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§ 0. - Introduction.

It has long been known thst torsion-free mcdules over a complete discrete

ring R -have meny nice properties not possessed by modujes ocver incomplets

valuation rings. For example, every

orsion-freze indzcomposalile R

R-=module is a direct sum. of

and every countably generated torsion-fre

c
and a free module. In addition, such modula

i

rings i.e. if G,H are torsion-free R-modulcs

then G and H are isomarphic $181. This als

o
over incomplete discrete valuation rings. It

modules is free from the known pathologies of decomposition which cecur

groups and modules over an incomplete discrete vsluation ring
this is not so. Following the lead given by Corner (1], (2 s
& & S < kS
are usually established by realizing a suitable ring as an en
the rirgs which can occur as full endomorphism rings of module
g P &
discrete valuation rings have been characterized

but unfertunately, such results are, of necessity, so complics
r

readily lend themselves to applications. Our approach has been to

alpebra A and show that it is essentiallyle term explaing

algebra of & torsion-freg R-module. In particular we establish the roliowing:

(1) A is Hausdorff and torsion-free.

(2) There is & torgicn-free reduced odule G such that E(G

]
(3) Thare is a torsion-fre reduced Re-macule G with property (21 for
limit cardinal G} of cofinality greater than Ao,
The similarity between the problems of realizing alge '
of R-modules and realizing rings-as endomorpr
has already been noted(sse [103 and [ﬁ2] YT

-
i

heorem 3.1. are a modification and simplific
by

two of us CS] to extend and correct work by Shel

We complete this introduction by est

onventions and notations. R.shall always be a complete discrets valua
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conventions

A R-module A may always

shall denote the R=-

topologized by taking the

a R-module we algebra of

gzhbourhood bas of zero. The ﬁwmnuﬁwzm topology is
ural ﬁoucuom<ux opological references shall always be
hat the property of being Hausdorff is, for a R-algebra
educed as a R-module. The books by Fuchs (8], (8] are

elementary terms used throughout this wor Finally we
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notations ere established in §1. g

in Jech{13] and most of the results
and Gobel in £51:. For tHe convenience of the
.
and review some elementary concepts.

inality of the set X,

{v | yex 3.

b
;iiel }

for all i e I}.

said to be regular if

be & strong limit cardinal if
trong limit cardinals in this paper shall be

the least cardinal > p .
cf x

mit cerdinal then 2%= x and if , in addition
(6.4)1.
hen there is a strong limit cardinal A cuch that

+ N
¢ < p , a sequence. of cardinals ﬁymw by y =0 o
ot sup{ yc v < a}if ¢ is a limit o%ny:nw

P . . ~ +
zolimit cardinal with cf A =p > p.

iction of f to V.

-3 -
Proposition 1.3.  Let x-be an infinite cerdinal and suppose F,T & U7 (k) satisiy
roposieion ‘.o X,
(a) If f.g e Fand |F gl = YXg o then £ = g. .
(1 |7] < |F]

(e) 2% < |F|. .
and such that t e T, f ¢ F'oan

Then there is a subset F' of F with _ﬂ_wkn [F] d

“ﬁ ﬁ,ﬁ_ = ply to= f.

Proof: rmﬁ W= {veF|3 teTwith [tav] Ro}. For eech t e T, lot K =

{vieF | |vat] = %, 3} Clearly then ¥ = Tx %K. . Dofine, Ffor each t e T, a map a,:
tel 7t t

\ﬁ + (PLt) by Qﬁﬁ<u = vot, and note that it follows from (&) that g, is injective.

2 I S
Hence _xﬁ_ < [ Q] ¢ 270, But then max{27e , |T{} < |F] by () end (c).

Then F' = FX\W is the required set.
Our next result is a si] y1ified version of mm. M.w.uw.
1.4, Let X = :Am x: be the product of the infinite sets xj. mxnm
& m. Then there is a subset F of X such that (i) [Fl = [X] endg (11) if T,
g e F and sup {n _%H:v = p(n)} = ¥y, then f = g.
Proof: Set <: = umw Xu and note that #43_ = “x: . Hence we may
sets. If £ g X ohen f is o function with domain o and hence may
graph. Thus { ﬁﬂ<: ig the initial of this. graph up to n.
X+ Y= JAw Y, by £ > f* where Fr(n) = F QY . let F = {5e |F
Y and so , . sin Iv| %] . F may be identified with a subset of X. Moreover if
f,g e F and sup {n [F(n) = gin)} = ¥, f “
unbounded subsct of w. But .0 <3~ g ﬁ,<3 are !
g respectively and so we conclude that § = g.

follow.

§2. Algebraic Preliminaries.

Throughout this section we shall torsion-free reduc e

and u is a singular str limit ty

ccardinals exist by Proposition 1.2. Let m = { A _ A<y, X
cf p < Aand cf A = w)} and let B = MW¢Q> be a free right W
ag free r?:n,nwowq. m denotes the completion of 8 in ths

element x of 8 has the form x = sms o 8n wher B <y and {a_} is wll seguence in

ek
aurmor
SUppLrL

lement x = L ax ¢ 4, we

{1
Thus £x1 ¢

such an @

Lo},

the p-adic topology on A. Given

of x by [xQdi.e. [x) = {a | a <y, X,



s
WE

b=t

A< e with do= mcvﬁy } end y =

mg te denote _“ ﬁxuﬂﬁ.

summand of B.

we soy that X is A-big(in A) if there is a sequence
M | ¢

n<w

Al < M>~ Yo < cf z Then
ch is A-big and jﬂm o) m.m

I* AT
_>.;o < cfp, it follows
0
Vow choose Ay e y with Xy > Ap . Now
his supremum is not u set H~M = y+/,y+ and
o
ppose however that sup{ ¢ h(B 1},
a Hyll Ty Y
in of cardinals with u = sup u . Set 0
”~ o e~
that :MJ\WVV is always contained in some B
- a
sbserve that him_ = »M for some o since if
. .
A ULy fopAp=
A1 _ /zyo_ MQAOﬁt (Q_ M cf p.Ay= Ay
1 < of yu such that _sz_ = A;.°Singe h is
Lolet I, = sm and choose Xy e u such that
& - 1]
Gy 1 0
t a sequenre Ag < A1 < . ., yw € U,
~ o~
jmﬁH ) & By IF A= guR A, then clearly

#} denote the set of
A

of B, where P
A

,
mwmuwp< there are at most 2

11 pairs of homeomorphisms

and I(A,a) is a

2 >

with (h,P) =
of all 'such pairs ordered

} t
A< korif A= keaenda< B .

~

An element x =% ax  in B is said to be A-high (for an ordi

a
if (a)ix1 € A () |[x]| A (e) there exists Ag < X such that x  is a
for alk o > Xg, coe Lx1.

We now show how to construct nmdﬁmw: elements nw. nw of mw . The construction is by

transfinite induction on 4 . So mCUﬁomo such elements have besen constructed for (x,8)

< (A,a). We say that oy is ..QMn (at mﬁmmm (e)) if

(1) ny is A-high = (i1) __ L o 3 0L H__ <X for (k,B) <i(x,a)

:M.M_mn w:m%,;_AyﬁQ,HZuAhy&

To complete e_o construction of the elements ow 5 mw proceed as follows:-

I. If there is a rigid element c in vw such that :wm b BY ﬂom>~ (,8) < (A,add>
cA>, ', then choose % un~Qanﬁhi. i

II. If such a rigid element does not exist, let nw be any rigid slement in vw and - set
a’ - 0. ‘

The existence a rigid element as required in II above

ich corresponds

i
Before giving this result let us agree to denote by T the subset of
at

to selection of elements by .altern I.

>
o)
&y

Lemma 2.2. For each (A,a) in A there is a rigid element ¢ din P = 8__
i o a 1(h,u)

Proof: Clesrly we may restrict attenticn to (A,a) & ANT. Now since I = I(A,a) is

A-big ﬁjmﬁm Hm a sequence of cardinals Ay < Ay < .. with mcuy: = X and

+ by
| Teaa’Na [ =2 - set I = TAXNAL, and note that | 1T |= (eun|T (17 -
! n=1 n n n-1 n<w TN Th

yw e = my (see Jech {13, 6.4.1). By Uﬂovomwﬁwoz 1.4.. there is @ subsst F € 1 I such
that |F| t

>

B Hzﬂ and if f,g € F then }Ff agl = Xy implies f =

with its image {f(0), F(1), . . .} we may regard F as a subset

m am ((k,B) < (X,a)) have be t

I A

Lokl (k,B) < (L,ad} . Then FLT € Ppon), 27
Q

nwomomwﬁuoz 1.3. there is an element f in F whi

suppose the elements ©

N
Rl
u
IS

h-is almost disjoin

¢]

in T. If f = hgww and we set ¢ = I Qwu;~ then ¢ is the requirec

§3. The Main Res

~ N
If B is afree R-module with U‘rAPO completion B and U is any dense submodule of B,
AR s
then every homomorphism f:U +B has 2 unigue extension f:8 » B. By abuse of notation
we shall often refer to such an extens It

o
free R-module, then an endomorphism f of G

erified that the set Ines G

It is easily v



Let A = sup An and note that X e u . If A is an infinite subset of w\ {0, 1, . . n}

of all R-encdomorphisms of G. This notion is related to a

: ~ ~ .
. . we set x, =" % A e B. - (For € B we introduce the notation y|* X, whiclh means
by A L.S. Corner at the Montpellier Symposium 1967, £31, and A gen 2P y uee = BP Y
iouély by one of us in the current ccntext{12}. Further properties . the kk~th co-ordinate of the element y.) Now by the choice of the An vz have
cf Inzs G may found in £121. . - = (0if LA K n
Y ! h LXQ)P Ak {a Irg-x medpo .

Recall that a ring S is the split extension of a ring A
Moreover h’(Ag)r kk = 0 if k » £. Since h' is continuous we have

. £ ! . g
there oxist ring homomorphisms f,g A+ 8 & A whase composite

& ) e - 3 o 3
¥er.g. Such a split extension will be. denoted by ! h [xA][ AK = QEA[h fAQ]P Ak]p = kgiéz [kﬂJr Ak)p
mind that the direct decomposition relates only A . .
e m M aget if ke
G { k<2eh
Vo can now state the main result of this paper. {kZEtXhI{ALJP xk)pn i K é I
. Let B be a comploete discrete valuation ring and A a R-algebra. Then .
Heznce we conclude that
. ; Ko s
. - pha if kK e A ;o ko]
. h (xA]P Ak = { a if & A med p M) . .
{ & torsica-frec roduced R-mddule G such that E(G) = and so A e r h'(xA]:l for all K e A.
(3] ed R-module G with property (2] for any singular 0 ) 1}
w2 Set.x .= L A p” and observe that, since h' ¢ Ines G, there is an intezer s < w and
ofinality greater than A ‘o, <w L &
s referred to in (3) above is a class and not a . a repressntation 0.5 MmO AQ< 0
v h'ix)p~ = .5.¢'§ r, mod B . (23
i=17, i ———
i
2} trivislly. To see that (2) implies (1) note that G torsion- By th 0 A 0 X? o
. y the construction of A, h'(x ) € B, and sa X, & A for-all 1 ¢ i ¢ mg. Let ¢t r-
and hence A, is torsion-free. If G is reduced and ¢ ¢ ;;k rA, A iy ' AR Y v &? 1
g in G, olgl e N\NrG = 0. Thus ¢ = 0 and A is Hausdorff. be the summand on the right-hand side of (2) which contains infinitely many of the

¢ ig dovotad to showing that (1) implies (3). So suppose

0
An in its support. Then A; = X. Moreover the properties of the supporis of the rigid
ra and pick any singular strcn% limit 0

A Al
elements c” imply that there exists np < w such that the sets "% r, 3N {18
) N . ) c wat ot e Sor, A (S
 following the notation of §2, let u = {x ] [« L vo i T hg
- . - e s . ) . S S ,
it cardinal, of A = w}, B = Vi aA, and for each i < mp) are pairwise disjoint( and may be empty). Choosing o subset of the AP and
a<y \

©

PN 5 - G :
ment: of Pa‘as constructed previously. We claim changing numeration if necessary, we may assume that all the
i the required R-module. Since G is an A-submodule Ag N

. support of the element c = g
in G by a in A with the induced R-homomorphism 0 o

9 . Let QK be the p-height of
. 0 o ’
height of ry . Then (1) ahd (2) imply

following two lemmas. . S+ k+n+1> ik +ty for all k < o . . (3

Now choose. a partition w = A "/ A' where A, A’ are two infini

n
G.such that p.'h e

u

n 5 - o - .
e nminimal and let a in A be such that p h + a and set x' Kpo» Again h‘[xA) € G and so there is s’ < w and a representation

early pure in E(B), we have p [ a. Let h' =

I PR . n=Te_,
h that (1) A <X . (i) x> SUDQ:?Lh (Klfl .




- @ - - m =
. 0 PO : rorns R \ A B
4y But then A e [c 1 &viclandsonr e Do dfor 28 3 nand A, e Do) dvor
; 2i 21 o] . 2i
: . X ~_ A Ll R : e 4 -
= 1) such that v; € mo: r: 1 2i 3 m . Hence || mogw o Frowu,.__ = A. This implies & = B, which lcads to the
N ! . X
0 “1 +rEdi 3 3 r osw Cor h te al =)
A and Q.m = ay{= asay). contradiction that Lc¢” X and Lc'l are almost egual. Hence
: o A . [ . . g . : LY S Ryt
] K L Qcmm:a in no other summand of We may then assume without loss of generality that:
' , 0 X o
the right-hand side of [4). From (1) and (4) we conclude that ()  For all ;»gu e A and all n < w, we have Mo u /\,3 u.a Wnau /.,.,3 .
3 0. 0 . s oy 8
8" + ko +n +1 > + %ty where K e A and ty 1s the p-height of H:W (5} . If hic )p w G + c A for all n, then we are finished. So assume h{c lp” + cr el
"-ﬁ - — . K}
L L T B A A ] e AT (81 . for some T e A, U-< w. Let Uﬁc be the element whose existence was established at the
K —_—
. : 0 . 0 .
and (B8} we get s beginning of the proof. If h(c + Uwcu ¢ <G+ (c + U%c; >, then again we are
E N . 0 v o N
ok ls s kgt 1) >k (s'" +n+1-1t) forall ke A’ . finished, so assume there is s € A, v < w such that hic’ + U?Lm - (Y + Uﬂr_wm e G.
- u+v v utv o p . P RS
Since (s -ty % n + 1) is a constent we can find a constant ¢ < w and an infinite Then h(c®)p + cOrp” e G and hicl + Uﬁcuv (c¥ by e - G. Subtracting
u+v u v u T U S R
for ail k € A". Now repeating the above leads to j:uH,c:u P Uw:mU +c0(rpY - sp”) € G. Note that rp + sp  for oiharwize
0. u 2 a1 ] 3 e £ +ho constructicon
= A' U A" and setting x = Xpu s X' = Koo o r:ua:uv - Uwcd ¢ G - - - a contradiction. But then it Tollows from the constructiocn
. . uty u v u
: of A and ¢® that :.::u Ip - b_.sp o+ e®trp’ - =p™l] = .
{(k-+ c) = f. for kK g A’ \ ry ru
(7 Let y = hib WU:+< -'b w_uc + OO:G< rmﬁ:u g G. By definition of G there exists t =
u‘_+w+;,+7m:\,+ou++rw For k. g A" . Ty ru
n : . . . o
+n+tige*E] oo a contradiction. - such that (s *) yt = ‘mg n.:pw“.r mod B where (ny.aid >"(nz,a2) > v . and 1y 70
' i=1 Ty
i
noong
since (Cytl is infinite. Let y' = jEqC T Ty Clearly nj 3 . Howsver if ny > A
oy .
1 n nq
A ~ . . - L 0 - N 11 [
IF hoe E(2)\A + Ines G, then there is an element x* of B such that then there is.a A'e §p . nmp > A' > A such that :mOSu A nﬁuf SR
Rl L o<G s . . there exists A" with np > A" 3
3oe <G :
My Cy'IN A" = ﬁo:p mn:wu/y._ €N by (v ox)
know that p h ¢ A + Ines G for all n'< w. y @ R ¢
such that hib Jp" - b _a But this contradiction then forces ni = A. )
an an
. X
| e e A, n<w} Vv {hib ) Repeating the argument one can find a y: < X such that [{y'2 /.,.,3 = mna RERN yzh .
’ an . oy
. . . . PRI, [
and dg € A < Ap < .. . with sup A_ = A. Then enlarging n if necessary, one obtains £yt /»3 = Ly AN V,: = Tell N,
n : 1 ri

oA
or all ¢ < 27 and all n < w

LY " -~ A u 4 - . o y s
Um». Now cleim that £ But m<r.w,/ >3 = TelirpY - sp uu./ w: = m..oQL/v.j. This forces [ecf2 N =

~ A . : R 3 N .
C OQ..M/ »: and thig final contradiction to (+) establiches the
1

©

-~ A
or [N AL + ﬁnpw \ A_. For suppose there exist

,
Ted™~x = mnwu/w

- A .y ,
, and mo.h/yan Mnmu/y.s. :




ey

o proof of Thsorem 3.1.., we now show that E(G) = A + Ines G.

Ines G. By the previous lemma we conclude that there

Pl . : . o
in B with the property that h(x*) ¢ < G + x*A>, . Since cf u > w,

the definition

8
can find X e p with

A and hlP* =
.Q.

and

w from Proposition 2.1.

pairs in A), we
\/ . A ~
< into B
vo o
r (X,a) belongs to I' . For suppose (A,a) € ANT . Then

(x,all> +.oy> >, and so jyﬁnyuns —cta et
O o o a 0 ——
* oy . Since o» iz A-
o o

. Moreover h maps ﬂQ 3

el
Lo
"

(X3

ow consicer the element x* high, and

also A-high. Moreover conditions (ii) apd
\ .

elemant arc tC

z =3 since the
o

corresponding

". So x* + ¢’ is & rigid element at stage (X,a) and

wa can conclude that wymx4 + nyu €
o .o

(Y3

conclude that h) Mur1p™™ ¢ G+ x*A, which

e P! and nlpt = 0t
Q. Q

This shows

srty -of x¥ since x* .

£ (A,u) e I', we now show that h does not belaong to
A . .
} and suppose ap e G. Then we may write
where a. € A, m < w and we may suppose (A1,a1 ) >

glements we conclude that

However since

oAl (k,B) < Dnad}> + ow> P,

mw = 1ﬁnnu contradicts the fact that (X,a) e I'. So we must
ie

A A A ‘ . A . .

d” o= (c”) = hic]) % G and, since ¢ ¢ G, we arrive at the desire
o o [} a

So E(B) = A+ Ines G.

the proof of Theorem 3.1.

Remark:

L 72X to prove the following complementary result:-

Theorem  Let R be a Dedekind domain. Then the following are

(1) 'R is not a complete discrete valuation ring.

ul
s

(2) There is a R-module M of rank > 1 with E(M)

(3) If A is any cctorsion-free R-algebra , then there

(For further details of cotorsion-free modules

§4. Applications.

It

fote

s, by now, standard to apply a.result such as

to de

variety of pathologies relating comnosition proge

ek

clude -t

The basic idea in the proof of Theorem 3.1. is used by Dugas and

ass

under discussion. sc3< such examples have beecn constructed by Corner £13
by e . 5 ™Ay - . :

Dugas and Gaobel .5 w and Warfield ~|4\u for varicus classes of modul

shall restrict attenti to three simple exemples which show that mocu

dis

of
o)

comple : valuation ring are ical as most

modu at least in relation to decompositicn properties. Since
constructions we use are all well Known, we only gi
of R-modules, for some

~indecomposable 1f in any direct decomposilic

of the summands A,B

belongs to mv.

Jles

Gohel in

of modules

o

hat

E(G].




. . - .
nf bounded p-greups then essentially U -indecomposable

the notion of essentislly indecemposable used by Plerce L153 and

Gobel £51.

Y . .
s ~indscomposable incomplete modules of arbitrary

-

; . N L X
& strong 1limit cardinal u > p with cof u > ]R!” e,

oposition 1.2. By Theorem 3.1. there exists a R-module G i

= R & Ines G. Cleerly such-a module G is not complete.

projzctions m, and wy, it follows, as in {4}, that

% is o domain, one of 7y, wy is inessential; say wy ¢ Ines G. But then

”~
s homomorphic image of the complete module G,

os of this type may be found in Goldsmith [123.

itrary positive integer t, there exists a module G over a

if and only if m = n mod t.

sely generated by the symbols ups vy (1 = 1,2, + t+1)

=1, v,u, = &,,
13 1]

G. The remainder of the proof follows as in Corner

.. Then by Theorem 3.1. there is a

-indecomposable modules over a complete

in Example 2.

a suilteble ring A which is an integral

1J3T0ﬁ4.3.3 . Since the guotient

ording to Theorem 3.1. is,
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