotator solid phase. Thus, for example, McLellan and Walker found rather

From (32) we deduce for

+
,)(i— r)

similar absorption curves for methyl chloroform in the rotator solid phase

/ + LTpI. )7 (34) at 227K and in the liquid phase at 242K. Molecular reorientation also occurs

) - ( + f) for clathrate hydrates of polar compounds.
1-’(w

-

Let us now consider how a quantitative comparison may be instituted between

If we draw the Cole—Cole plot, we
the theory that we have expounded and experiments on dielectric absorption. For

find that the semicircular shape

persists throughout the first I reasons explained earlier we confine our attention to dielectrics whose polar

of the curve bends backwards, and C

___________________________________

molecules have an axis of symmetry. This allows us to employ the Rocard relationquadrant, that for large values

for the permittivity cjc) In order to calculate and ‘‘L..) from (32) or

that the minimum value of /t) is Fig. 9. The Cole—Cole plot for the Rocard relation

less than This type of behaviour has been found experimentally by (34) we must know the values of the constants . In Deby&s

theory7 is found by relating it to the macroscopic viscosity of the surrounding
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fluid in accordance with the Rayleigh—Stokes theory. There are two objections

to this procedure, viz., (i) macroscopic laws may not be applied to microscopic

situations, (ii) in actual cases it is found to give a result which is wrong.

An alternative procedure is to regard as four parameters to

be determined by experiment or, more precisely, from the Cole—Cole plot. Since

the semicircular shape of the plot persists for more than half of the semicircle,

we can complete the semicircle. The value of is the greater intercept on

the€)—axis, 4 is the lesser intercept and is the reciprocal of the value

of —‘ at the highest point. Since, as in (10),

we can deduce the value of 7:.. and we are in a position to calculate ‘i1) and

To illustrate this let us return to the experiment of Goulon etal. ‘ on

neat chloroform at 25°C. Clearly it would be better from the theoretical

viewpoint if the chloroform were in dilute solution but the amount of experimental

information that we have about dielectric absorption is not very great and we

must make the best use of what information is available. The moment of inertia

of the CH Cl3 molecule is 2.7 x io_38 g cm2. It is stated in their paper that

= 636 x sec. Hence, from (33),

T xio’3’ /9.3
It follows that

so that

-* C/8 x

-
g. x 1.

From the Cole—Cole plot we read off the value of as 4.72 and the value of

as 208. We may now calculate ‘iw) from (34) and substituting into (4)

obtain the absorption coefficient LL(). We plot ctj€) as a function of the

wave number. For comparison we draw the corresponding absorption curve as given

The experimental curve has a peak much higher than the maximum of the Rocard curve

This extra absorption is called Poley absorption. No quantitative explanation

of this absorption has so far been forthcoming. Nonpolar liquids also show

absorption in the submillimetre region, though this absorption is about one

order of magnitude smaller than that for polar liquids. It is thought that

for nonpolarliquids the absorption is collision induced but so far the theory

of collision induced absorption has been established only for gases with simple

molecular systems like He—Ar, Ne—Ar, H—D, N26.

Cole—Cole plots may also be employed to make comparisons between theory

and experiment for dielectric relaxation, but their usefulness in the sub—

millimetre region is rather limited. Thus in the above case of chloroform at

25°C the highest point on the plot is reached at a frequency of about 30 GHz,

that is, at a wave number of about 1 cm. For higher wave numbers the points

become rather crowded together.

In the above theory no attempt has been made to take account of the mutual

interactions between neighbouring polar molecules, be they dipolar interactions,

quadrupolar interactions etc.. Thus we have no complete theory either of Poley

absorption or of Cole—Cole plots. However several empirical generalizations

neper cm

by the Debye theory and the experimental curve.

25

20

15

10

5

20 40 60 80 100 120
wave number cm’

Fig. 10. Theoretical and experimental absorption curves for neat chloroform at 250(
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of (13) are employed in order to fit experimental points. Thus K.S. Cole 7. CONCLUSION

and R.H. Cole proposed It will appear from the above condensed account that some initial progress

has been made in setting up a theory of dielectric relaxation. It has been

jt) / seen that much more experimental information on dielectric absorption is

/
(o I) 35 requiredl). When such information is available, we shall be able to look

— € /.-cL7/
again at some of the suppositions on which the present theory has been

established and may hope to formulate a more satisfactory theory.
It may be shown that this gives the arc of a circle such that the lines joining

a point on it to ( ,o), (,o) include an angle (i—o)7U. Then R.H. Cole

and D.W. Davidson proposed the relation REFERENCES
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When the relaxation times are widely distributed, eq. (36) is not too accurate

and it is found better to employ the Fuoss—Kirkwood formula for the loss

factor “,‘)

T 4? ]
-L -4 (38)

where is the maximum value of ois the angular frequency at which

this maximum occurs and ‘ is a parameter to be determined by the results of the

experiments in question. There is an extensive literature on the interpretation

by (35)—(38) and some other formulae of the experimental results for dielectric

relaxation of both solids and liquids.




