| Title | Stochastic Differential Equation Study of Nuclear Magnetic Relaxation by <br> Spin-Rotational Interactions |
| :--- | :--- |
| Creators | McConnell, James |
| Date | 1981 |
| Citation | McConnell, James (1981) Stochastic Differential Equation Study of Nuclear Magnetic <br> Relaxation by Spin-Rotational Interactions. (Preprint) |
| URL | https://dair.dias.ie/id/eprint/944/ |
| DOI | DIAS-STP-81-16 |

STOCHASTIC DIFTERENTIAL EQUATION STUDY OF NUCLEAR MGGETIC RELAXATION BY SPTN-ROTATIONAL INTERACTIONS

James McConnell

Dublin Institute for Advanced Studies

$$
\text { Dublin } 4, \text { Treland }
$$

Abstract The mathematical methods based on stochastic differential equations and the rotation operator, which were developed for the study of cotational Brownian motion and jts implications for dielectric dispersion and absorption, are extended so as to yield ensemble averages of certain products of orientational and anguiar velccity functions. As a consequence, a procedure fo: calculating nuclear magnetic relaxation times arising from spin-rotational interactions, when inertial effects are included, is presented for molecules of ary shape.

## 1. INTRODUCTION

The theory of nuclear magnetic resonance relaxation caused by rotational thermal motion ${ }^{1,2)}$ was applied by Hubbard in a sequence of Fapers ${ }^{3-7)}$ to quadrupole interactions, intramolecular dipole-dipole interactions and spin-rotational interactions. The treatment of the last type of interactions is particularly difficult in that it involves the calculation of the ensemble average of the product of functions of orientational angle variables and angular velocity variables. In his earlier investigation Hubbard ${ }^{3)}$ regarded the angles and angular veiocities as independent sets of variables, so that the ensemble average of the product was assumed to be the product of the ensemble averages of the function of the orientational variables and of the function of the angular velocity variables. However the orientational and angular velocity variables are not independent and Hubbard $\left.{ }^{4}, 5\right)$ later proposed a method based on a FokkerPlanck equation which enabled him to write down a general expression for the Laplace transforin of the ensemble average of the product of orientational and angular velocity functions which occur in spin-rotational relaxation studies. For the case of a rotating spherical molecule Hubbard deduced expressions for the spin-rotational correlation time and for the spin-rotational contributions to the reciprocals of the longitudinal and transverse relaxation times.

A method based on Euler-Langevin stochastic differential equations, the ensemble average of the stochastic rotation operator and the KrylovBogoliubov solution of nonlinear differential equations has been found very powerful for the investigation of dielectric relaxation processes when inertial effects are included ${ }^{8)}$. Indeed the method is generally applicable to processes whose investigation is based on the correlation functions of spherical harmonies. Confining our attention to nuclear magnetic resonance phenomena we have already applied the method to the calculation of spinlattice relaxation times. ${ }^{9)}$

It may be applied without difficulty to the
contributions of intramolecular dipole-dipole interactions and of çuadrupole interactions to the nuclear magnetic relaxation rate of identical nuclei, but not to the contributions of spin-rotational interactions.

It is the purpose of the present paper to extend the above mathermatical method so that it will provide the ensemble average of the product of the orientational and angular velocity functions encountered in the study of spin-rotational interactions. In Section 2 the formalism for these interactions will be summarized, definitions given and the extended mathematical. method will be presented in a manner applicable to molecules of any shape, In Section 3 a detailed study will be made for the spherical model of the molecules, and the results will be compared with those derived by other methods. Finally in Section 4 the problem for asymmetric molecules will be considered.
2. SPIN-ROTATIONAL INTERICTIONS

### 2.1. Definitions and basic equations

We consider the contribution to nuclear magnetic relaxation of identical nuclei in identical molecules. The spin-rotational interaction is the sum over all molecules in a system of the sum of the interactions of the magnetic moments of the nuclei in a molecule with the magnetic field produced by the rotation of that molecule. For later comparison with the results of Hubbard we follow fairly closely the notation of ref. 5. Let us denote by $I_{m}$, the spin operator of the $i$ th nucleus and by $f_{m} J_{i}$ the angular momentum of the molecule that contains this nucleus. The spinrotational Hamiltonian of the eth nucleus,

$$
\begin{equation*}
\neq G_{1}^{i}=\neq I_{m i} \cdot C^{i} \cdot J_{i}, \tag{2.1}
\end{equation*}
$$

$C$
$C_{\text {is }}^{i}$
2.1) as $C_{1}^{i}=\sum_{k=-1}^{1} \int_{i}^{k} \int_{i}^{1 / 2}$,
where $V_{i}^{k}$ are the spherical components of $I_{i}$ in the laboratory system and

$$
\begin{equation*}
\cup_{i}^{k}=\sum_{y=1}^{3} \sum_{m=-1}^{1} b_{m v}^{i} D_{k m}^{\prime}\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right) J_{i \nu} \tag{2.2}
\end{equation*}
$$

In this equation

$$
\begin{equation*}
b_{0 \nu}^{i}=C_{3 \nu}^{i}, b_{ \pm 1, \nu}^{i}=+\frac{C_{1 v}^{i} \mp i C_{-2 \nu}^{i}}{i / 2}, \tag{2.3}
\end{equation*}
$$

where $C_{m y}^{i}$ are the constant cartesian components of the dyadic referred to axes fixed in the molecule. In (2.2) $D_{k m}^{\prime}$ is the rotation matrix for the transformation of a spherical tensor ${ }^{10)} \underset{\text { and }}{\text { am }} \alpha_{i,} \beta_{i}, \gamma_{i}$ are the Euler
angles specifying the molecular system with respect to the laboratory coordinate system. We see from (2.3) that

$$
\begin{equation*}
b_{m \nu}^{i *}=(-)^{m} b_{-m, v}^{i} \tag{2.4}
\end{equation*}
$$

The contributions $\left(1 / T_{1}\right)_{1},\left(1 / T_{2}\right)$, from the spin-rotational interactions to the reciprocals $1 / T_{1}, 1 / T_{2}$ of the longitudinal. and transverse relaxation times $T_{1}, T_{2}$, respectively, are given by

$$
\begin{equation*}
\left(\frac{1}{T_{1}}\right)_{1}=2 J_{1}\left(\omega_{0}\right),\left(\frac{1}{T_{2}}\right)_{i}=T_{1}(0)+J_{1}\left(\omega_{0}\right) \tag{2.5}
\end{equation*}
$$

where $\omega_{0}$ is the angular velocity of the Larmor precession,

$$
\begin{equation*}
J_{1}(\omega)=\frac{1}{2} \int_{0}^{\infty}\left[C_{i i}^{\infty}(t) e^{i \omega t}+C_{i i}^{\infty}(t) e^{-i \omega t}\right] d t \tag{2.6}
\end{equation*}
$$

and $C_{i i}^{l k}(t)$, not to be confused with the dyadic components, is defined by

$$
\begin{equation*}
C_{i i}^{l k}(t)=\left\langle\sum_{i}^{l}(t) \Gamma_{i}^{k}(0)\right\rangle \tag{2.7}
\end{equation*}
$$

where the angular brackets denote ensemble average for thermal equilibrium. We see from (2.2) that

$$
\left.C_{i i}^{f(t)}(t) \sum_{\mu, \nu=1}^{3} \sum_{i=n=-1}^{i} B_{n \mu}^{i} b_{m \nu}^{i}\left\langle D_{2 n}^{1}\left(\alpha_{i}(t), \beta_{2}(t), r_{i}(t)\right)_{k_{k m}}^{\prime}\left(\alpha_{i}(t), \beta_{i}(i), r_{i}(i)\right)\right]_{i, \mu}(t) J_{i, i}(i)\right\rangle
$$

We take for the molecular frame of reference the principal axes of inertia through the centre of mass and write the components of angular momentum as $I_{1} \omega_{1}, I_{2} \omega_{2}, I_{3} \omega_{3}$, where $I_{1}, I_{2}, I_{3}$ are the principal moments of inertia and $\omega_{1}, \omega_{2}, \omega_{3}$ the corresponding cartesian components of angular velocity. Then replacing $\not f_{i \mu}(t)$ by $I_{\mu} \omega_{\mu}(t)$ we express (2.8) as

$$
\begin{equation*}
\left.C_{i i}^{(k}(t)=\hbar^{-2} \sum_{\mu, \nu=1}^{3} \sum_{m, n=-1}^{p} b_{m \mu}^{c} b_{m \nu}^{i} I_{\mu} I_{\nu}\left\langle D_{R_{n}}^{1}\left(\alpha_{i}(t), \beta_{i}(t), \gamma_{i}(t)\right)\right)_{k_{i m}}^{\prime}\left(\alpha_{i}(t), \beta_{i}(0), \gamma_{i}(\nu)\right) i_{i}(t) \omega_{\nu}(0)\right\rangle, \tag{2.9}
\end{equation*}
$$

a sum of ensemble averages over the product of a function of angle variables and a function of angular velocity variables.

At this stage we introduce the stochastic rotation operator $R(t)$. We see from (2.9) that

$$
\begin{equation*}
C_{i i}^{\infty}(t)={R^{2}}^{-2} \sum_{\mu, \nu}^{3} \sum_{m, n=-1}^{1} b_{n \mu}^{i} b_{i m \nu}^{i} I_{\mu} I_{\nu}\left\langle D_{i n}^{\prime}\left(\alpha_{i}(t), \beta_{i}(t), F_{i}(t)\right) D_{D_{m}}^{1}\left(\alpha_{i}(v), \beta_{i}(t), \gamma_{i}(v)\right) \omega_{\mu}(t) \omega_{, 1}(\theta)\right\rangle \tag{2.10}
\end{equation*}
$$

Now

$$
\prod_{0 n}^{1}\left(\alpha_{i}(t), \beta_{i}(t), \gamma_{i}(t)\right)=\prod_{n_{0}}^{1}\left(-\gamma_{i}(t),-\beta_{i}(t),-\alpha_{i}(t)\right)=\left(\frac{4 \pi}{3}\right)^{1 / 2} Y_{1 n}\left(-\beta_{i}(t),-\alpha_{i}(1),\right.
$$

so

$$
\begin{aligned}
& C_{i}^{s o}(t)=\frac{4 \pi}{3 h^{22}} \sum_{\mu_{i} v=1}^{3} \sum_{m_{2} n=-1}^{1} b_{n \mu}^{i} b_{m 2}^{i} I_{\mu} T\left\langleY _ { 1 m } ( - \beta _ { i } ( 0 ) , - \alpha _ { i } ( 0 ) ) Y _ { i n } \left(-\beta_{i}(t)-\alpha_{i}(t) \omega_{\mu}(t) \omega_{\gamma}(i),\right.\right. \\
& =\frac{4 \pi}{3 \hbar^{2}} \sum_{\mu, \nu=1}^{3} \sum_{m, \lambda}^{1}(-)^{m} b_{n \mu}^{i} b_{m \nu}^{i} I_{\mu} I_{\nu}\left\langle Y_{i,-m}^{n}\left(-R_{i}(0)-\alpha_{i}(\nu)\right) R(t) Y_{i n}^{*}\left(-\beta_{i}(\theta),-\alpha_{i}(\omega) \alpha_{i 1}(t) \omega_{i}\right\rangle\right.
\end{aligned}
$$

where $R(t)$ is the rotation operator that brings the molecular frame at time zero to the molecular frame at time $t$ and $R^{+}(t)$ is its adjoint ${ }^{11) \text {. Since }}$ $R(t)$ involves the angular velocity through the relation

$$
\begin{equation*}
\frac{d R(t)}{d t}=-i\left(J_{m} \cdot \omega(t)\right) R(t), \tag{2.11}
\end{equation*}
$$

it follows that

$$
\begin{aligned}
& \left\langleY _ { i , - m } ^ { * } \left(-\beta_{i}(0),-\alpha_{i}(0 i) R_{(t)}^{+} Y_{i n}\left(-\beta_{i}(0),-\alpha_{i}(i)\right) \omega_{\mu}(t)\left(v_{1},(0)\right\rangle\right.\right. \\
& \quad \neq\left\langle Y_{i,-m}^{*}\left(-\beta_{i}(0),-\alpha_{i}(0)\right) R^{*}(t) Y_{1 n}\left(-\beta_{i}(0),-\alpha_{i}(0)\right)\right\rangle\left\langle\omega_{\mu}(t) \omega_{\nu}(0)\right\rangle
\end{aligned}
$$

However the angle and angular velocity variables though not independent
are separable. This allows us to take the ensemble average firstly over the angular velocity variables, denoting it by $\langle\cdots\rangle_{\omega}$, and then over the angie variables at time zero. Thus

$$
\begin{aligned}
& \times Y_{i,-m}^{n}\left(-\beta_{i}(0),-\alpha_{i}(0)<R^{+}(t) \omega_{\mu}(i) \omega_{r}(0)\right\rangle_{\omega} Y_{i n}\left(-\beta_{i}(0),-\alpha_{i}(0)\right) \\
& =\frac{1}{3 R^{2}} \sum_{\mu, \nu=1}^{3} \sum_{m, n=-1}^{1}(-)^{m} b_{n \mu}^{i} b_{m \nu}^{i} I_{\mu} I_{\nu}\left(\left\langle R_{\left.i(t) \omega_{\mu}(t) \omega_{\nu} i o\right\rangle}^{i}\right\rangle_{\omega}\right)_{-m, n,}^{k}
\end{aligned}
$$

where $-m, n$ denotes the $-m, n$-element with respect to the basis
$Y_{1,-i}\left(\beta(0), \alpha(0), Y_{1,0}(\beta(0), \alpha(0)), Y_{i, 1}(\beta(0), \alpha(0))\right.$. We conclude that

$$
C_{\because i}^{\infty}(t)=\frac{1}{3 x_{n}^{2}} \sum_{\mu, v=1}^{3} \sum_{m, n=-1}^{1}(-)^{m} b_{n \mu}^{i} b_{m \nu}^{i} T_{\mu-\mu} T_{-1}\left(\left\langle R(t) \omega_{\mu-1}(t) \omega_{\nu}(i\rangle\right\rangle_{\omega}\right)_{n,-i n}
$$

If we succeed in calculating $\left\langle R(t) \omega_{\mu}(t) \omega_{\nu}(0)\right\rangle_{\omega}$, we may be able to find $\left(1 / T_{1}\right)_{i}$ and $\left(1 / T_{2}\right)_{1}$, from (2.5), (2.6) and (2.12).

To perform these calculations it is helpful to define the Laplace transform $c_{i i}^{l(s)}$ of $\left(\begin{array}{c}l, ? \\ i i\end{array}(t)\right.$ :

$$
c_{i i}^{l k t}=\int_{0}^{\infty} e^{-s t} C_{i i}^{l(t)}(t) d t
$$

with $C_{i i}^{l( }(t)$ given by (2.9). Then, from (2.12),
$c_{i i}^{v i}(s)=\frac{1}{3 \hbar^{2}} \sum_{\mu, \nu=1}^{3} \sum_{m, n=-1}^{1}(-)^{m} b_{n \mu}^{i} b_{i, \nu}^{i} I_{\mu} I_{\nu}\left(\int_{0}^{\infty} e^{-s t}\left\langle R(t) \omega_{\mu}(t) \omega_{j}(\tau)\right)_{\omega} d t\right)_{n,-m}(2.14)$
and, from (2.6),

$$
\begin{equation*}
J_{i}(\omega)=\frac{1}{2}\left(C_{i i}^{i-i \omega)}+C_{i i}^{\infty}(i \omega)\right) \tag{2,15}
\end{equation*}
$$

As will be explained below in subsection 3.3 , we may replace $J_{1}\left(\omega_{0}\right.$ ) by $J_{1}$ (o) in the extreme narrowing case. Then (2.5) and (2.15) yield

$$
\begin{equation*}
\left(\frac{1}{T_{1}}\right)_{1}=\left(-\frac{1}{T_{2}}\right)_{1}=2 J_{1}(0)=2 c_{i 1}^{0}(0) \tag{2,15}
\end{equation*}
$$

We write $1 / T_{5 i}$ for the common value in the extreme narrowing case of $\left(1 / T_{1}\right)$, and $\left(1 / T_{2}\right)_{1}$, and so

$$
\begin{equation*}
\frac{1}{T_{s i}}=2 C_{i i}^{0}(0) \tag{2.17}
\end{equation*}
$$

The spin-rotational correlation time $\tilde{\tau}_{s r}$ is defined as the
integral from zero to infinity of the normalized autocorrelation function of $\bigcup_{i}^{l}(t)$, so that

$$
\tau_{s r}=\frac{\int_{0}^{\infty}\left\langle V_{i}^{k}(0)^{*} V_{i}^{k}(t)\right\rangle d t}{\left\langle V_{i}^{k}(0)^{t} V_{i}^{k}(0)\right\rangle}
$$

From (2.2) and f $J_{i \nu}=I_{\nu} \omega_{\nu}$ we deduce that

$$
\begin{aligned}
& \left\langle U_{i}^{-i}(0) U_{i}^{k}(i)\right\rangle=\pi^{-2} \sum_{\mu, v=1}^{3} \sum_{m, n=-1}^{1} b_{m \nu}^{i} b_{n \mu}^{i} I_{, \mu} I_{\nu} \\
& \left.\left.x<D_{k=n}^{\prime}\left(\alpha_{i}(0), \beta_{i}(t), \gamma_{i}(t)\right) D_{k_{2}}^{\prime}\left(\alpha_{i}(t), \beta_{i}(t)_{2}\right)_{i}(t)\right) n_{\mu}(t) \omega_{0}(0)\right\rangle \\
& =\frac{(-)^{k}}{\frac{\sigma}{n}^{2}} \sum_{\mu, l=1}^{k m} \sum_{m, n=-1}^{1} B_{-n_{3},}^{i}{b_{n, \mu} I_{\beta} I_{\nu}}^{i}
\end{aligned}
$$

where we have used (2.4) and the property of Wigner functions ${ }^{12}$ )

$$
\begin{equation*}
D_{k m}^{j}(\alpha, \beta, \gamma)=(-)^{k+m} \prod_{-k,-m}^{j}(\alpha, \beta, \gamma) . \tag{2.19}
\end{equation*}
$$

From a result of Hubbard ${ }^{13 \text { ) }}$ we find that

$$
\begin{aligned}
& \left\langle D_{-贝,-m}^{1}\left(\alpha_{i}(0), \beta_{i}(0), \gamma_{i}(0)\right) D_{k_{n=2}}^{1}\left(\alpha_{i}(t), \beta_{i}(t), \gamma_{i}(t)\right) \omega_{\mu}(t) \omega_{v}(0)\right\rangle \\
& =(-)^{k}\left\langle\prod_{0,-m}^{1}\left(\alpha_{i}(0), \beta_{i}(t), \gamma_{i}(0)\right) D_{o n}^{\prime}\left(\alpha_{i}(t), \beta_{i}(t), \gamma_{i}(t)\right) \omega_{\mu}(t) \omega_{v}(0)\right\rangle
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\langle U_{i}^{k}(0) V_{i}^{k}(t)\right\rangle=\hbar^{-2} \sum_{\mu, u=1}^{3} \sum_{m, n=-1}^{i} \hat{t}_{-m, \nu}^{c} \hat{V}_{n \mu}^{i} I_{\mu} I_{\nu} \\
& x\left\langleD _ { 0 , - m } ^ { \prime } ( \alpha _ { i } ( 0 ) , \beta _ { i } ( 0 ) , \gamma _ { i } ( 0 ) ) D _ { 0 } ^ { \prime } \left(\alpha_{i}(t), \beta_{i}(t), \gamma_{i}\left(\forall j_{i}(t)\left(\omega_{p}(0)\right\rangle(2.20)\right.\right.\right. \\
& =C_{i i}^{0}(t) \text {, }
\end{aligned}
$$

by (2.10), since $m$ and $n$ are summation indices. It follows from (2.13)
that

$$
\begin{align*}
& \int_{0}^{\infty} e^{-5 t}\left\langle U_{i}^{k}(0)^{*} U_{i}^{k}(t)\right\rangle d t=c_{i i}^{\infty 0}(5)_{\lambda}  \tag{2.2j}\\
& \int_{0}^{\infty}\left\langle\bigcup_{i}^{k}(0) \bigcup_{i}^{k}(t)\right\rangle d t=C_{i i}^{00}(0) \text {. }
\end{align*}
$$

To obtain the denominator in (2.18) we note that $R(0)$ is the identity operator, that the Wigner functions in (2.20) for $C=0$ are consequently independent of the angular velocity, and therefore that

$$
\begin{align*}
& \left\langle D_{0,-m}^{1}\left(\alpha_{i}(0), \beta_{i}(0), \gamma_{i}(0)\right) D_{0 m}^{1}\left(\alpha_{i}(0), \beta_{i}(0), \gamma_{i}(0)\right) \omega_{\mu}(t) \omega_{\gamma}(0\rangle\right. \\
& =\left\langle D_{0,-m}^{1}\left(\alpha_{i}(0), \beta_{i}(0), \gamma_{i}(0)\right) D_{0 n}^{1}\left(\alpha_{i}(0), \beta_{i}(0), \gamma_{i}(0)\right\rangle\right\rangle\left\langle\omega_{\mu}(0) \omega_{v}(0)\right\rangle \tag{2.23}
\end{align*}
$$

For a rotator of any shape ${ }^{14}$ )

$$
\begin{equation*}
\left\langle\omega_{\mu}(0) \omega_{\nu}(0)\right\rangle=\delta_{\mu \nu} \frac{k^{T}}{I_{\mu}} \tag{2.24}
\end{equation*}
$$

Then employing (2.19) and the orthogonality relation

$$
\int_{0}^{2 \pi} d \gamma \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin \beta D_{p_{r}}^{j^{*}}(\alpha, \beta, \gamma) D_{p^{\prime} r^{\prime}}^{j^{\prime}}(\alpha, \beta, \gamma)=\frac{8 \pi^{2} \delta_{j,}, \delta_{p^{\prime}} \cdot \delta_{\gamma r^{\prime}}}{2 ;+1}
$$

we see that

$$
\left\langle D_{0,-m}^{\prime}\left(\alpha_{i}(0), \beta_{i}(0), \gamma_{i}(0)\right) D_{0 n}^{\prime}\left(\alpha_{i}(i), \beta_{i}(0), \gamma_{i}(v)\right)\right\rangle
$$

$$
\left.\left.=\frac{(-)^{m}}{8 \pi^{2}} \int_{0}^{2 \pi} d \gamma_{i}(0) \int_{0}^{2 \pi} d \alpha_{i}(v) \int_{0}^{\pi} d \beta_{i}(0) \sin \beta_{i}(0) D\right)_{0 m}^{1}\left(\alpha_{i}^{*}(\nu), f_{i}(v), \gamma_{i}(\nu)\right) D_{0}^{1}\left(\alpha_{i}(0) \beta_{i}(0), \gamma_{i}\right)\right)(2.25)
$$

$$
=\frac{(-)^{m} \delta_{m x}}{3}
$$

Hence from (2.20), (2.23) - (2.25)

$$
\begin{align*}
\left\langle V_{i}^{k}(0) V_{i}^{k}(0)\right\rangle & =\frac{k T}{3 k^{2}} \sum_{\mu, v=1}^{3} \sum_{m, n=-1}^{1} \delta_{\mu \nu} \delta_{m x}(-)^{m} b_{-m, v}^{i} l_{n, \mu}^{i} I_{\nu} \\
& =\frac{k T}{3 k^{2}} \sum_{\mu=1}^{3} \sum_{m=-1}^{1}(-)^{m} b_{-m, \mu}^{i} b_{m \mu}^{i} I_{\mu} \tag{2.26}
\end{align*}
$$

We conclude from (2.18), (2.22) and (2.26) that

$$
\tau_{s i}=\frac{3 h^{2}}{h T} \frac{c_{i i}^{00}(0)}{\sum_{i=1}^{3} \sum_{m=-1}^{1}(-)^{m} b_{-m, j, i m \mu}^{i} b_{\mu}^{i} T_{m}},
$$

the value of $C_{.}^{(i)}$ to be obtained from (2.14).
rotational correlation time. tudinal and transverse relaxation times are proportional to the spinThus the spin-rotational contributions to the reciprocals of the longi31
 $N$
$\underset{\sim}{N}$
$\infty$





## 

which we express briefly as
 molecular coordinate frame that obey the commutation relations

 as to meet the requirements of the spin-rotational problem.
The rotation operator obeys the stochastic differential equation
(2.11), which we now write



 over angular velocity space of $R(t) \omega_{\mu}(t) \omega_{\rho}(0)$, where $R(t)$ is the


-11-

$$
\begin{align*}
& I_{1} \dot{\omega}_{1}-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}=-I B_{1} \omega_{1}+I_{1} \frac{d W_{1}(t)}{d t}, \\
& I_{2} \dot{\omega}_{2}-\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}=-I_{2} B_{2} \omega_{2}+I_{2} \frac{d W_{2}(t)}{d t},  \tag{2.31}\\
& I_{3} \dot{\omega}_{3}-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}=-I_{3} B_{3} \omega_{3}+I_{3} \frac{d W_{3}(t)}{d t},
\end{align*}
$$

where $B_{1}, B_{2}, B_{3}$ are frictional constants and $W_{1}, W_{2}, W_{3}$ are wiener processes. Equations (2.31) are nonlinear and $\omega_{1}(t), \omega_{2}(t), \omega_{3}(t)$ will be centred but in general non-Gaussian ${ }^{15)}$. If the molecule is spherical or linear, $\underset{\sim}{\mathcal{L}}(t)$ obeys a Langevin equation and is a centred Gaussian random variable.

Ford ${ }^{16)}$ has given a general method based on earlier studies of Kryluv and Bogoliubov ${ }^{17}$ ) of solving a nonlinear stochastic differential equation of the type

$$
\begin{equation*}
\frac{d x(t)}{d t}=\varepsilon O(t) x(t) \tag{2.32}
\end{equation*}
$$

where $x(t)$ is a random variable that may be an operator, $\varepsilon$ a small parameter and $O(V)$ a stochastic operator. Since accounts of Ford's method have been published ${ }^{8,18)}$, we shall just quote results that are relevant for our purposes. Equation (2.29) is obtained from (2.32) by the substicutions

$$
x \mapsto R(t) \quad, \quad \varepsilon O(t) \mapsto-i\left(J_{m} w_{v}(t)\right)
$$

Then we write
$R(t)=\left(I+\varepsilon F^{(1)}(t)+\varepsilon^{2} F^{(2)}(t)+\varepsilon^{3} F^{(3)}(t)+\varepsilon^{4} F^{(t)}(t)+\cdots\right)\langle R(t)\rangle$,
where $I_{\sim}$ is the identity operator and $F(t)$ are stochastic operators with zero ensemble averages. The non-stochastic $\langle R(t)\rangle$ obeys an equation

$$
\frac{d\langle R(t)\rangle}{d t}=\left(\varepsilon \Omega^{(1)}(t)+\varepsilon^{2} \Omega^{(2)}(t)+\varepsilon^{3} \Omega^{(3)}(t)+\varepsilon^{4} \Omega^{(t)}(t)+\cdots\right)\langle R(t)\rangle .(2.34)
$$

In our previous investigations we were concerned only with the solution of (2.34) but now we must find $R(t)$ in order to calculate the average value of $R(t) \omega_{\mu}(t) \omega_{\gamma}(t)$. since

$$
\langle\varepsilon O(t)\rangle \mapsto-i\langle(\underset{\sim}{J} \cdot \omega(t))\rangle=0
$$

because $\langle\underset{\sim}{w}(t)\rangle=0$, it is found that

$$
\begin{aligned}
& \varepsilon F^{\prime \prime}(t)=-i \int_{0}^{t}\left(J \cdot \omega_{0}\left(t_{1}\right)\right) d t_{1}
\end{aligned}
$$

and that in general

$$
\varepsilon^{n} \dot{F}^{(n)}(t)=-\varepsilon^{n} \Omega^{(n)}(t)-i\left(J \cdot(\nu(t)) \varepsilon^{n-1} F^{(n-1)}-\varepsilon^{n} \sum_{j=1}^{n-1} F^{(j)}(t) \Omega^{(n-1)}(t) \cdot(2.36)\right.
$$

$$
\begin{aligned}
& \text { Ne also have } \\
& \varepsilon \Omega^{(1)}(t)=0, \varepsilon^{2} \Omega^{(2)}(t)=-\int_{0}^{t}\left\langle\left(J_{\sim} w_{2}(t)\right)\left(J_{\sim} w_{\sim}\left(t_{1}\right)\right)\right\rangle d t \\
& \left.\varepsilon^{3} \Omega^{(3)}(t)=i \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left\langle\left(J_{\sim}^{\omega_{n}}(t)\right)\left(\underset{\sim}{J}, t_{1}\right)\right)\left(J \cdot \omega\left(t_{2}\right)\right)\right\rangle \\
& \varepsilon^{4} \Omega^{(\omega)}(t)=\int_{u}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \int_{0}^{t_{2}} d t_{3}\left\{\left\langle(J . \omega(t))\left(J_{\sim} \omega_{2}\left(t_{1}\right)\right)\left(J \cdot \omega\left(t_{2}\right)\right)\left(J \cdot \omega\left(t_{3}\right)\right)\right\rangle\right. \text { (2.37) } \\
& -\left\langle(J \cdot \underset{\sim}{\omega}(t))\left(J \cdot \omega\left(t_{1}\right)\right)\right\rangle\left\langle\left(J \cdot \omega_{n}\left(t_{2}\right)\right)\left(J \cdot \omega_{N}\left(r_{3}\right)\right)\right\rangle \\
& -\left\langle\left(\hat{J} \cdot \omega_{\sim}(t)\right)\left(J, \omega_{m}\left(t_{2}\right)\right)\right\rangle\left\langle\left(J, \omega_{n}\left(t_{1}\right)\right\rangle\left(J, v_{0}\left(t_{3}\right)\right)\right\rangle
\end{aligned}
$$

On substituting the values of $\Omega^{(i)}(t)$ into (2.34) we may be able to obtain. $\langle R(t)\rangle$ in a form suitable for further computation. Then finding $F((t)$ frota (2.35), or from (2.36) and (2.37), and substituting into (2.33) we have $R(t)$ and may proceed to calculate $\left\langle R(t) \omega_{\mu}(t) \omega_{j}, \omega_{j}\right)$ required in (2.12).

> In these investigations the operators are independent of the angle variables and so we may denote ensemble averages either by $\langle\cdots\rangle_{w}$ or by $\langle\cdots\rangle$. For convenience we shall adopt the latter notation.

A11 the above considerations are applicable to molecules of any
shape. We shall now apply the general theory of this section to a spherical molecular model.
3. SPHERICAL MOLECULES

### 3.1 Calculation of $\left\langle R(c)\right.$ ( $\left.\omega_{H}(t) \omega_{v}(v)\right\rangle$

When the rotating molecule is spherical in shape, eq. (2.31) reduce
to

$$
\begin{equation*}
I \operatorname{c}_{\sim}(t)=-I B \omega(t)+I \frac{d\left[L^{n}(t)\right.}{d t} \tag{3.1}
\end{equation*}
$$

and $\underset{\sim}{\omega}(\theta)$ is a Gaussian random variable with zero mean. Then, since the mean value of the product of an odd number of such $\omega^{\prime}$ 's vanishes, $\Omega^{(3)}(\dot{C})$ given in (2.37) vanishes, as indeed do $\Omega^{(5)}(t), \zeta(t)$, etc.. It has been shown that ${ }^{9)}$
$\langle R(c)\rangle=\left[I+\gamma J^{2}\left(1-e^{-B t}\right)+\gamma^{2}\left\{J^{2}\left[\frac{5}{4}-(B \dot{L}+1) e^{-B C}-\frac{1}{4} e^{-23 t}\right]\right.\right.$
$\left.T\left(T^{2}\right)^{2}\left[\frac{1}{2}-e^{-B t}+\frac{1}{2} e^{-2 B t}\right]\right\}$
$+Y^{3}\left\{J^{2}\left[\frac{19}{9}-\left(\frac{1}{2} B^{2} t^{2}+2 B t+1\right) e^{-B t}-\left(\frac{3}{4} B t+1\right) e^{-2 F t}-\frac{1}{9} e^{-3 D t}\right]\right.$
$+\left(J^{2}\right)^{2}\left[\frac{5}{4}-\left(D t+\frac{9}{4}\right) e^{-3 t}+\left(B t+\frac{3}{4}\right) e^{-2 D t}+\frac{1}{4} e^{-3 B C}\right]$
$\left.\left.+\left(J^{2}\right)^{3}\left[\frac{1}{6}-\frac{1}{2} e^{-B E}+\frac{1}{2} e^{-2 B E}-\frac{1}{6} e^{-38 t}\right]\right)+\cdots\right] e^{-B G_{j} E}$
where

$$
\begin{equation*}
\left.G_{j}=j(j+1) y\left\{1+\frac{1}{2} \gamma+\frac{7}{12}\right)^{2}+\left[\frac{17}{12}-j(j+1)\right] y^{3}+\cdots\right\} \tag{3.3}
\end{equation*}
$$

$j\left(j^{\prime}+1\right)$ being the eigenvalue of $J^{2}$ and

$$
\begin{equation*}
\gamma=\frac{R T}{I B^{2}} \tag{3.4}
\end{equation*}
$$

where $K$ is the Boltzmann constant and $T$ the absolute temperature. It is found in dielectric absorption experiments that the value of $\gamma$ does not exceed a few per cent ${ }^{19,20)}$. We see from (3.2) that $\langle R(t)\rangle$ is a multiple of the identity and so commutes with $J_{1}, J_{2}, J_{3}$.

We wish to calculate $R(t)$ from (2.33), (2.35) and (3.2), and use
the value so calculated to obtain $\left\langle R(t) \omega_{\mu}(t) \omega_{2},(t)\right\rangle$. Let us suppose that $n$ is an odd integer. The contribution to $\hat{R}(t) \omega_{\mu}(t) \omega_{p}(0)$ corresponding to $\varepsilon^{\pi} \Gamma^{(N)}(t)$ contains only terms with an odd number of $\omega^{\prime}$ 's and so the ensenible aveage of the contribution vanishes. We may therefore deduce from (2.33) that
$\left\langle R(t) \hat{\omega}_{\mu}(t) \omega_{y}(0)\right\rangle=\left\langle\left(I+\varepsilon^{2} F^{(i)}(t)+\varepsilon^{i} F^{(t)}(t)+\varepsilon^{6} F^{\prime}(t)+\cdots\right) \omega_{\mu}(t) \omega_{j, j}(v)\right\rangle\langle R(t$, (3.5)

$$
\begin{align*}
& \text { For a steady state solution of (3.1) we have }{ }^{21)} \\
& \left.\left\langle\omega_{i}\left(t_{\ell}\right) \omega_{p}\left(t_{m}\right)\right\rangle=\delta_{i p} \frac{k T}{I} e^{-B\left|t_{l}-t_{m}\right|} \quad \epsilon_{i}, p=1,2,3\right) \tag{3.6}
\end{align*}
$$

It follows from (2.37) that ${ }^{22)}$

$$
\begin{align*}
& \varepsilon^{2} \Omega^{(2)}\left(t_{1}\right)=-\frac{k T}{I} J^{2} \int_{0}^{t_{1}} e^{-B\left(t_{1}-t_{2}\right)} d t_{2}=\frac{k T}{I B} J^{2}\left(1-e^{\left.-B t_{1}\right)}\right.  \tag{3.7}\\
& \varepsilon^{4} \Omega^{(4)}\left(t_{1}\right)=-\left(\frac{k T}{I}\right)^{2} J^{2} \int_{0}^{t_{1}} d t_{2} \int_{0}^{t_{0}} d t_{3} \int_{0}^{t_{3}} d t_{1} e^{-B\left(t_{1}+t_{2}-t_{3}-t_{4}\right)}
\end{align*}
$$

We see from (2.36) that
 $\qquad$

Let us calculate $\left\langle I_{\sim} \omega_{j 1}(t) \omega_{\nu}(0)\right\rangle,\left\langle\varepsilon^{2} F^{(2)}(t) \omega_{\mu}(t) \omega_{\nu}(0)\right\rangle$, $\left\langle\varepsilon^{4} F^{(4)}(t) \omega_{\mu}(t) \omega_{\gamma}(0)\right\rangle$. From (3.6)

$$
\left.\left\langle I \omega_{\mu}(G) \omega_{v} \mid 0\right\rangle\right\rangle=\delta_{\mu \nu} \frac{R T}{I} e^{-B t}
$$

since $t \geqslant 0$ in (2.6) and all subsequent equations of Section a From
(2.35) and (3.6)

$$
\varepsilon^{2} F(t)=-\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2}\left[\sum_{r, s=1}^{3} J_{r} J_{s} \omega_{r}\left(t_{1}\right) \omega_{s}\left(t_{2}\right)-\frac{k T}{I} J^{2} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} e^{-B\left(t_{1}-t_{2}\right)}\right]
$$

and therefore

$$
\begin{align*}
\left\langle\varepsilon^{2} F^{(1)}(t) \omega_{\mu}(t) \omega_{\nu}(0)\right\rangle= & -\sum_{r, s=1}^{3} J_{r} J_{j} \int_{0}^{t} d t \int_{0}^{t_{1}} d t_{2}\left\langle\omega_{\mu}(t) \omega_{r}\left(t_{1}\right) \omega_{s}\left(t_{\nu}\right) \omega_{\nu}(0)\right\rangle \\
& +\gamma \frac{k T}{I} J^{2} \delta_{\mu \nu}\left(B\left(-1+e^{-B t}\right)\right. \tag{3.i1}
\end{align*}
$$

on introducing from (3.4). From the properties of Gaussian variables ${ }^{23}$ )

$$
\left\langle\omega_{\mu}(t) \omega_{\gamma}\left(t_{1}\right) \omega_{s}\left(t_{2}\right) \omega_{\nu}(0)\right\rangle
$$

$$
\left.=\left\langle\omega_{\mu} \mid t\right\rangle \omega_{\gamma}\left|t_{,}\right\rangle\right\rangle\left\langle\omega_{\rho}\left(t_{2}\right) \omega_{\gamma}(0)\right\rangle+\left\langle\omega_{\mu}(t) \omega_{s} \mid t_{2}\right\rangle\left\langle\omega_{\gamma}(t) \omega_{1}, \omega_{1}\right\rangle
$$

$$
=\left(\frac{k T}{I}\right)^{2}\left\{\begin{array}{l}
t\left\langle\omega_{\mu}(t) \omega_{\nu}(0)\right\rangle\left\langle\omega_{r}\left(t_{1}\right) \omega_{s}\left(t_{2}\right)\right\rangle \\
\delta_{\mu r} \delta_{s \gamma} e^{-B\left(t-t_{1}+t_{2}\right)}+\left(\delta_{\mu s} \delta_{r s}+\delta_{\mu \nu} \delta_{r s}\right) e^{-B\left(t_{+} t_{1}-t_{2}\right)}
\end{array}\right.
$$

$$
\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2}\left\langle\omega_{\mu}(t) \omega_{r}\left(t_{1}\right) \omega_{s}\left(t_{2}\right) \omega_{\nu}(0)\right\rangle
$$

$$
=\gamma \frac{\frac{R}{2} T}{I} e^{-B t}\left\{\left(e^{B T}-1-B t\right) \delta_{\mu+r} \delta_{s \nu}+\left(e^{-B t}-1+B t\right)\left(\delta_{\mu s} \delta_{r \nu}+\delta_{\mu \nu} \delta_{r s}^{(3.13)}\right\}\right.
$$

and on employing (2.30) we deduce that

$$
\begin{align*}
\left\langle\varepsilon^{2} F^{(2)}(t) \omega_{\mu}(t) \omega_{\gamma}(0)\right\rangle=-\gamma \frac{k T}{I}\{ & \left(1-2 e^{-B t}+e^{-2 B t}\right) J_{\mu} J_{\nu}  \tag{3.14}\\
& \left.+\left(-e^{-B t}+B t e^{-b t}+e^{-2 B t}\right) i\left(J_{-}, e_{\mu} x e_{\nu}\right)\right\}
\end{align*}
$$

Since $\Omega^{(2)}$ and $\Omega^{(4)}$ are non-stochastic, we see from (3.9) that

$$
\begin{aligned}
& \left\langle\varepsilon^{4} F^{(4)}(t) \omega_{\mu}(t) \omega_{\gamma}(\nu)\right\rangle=-\frac{k T}{I} \delta_{\mu \nu} e^{-B r} \int_{0}^{t} \varepsilon^{4} \Omega^{(4)}(t,)\left(t,-\int_{0}^{t} \varepsilon^{2} L^{(21)}\left(t_{1}\right)\left\langle\varepsilon ^ { 2 } F ^ { ( 2 ) } ( t _ { 1 } ) \left( c_{\mu} 1(t) \omega_{p} i(j) d t,\right.\right.\right. \\
& \left.\left.\left.-i \int_{0}^{t}\left\langle\omega_{\mu}\right| t\right)\left(J \cdot \omega_{\mu}(t,)\right) \varepsilon^{3} F^{(3)}\left(t_{1}\right) \omega_{0}, 10\right\rangle\right\rangle d t_{1}
\end{aligned}
$$

Now, by (3.8),

$$
\begin{align*}
& -\frac{k T}{I} \delta_{\mu \nu} e^{-B t} \int_{0}^{t} \varepsilon^{4} \Omega^{(4)}\left(t_{1}\right) d t_{1} \\
& =\left(\frac{k T}{I}\right)^{3} \delta_{\mu \nu} J^{2} e^{-B t \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \int_{0}^{t} d t_{3} \int_{0}^{t_{3}} d t_{u} e^{-B\left(t_{1}+t_{2}-t_{3}-t_{0}\right)}} . \tag{3.16}
\end{align*}
$$

which is a convolution ${ }^{24}$ ). Next we have from (3.7) and (3.10)

$$
\begin{aligned}
& -\int_{0}^{t} \varepsilon^{2} \Omega^{(2)}(t)\left\langle\varepsilon^{2} F^{(2)}(t) \omega_{\mu}(t) \omega_{\nu}(0)\right\rangle d t, \\
& =-\frac{R T}{I B} \dot{J}^{2} \int_{0}^{t} d t_{1}\left(1-e^{-B t_{1}}\right)\left\langle\omega _ { \mu } ( t _ { i } ) \left[\int_{0}^{t_{i}} d t_{2}^{-} \int_{0}^{t_{2}} d t_{3} \sum_{\Gamma}^{3} J_{r} J_{s} \omega_{2}\left(t_{2}\right) \omega_{s}\left(t_{3}\right)\right.\right. \\
& \left.\left.-Y J^{2}\left(B C_{1}-1+e^{-B t}\right)\right] \omega_{v}(0)\right\rangle .
\end{aligned}
$$

Using (3.12) we de luce that

$$
\begin{align*}
& \int_{0}^{t_{1}} d t_{2} \int_{0}^{t_{2}} d t_{3} \sum_{i ; s, 1}^{3} J_{r} J_{s}\left\langle\omega_{\mu}(t) \omega_{r}\left(t_{2}\right) \omega_{s}\left(t_{s}\right) v_{,}(0)\right\rangle \\
& =\gamma \frac{k T}{I} e^{-B+}\left\{\delta_{\mu \nu} J^{2}\left(e^{-B t_{1}}-1+B C_{0}\right)+J_{\mu} J_{\nu}\left(e^{B t_{1}}-2+e^{-B t_{1}}\right)\right.  \tag{3.18}\\
& \\
& \left.\quad+\left(e^{-B C_{1}}-1+B C_{1}\right) i\left(J_{\mu} \cdot e_{\mu} \times e_{\mu \nu}\right)\right\}
\end{align*}
$$

Cancelling terms in (3.17) and (3.18) and integrating with respect to $t$, we obtain

$$
\begin{aligned}
-\int_{0}^{t} \varepsilon^{2} \Omega^{(2)}\left(t_{1}\right) & \left\langle\varepsilon^{2} F^{(21}\left(t_{1}\right) \omega_{\mu}(t) \omega_{\nu}(0)\right\rangle d t, \\
= & -\gamma^{2} \frac{k^{\prime T}}{I} J^{2}\left\{J_{\mu} J_{\nu}\left(1+\frac{3}{2} e^{-B t}-3 B t e^{-B t}-3 e^{-2 B t}+\frac{1}{2} e^{-3 B t}\right)\right. \\
& +i\left(J_{\sim} e_{\mu} x e_{\nu}\right)\left(\frac{1}{2} e^{-B t}-B t^{-B t}+\frac{1}{2} B^{2} t^{2} e^{-B t}-e^{-2 B t}+B t e^{-2 B t}+\frac{1}{2} e^{-3 B t}\right)
\end{aligned}
$$

The equation in (2.35) for $\varepsilon^{3} F^{(3)}(t)$ gives

$$
\begin{aligned}
\varepsilon^{3} F^{(3)}(t)= & i \int_{0}^{t_{1}} d t_{2} \int_{0}^{t_{2}} d t_{3} \int_{0}^{t_{3}} d t_{4}\left\{\sum_{2=1}^{3} \sum_{c=1}^{3} \sum_{i=1}^{3} J_{2} J_{c} J_{d} \omega_{2}\left(t_{2}\right) \omega_{c}\left(t_{3}\right) \omega_{d}\left(t_{4}\right)\right. \\
- & \frac{k T}{I} J^{2}\left[\sum_{b=1}^{3} J_{b} \omega_{b}\left(t_{2}\right) e^{-B\left(t_{3}-t_{4}\right)}+\sum_{c=1}^{3} J_{c} \omega_{c}\left(t_{3}\right) e^{-B\left(t_{2}-t_{4}\right)^{(3.20)}}\right. \\
& \left.\left.+\sum_{d=1}^{3} J_{d} \omega_{d}\left(t_{4}\right) e^{-B\left(t_{2}-t_{3}\right)}\right]\right\},
\end{aligned}
$$

so that

$$
\begin{align*}
& -i \int_{0}^{t}\left\langle\omega_{\mu}(t)\left(J_{\sim} \omega_{\sim}\left(t_{1}\right)\right) \varepsilon^{3} F^{(3)}\left(t_{1}\right) \omega_{\gamma}(c)\right\rangle d t_{1} \\
& =\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \int_{0}^{t_{2}} d t_{3} \int_{0}^{t_{3}} d t_{4}(A-B-C-D) \tag{3.21}
\end{align*}
$$

where

$$
\begin{aligned}
& \left.A=\sum_{a, b, c, d=1}^{3} J_{a} J_{z} J_{c} J_{d}\left\langle\omega_{\mu}(t) \omega_{2}(t) \omega_{2}\left(t_{2}\right) \omega_{c}\left(t_{3}\right) \omega_{d}\left(t_{4}\right) \omega_{p}, 0\right\rangle\right\rangle \\
& B=\frac{k T}{I} J^{2} \sum_{a, b=1}^{3} J_{a} J_{b}\left\langle\omega_{\mu}(t) \omega_{a}(t) \omega_{a}\left(t_{2}\right) \omega_{1}(0)\right\rangle e^{-3\left(t_{3}-t_{a}\right)} \\
& \left.C=\frac{k T}{I} J^{2} \sum_{a_{1} c=1}^{3} I_{i} J_{c}<\omega_{\mu}(t) \omega_{i}\left(t_{0}\right) \omega_{c}\left(t_{3}\right) \omega_{i}(c)\right\rangle e^{-B\left(t_{2}-t_{\mu}\right)} \\
& D=\frac{k T}{I} J^{2} \sum_{a, d=1}^{3} J_{a} J_{d}\left\langle\omega_{\mu}(t) \omega_{c}\left(t_{1}\right) \omega_{d}\left(t_{4}\right) \omega_{1}(0)\right\rangle e^{-B\left(t_{2}-t_{3}\right)} \text {. }
\end{aligned}
$$

To evaluate $A$ we extend (3.12) to the product of six $\omega$ 's and employ (2.30) to derive the relations:

$$
\begin{align*}
& \sum_{a=1}^{3} J_{a} J_{\mu} J_{a} J_{\nu}=\sum_{a=1}^{3} J_{\mu} J_{a} J_{\nu} J_{a}=\left(J^{2}-I\right) J_{\mu} J_{\nu} \\
& \sum_{a=1}^{3} J_{a} J_{\mu} J_{\nu} J_{a}=\left(J^{2}-3 I\right) J_{\mu} J_{\nu}+\delta_{\mu \nu} J^{2}-i\left(J_{\sim} \cdot e_{\mu} \times e_{\mu}\right) \\
& \sum_{a, i=1}^{3} J_{a} J_{i} J_{a} J_{a}=J^{2}\left(J^{2}-I_{m}^{3}\right) \\
& \sum_{a, l, c=1}^{3} J_{a} J_{i} J_{c} J_{a} J_{a} J_{c}=J^{2}\left(J^{2}-I\right)\left(J^{2}-2 I\right)  \tag{3.23}\\
& \sum_{a, b, c=1}^{3} J_{a} J_{a} J_{c} J_{a} J_{c} J_{a}=\sum_{a, r, c=1}^{3} J_{a} J_{b} J_{c} J_{b} J_{a} J_{c} \\
& =\sum_{a, l, c=1}^{3} J_{a} J_{i} J_{a} J_{c} J_{e} J_{c}=J^{2}\left(J^{2}-I\right)^{2}
\end{align*}
$$

After a long but elementary calculation we deduce from (3.21) - (3.23) that

$$
\begin{aligned}
& -i \int_{0}^{t}\left\langle\omega_{\mu}(t)\left(J_{\sim} \cdot \omega_{\sim}\left(t_{1}\right)\right) \varepsilon^{3} F^{(3)}\left(t_{1}\right) \omega_{\gamma}(0)\right\rangle d t, \\
& \begin{aligned}
=\left(\frac{R_{2} T}{I}\right)^{3}\{ & -J_{\mu} J_{\nu} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \int_{0}^{t_{2}} d t_{3} \int_{0}^{t_{3}} d t_{4} e^{-B\left(t-t_{1}+t_{2}+t_{3}-t_{4}\right)} \\
& +\left[2 J^{2}-I\right] J_{\mu} J_{v} \int_{0}^{t} d t_{1} \ldots \int_{0}^{t_{3}} d t_{4} e^{-B\left(t_{1}+t_{1}-t_{2}-t_{3}+t_{4}\right)}
\end{aligned} \\
& +\left\{\left[3 J^{2}-4\right]\right] J_{\mu} J_{\nu}+2\left[J^{2}-\frac{T}{\sim}\right] i\left(J_{n} \cdot e_{\mu} \times-e_{n}\right) \\
& \left.+J^{4} \delta_{\mu \nu}\right\} \int_{0}^{t} d t_{1} \ldots \int_{0}^{t_{3}} d t_{4} e^{-B\left(t_{2} t_{1}-t_{2}+t_{3}-t_{4}\right)} \\
& \left.+\left\{\left[4 J^{2}-7\right]\right]_{\sim}\right]_{\mu} J_{\nu}+\left[l J^{2}-6 I\right] i\left(J_{\sim} \cdot e_{m} \times e_{\sim}\right) \\
& \left.\left.+\left[2 J^{4}-2 J^{2}\right] \delta_{\mu \nu}\right\} \int_{\Delta} d t_{1} \ldots \int_{0}^{t_{3}} d t_{4} e^{-B\left(t+t_{1}+t_{2}-t_{3}-t_{4}\right)}\right\},
\end{aligned}
$$

The value of $\left\langle\varepsilon^{4} F^{(4)}(t) \omega_{\mu}(t) \omega_{\nu}(0)\right\rangle$ is now obtained from (3.15), (3.16), (3.19) and (3.24). If we wished to find $\left\langle\varepsilon^{6} F^{\prime(6)}(t)\left(u_{\mu}, 1 t\right) \omega_{\nu}, 10\right\rangle$, the calculation would be extremely long; for example, corresponding to $A$ in (3.22) we would have a summation which involves the ensemble average of the continued product of 8 w 's and this consists of 105 terms. We shall not therefore take the calculations further. For our purposes we do not require an explicit expression for the rotation operator $R(t)$ but such an expression may be written down from (2.33), (2.35), (3.6) - (3.10), (3.20), (3.2) and (3.3). The value of $\left\langle R(t) \omega_{,}(t) \omega_{v}(0)\right\rangle$ is obtainable from (3.2), (3.3), (3.5) and our calculated values of $\left\langle\frac{I}{\sim} \omega_{\mu}(t) \omega_{v}(0)\right\rangle$, $\left\langle\varepsilon^{2} F^{(2)}(t) \omega_{\mu}(t) \omega_{v}(0)\right\rangle,\left\langle\varepsilon^{4} F^{(\mu)}(t) \omega_{\mu}(t) \omega_{\nu}(\theta)\right\rangle$. Explicit values of the integrals occurring, which in fact are not required for the investigation of spin-rotational interactions, may be derived by inverting the Laplace transforms of the convolutions ${ }^{25)}$.
and we see that the multiple integrals are convolutions.

In the case of a spherical molecule eq. (2.14) becomes

$$
c_{i i}^{i e}(s)=\frac{I^{2}}{3 t^{2}} \sum_{\mu, \gamma=1}^{3} \sum_{m, n=-1}^{i}(-)^{m} b_{n \mu}^{i} b_{m \nu}^{i}\left(\int_{0}^{\infty} e^{-s i}\left\langle R(t) \omega_{\mu}(t) \omega_{\nu}(i)\right\rangle d t\right)_{n,-m},(3.25)
$$

the integral being the Laplace transform of the operator $\left\langle R(t) \omega_{\mu}(t) \omega_{\nu}(s)\right\rangle$. As an illustration of the method of calculation and approximation we take the first term

$$
\begin{equation*}
-\left(\frac{p T}{I}\right)^{3} J_{\mu} J_{\nu} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \int_{0}^{t_{2}} d t_{3} \int_{0}^{t_{3}} d t_{4} e^{-B\left(t-t_{1}+t_{2}+t_{3}-t_{4}\right)} \tag{3.26}
\end{equation*}
$$

on the right hand side of (3.24) and we approximate $\langle R(t)\rangle$ in (3.2) by $e^{-B G, t} I$. We shall calculate the Laplace transform of the expression (3.26) multiplied by $e^{-B C_{3} ; t}$, noting that

$$
\begin{aligned}
& -\left(\frac{k T}{I}\right)^{3} e^{-B G, t} J_{\mu} J_{\nu} \int_{0}^{t_{1}} d t_{1} \int_{0}^{t_{1}} d t_{2} \int_{0}^{t_{2}} d t_{3} \int_{0}^{t_{3}} d t_{4} e^{-B\left(t-t_{1}+t_{2}+t_{3}-t_{4}\right)} \\
& =-\left(\frac{h T}{I}\right)^{3} J_{\mu} J_{\nu} \int_{0}^{t} d t_{1} \ldots \int_{0}^{t_{3}} d t_{4-} e^{-\left(B+B C_{j}\right)\left(t-t_{1}\right)} e^{-B C_{j}\left(t_{1}-t_{2}\right)} e^{-\left(B+B C_{i} ;\left(t_{2}-\sigma_{3}\right)\right.} \\
& \left.=-\left(\frac{B T}{I}\right)^{3} J_{j}\right]_{\nu}^{-\left(B+B C_{j}\right) t} * e^{-B C_{j} t} * e^{-\left(B+B C_{j}\right) t} * e^{-\left(2 B+B C_{j}\right) t} * e^{-\left(B+B C_{j}\right) t}
\end{aligned}
$$

The Laplace transform of this is

$$
\begin{equation*}
-\left(\frac{K T}{I}\right)^{3} \frac{J_{\mu} J_{\nu}}{\left(S+B C_{j, j}\right)\left(S+B+B C_{j}\right)^{3}\left(S+2 B+B C_{j j}\right)} \tag{3.27}
\end{equation*}
$$

By inverting this we may find the value of (3.26) multiplied by $e^{-B(, f)}$.

Let us write (3.27) as

$$
\begin{equation*}
-\gamma^{2} \frac{k T}{I B} \frac{J_{\mu} J_{\nu}}{\left(\frac{s}{B}+G_{j}\right)\left(1+\frac{s}{B}+G_{j}\right)^{3}\left(2+\frac{s}{B}+C_{j}\right)} \tag{3.28}
\end{equation*}
$$

For the small values of $j$ with which we shall be concerned, $G_{j}$ defined by (3.3) is of order $\gamma$. The factors $1+(S / B)+G_{j}, 2+(s / B)+G_{j}$ are at least of order unity. However for values of $S / B$ of order $G_{;}$or less, and so for the extreme narrowing case when $s$ will be taken equal to zero, $(S / B)+C_{3}$; is of order $\gamma$. This will raise the order of (3.28) to $J_{\mu} J_{\nu} \gamma^{\prime} K T /(L R)$. Then in order to obtain an approximation of order $J_{\mu} J_{\gamma} \gamma^{2} k T /(I B)$ it will be necessary to include the term $\gamma J^{2} \quad$ in (3.2) when approximating $\langle R(t)\rangle$. Similarly, if the denominator of the Laplace transform had contained a factor $\left(S+B G_{j}\right)^{2}$, we would have had to include terms proportional to $\gamma^{2}$ in the approximation of $\langle R(t)\rangle$.

On performing the calculations we obtain

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t}\left\langle R(t) n_{1},(t) \omega_{r}(0)\right\rangle d t \\
& =\delta_{\mu \nu} T \frac{k T}{I}\left\{\frac{I}{s+B+B C_{j}}+\frac{\gamma B J^{2}}{\left(s+B+B C_{j}\right)\left(s+2 B+B G_{j}\right)}\right. \\
& +\gamma^{2}\left[\frac{\frac{1}{2} J^{4}+\frac{5}{4} J^{2}}{S+B+B G_{j}}-\frac{J^{4}+J^{2}}{S+2 B+B G ;}-\frac{B J^{2}}{\left(S+2 B+B G_{j}\right)^{2}}\right. \\
& \left.\left.+\frac{\frac{1}{2} J^{4}-\frac{1}{4} J^{2}}{S+3 B+B G_{j}}+\frac{B^{4} J^{2}}{\left(S+B+B G_{j}\right)^{3}\left(S+2 B+B G_{j}\right)^{2}}\right]\right\} \\
& +i\left(J_{\sim} \operatorname{ed}_{\mu} \times e_{m}\right) \times \frac{k T}{I}\left\{\frac{I}{S+B+B G_{j}}-\frac{B I}{\left(S+B+B G_{j}\right)^{2}}-\frac{I}{S+2 B+B G_{j}}\right. \\
& +\sqrt{\left[J^{2}\right.}\left(\frac{\frac{1}{2}}{S+B+B G_{j}}-\frac{B^{2}}{\left(S+B+B G_{j}\right)^{3}}-\frac{1}{S+2 B+B C_{j}}+\frac{\frac{1}{2}}{S+3 B+B_{i}}\right) \\
& +\frac{2 B^{4}\left(J^{2}-I\right)}{\left(S+B+B G_{j}\right)^{3}\left(S+2 B+B G_{j}\right)^{2}}+\frac{B B^{4}\left(L_{j} J^{2}-6 I\right)}{\left(S+B+B C_{j}\right)^{2}\left(S+2 S+B C_{j}\right)}
\end{aligned}
$$

## $-5 z-$



We shall also write (is) simply as $(\mathbb{S})$ because it is independent of $i$ and because the zero superscripts may be discarded, since this is the only (is) function that we shall meet in this subsection. Thus we express (3.25) a

[^0]$$
C_{2}=2 \gamma+\gamma^{2}+\frac{7}{6} \gamma^{3}+\cdots
$$

In the present representation

$$
J_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
0 & 1 & 0  \tag{3.34}\\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], J_{2}=\frac{i}{\sqrt{2}}\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], J_{3}=\left[\begin{array}{ccc}
-1 & 0 & i \\
0 & 0 & 0 \\
0 & 0 & i
\end{array},\right.
$$

the rows and columns being numbered in the sequence $-1,0,1$. The matrices of (3.34) may be obtained from those of Rose ${ }^{29}$ ) by making the substitutions

$$
M_{x} \mapsto-\frac{A}{h} J_{1}, M_{y} \rightarrow-\frac{h}{h} J_{2}, M_{3} \rightarrow \cdots h^{2} J_{3}
$$

in order to take account of the minus sign in the computation relation (2.30). We see from (3.33) that

$$
B G_{1}=2 \gamma D\left(1+\frac{1}{2} \gamma+\frac{7}{12} \gamma^{2}+\cdots\right)=\hat{C}\left(\frac{k T}{I B}\right)
$$

In the extreme narrowing case of $\omega_{0} \lll T /(I B)_{\text {we }}$ may replace $s$ by zero in (3.29) when calculating $J_{1}\left(\omega_{0}\right)$ from $(5)$ as given by (2.15). Then (2.17) yields

$$
\begin{equation*}
\frac{1}{T_{s r}}=2 c(0) \tag{3.35}
\end{equation*}
$$

In order to deduce $C(0)$ from (3.32) we must perform the summations over $m, \mu, \mu, \nu$ involving the $b ' s$ and the operators outside the curly brackets of (3.29). A brief calculation gives

$$
\sum_{\mu, v=1}^{3} \sum_{n=n=-1}^{1}(-)^{m} f_{n \mu} \ell_{m \nu} \delta_{\mu \nu}(I)_{n,-m}=C_{11}^{2}+2 C_{1}^{2}
$$

where we have employed (3.31). Then we deduce from (3.34) that
$\sum_{\mu, \nu=1}^{3} \sum_{m, n=-1}^{1}(-)^{m} b_{n \mu} b_{m, \nu}\left[i\left(J_{n} e_{n}-e_{\mu} x i_{v}\right)\right]_{n,-m}=-2 C_{i}^{2}-1_{1} C_{1} C_{11}$

On evaluating $J_{\mu} J_{\nu}$ from (3.34) and substituting we likewise find that

$$
\begin{equation*}
\sum_{\mu, \nu=1}^{3} \sum_{m, n=-1}^{1}(-)^{m} b_{n, \mu} b_{m \nu}\left(J_{\mu} J_{\nu}\right)_{m,-m}=0 . \tag{3.38}
\end{equation*}
$$

Equations (3.36) - (3.38) were already given by Hubbard ${ }^{31)}$. In (3.29) the terms that require special attention for $S=0$ are all proportional to $J_{\mu} J_{\nu}$. on account of (3.38) they give zero contribution to ( 0 ), and for the purpose of calculating $1 / T_{\text {ir }}$ from (3.35) they may be disregarded. However for the sake of completing a record of this calculation we shall retain them.

On putting $j=1$ in (3.29), employing (3.33) and expressing the results as power series in $y$ we find that

$$
\begin{aligned}
& \lim _{s \rightarrow 0} \int_{0}^{\infty} e^{-s t}\left\langle R(t) \omega_{\mu}(t) \omega_{\nu}(0)\right\rangle, d t \\
&= \frac{k T}{I B}\left\{\delta_{\mu \nu} I\right. \\
&+\gamma\left[-\delta_{\mu \nu} I_{m}-\frac{i}{2}\left(J_{i}, e_{i \mu} x e_{\nu}\right)\right] \\
&+\gamma^{2}\left[\frac{13}{6} \delta_{\mu \nu} I+\frac{13}{12} i\left(J \cdot e_{\sim} \times e_{n}\right)\right] \\
&\left.-\frac{1}{2} J_{\mu} J_{\nu}+\frac{1}{4} r J_{\mu} J_{\nu}+\frac{1}{6} \gamma^{2} J_{\mu} J_{\nu}+\cdots\right\}_{v}
\end{aligned}
$$

For the reason given in the previous subsection it is to be expected that, if we were to continue our calculations so as to include the $\varepsilon^{6} F^{(6)}(t)$ term on the right hand side of (3.5), the coefficient $\frac{1}{6}$ of $\gamma^{2} J_{\mu} J_{\nu}$ would be altered. The other terms on the right hand side of (3.39) are in agreement with the result of Hubbard ${ }^{32 \text { ). Equation (3.32) combined with }}$ (3.36) - (3.39) yield

$$
\begin{aligned}
C(0) & \left.=\frac{h T}{3 x^{2} B}\left\{\left(\left(11+2 C_{1}^{2}\right)\left(1-y+\frac{13}{6}\right)_{+}^{2}\right)+\left(2 C_{1}^{2}+4 C_{1} C_{4}\right)\left(\frac{1}{2} \gamma-\frac{13}{12}\right)^{2}+\cdots\right)\right\} \\
& =\frac{k T}{3 X^{2} B}\left\{\left(C_{11}^{2}+2 C_{1}^{2}\right)-y\left(C_{1}-C_{11}^{2}+\frac{13}{6} \gamma^{2}\left(C_{1}-C_{11}\right)^{2}+\cdots\right\},\right.
\end{aligned}
$$

and so, from (3.35),

$$
\begin{equation*}
\left.\frac{1}{T_{s-r}}=\frac{2 I k T}{3 k^{2} B}\left\{\left(C_{11}^{2}+2 C_{1}^{2}\right)-\gamma\left(C_{\perp}-C_{11}\right)^{2}+\frac{13}{4}\right)^{2}\left(C_{1}-C_{11}\right)^{2}+\cdots\right\} \tag{3.40}
\end{equation*}
$$

To obtain $\tau_{s \sim}$ we note that for the sphere $(2.28)$ becomes

$$
\begin{equation*}
\frac{1}{T_{s r}}=\frac{2 I h T \tau_{s r}}{3 \hbar^{n^{2}}} \sum_{\mu=1}^{3} \sum_{m=-1}^{1}(-)^{n} b_{-m \mu} b_{m \mu} \tag{3.41}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \sum_{\mu=1}^{3} \sum_{m=-1}^{1}(-)^{m} b_{-m \mu} b_{m \mu}=\sum_{\mu, v=1}^{3} \sum_{m, n=-1}^{1}(-)^{m} b_{-n \mu} b_{m \nu} \delta_{m n} \delta_{\mu \nu} \\
& =\sum_{\mu, v=1}^{3} \sum_{m, n=-1}^{1}(-)^{m} b_{n \mu} b_{m \nu} \delta_{n,-m} \delta_{\mu \nu}=C_{11}^{2}+2 C_{i}^{2}
\end{aligned}
$$

by (3.36), and we may express (3.41) as

$$
\begin{equation*}
\frac{1}{T_{s-r}}=\frac{2 I k T}{3 k^{2}}\left(C_{i 1}^{2}+2 C_{1}^{2}\right) \tau_{s r} \tag{3.42}
\end{equation*}
$$

If we write $\zeta=C_{\perp} / C_{\|}$, (3.41) and (3.42) yield

$$
\begin{equation*}
\tau_{s t}=\frac{1}{B}\left\{1-y \frac{(\xi-1)^{2}}{2 \xi^{2}+1}+\frac{12}{6} y^{2} \frac{(\xi-1)^{2}}{2 \xi^{2}+1}+\cdots\right\} \tag{3.43}
\end{equation*}
$$

in agreement with Hubbard $^{33)}$. When $C_{1}=C_{11}$, (3.43) reduces to

$$
\tau_{s r}=\tau_{F},
$$

where we have written $B^{-1}$ as $\tau_{F}$, the friction time that occurs ir the discussion of the Debye and Langevin equations: Then $\zeta_{S r}$ is independent
of the orientation, as it should be according to an earlier result of Hubbard for the spherical molecule ${ }^{34)}$.

McClung ${ }^{35)}$ carried out an investigation of spin-rotational interactions for spherical molecules by employing the eigenfunction expansion procedure of Fixman and Rider ${ }^{36)}$ to obtain a series expansion for the orientational-angular velocity conditional probability density from the Fokker-Planck equation. Applying numerical methods he calculated a correlation time which characterizes the anisotropic spin-rotational interactions. If we denote this correlation time by $\tau_{S \gamma}^{\prime}$, then in our notation ${ }^{37)}$

$$
\frac{1}{T_{s r}}=\frac{2 I k T C_{11}^{2}}{\hbar^{\prime 2} B}\left\{\left(\frac{2 \xi+1}{3}\right)^{2}+2\left(\frac{\xi-1}{\xi}\right)^{2} B r_{s r}^{\prime}\right\} .
$$

On comparing this equation with (3.42) we find that

$$
\begin{equation*}
3\left(2 \xi^{2}+1\right) \tau_{s \gamma}=(2 \xi+1)^{2} B^{-1}+2(\xi-1)^{2} \tau_{s \gamma}^{\prime} \tag{3.44}
\end{equation*}
$$

When we substitute for $\tau_{\text {so }}$ from (3.43) into (3.44), we obtain

$$
\tau_{s r}^{\prime}=1-\frac{3}{2} \gamma+\frac{13}{4} \gamma^{2}+\cdots,
$$

which agrees with the result of McClung and his collaborators ${ }^{38)}$.
4. ASYMETRIC MOLECULES
4.1. General equations

We now consider the case of a molecule with no special symmetry properties, whose rotational Brownian motion is governed by the EulerLangevin equacions (2.31). With an obvicus generalization of $\gamma^{1 / 2}$ satisfying (3.-4) we choose $\varepsilon$ ir. (2.32) as given by

$$
\begin{equation*}
\varepsilon=\frac{\left(G_{2} T\right)^{1 / 2}}{\left(I_{1} I_{2} I_{3} B_{1}^{2} B_{2}^{2} B_{3}^{2}\right)^{1 / 6}} \tag{.4.1}
\end{equation*}
$$

and expand the componerits of the steady state angular velocity:

$$
\begin{equation*}
\omega_{i}(t)=\varepsilon \omega_{i}^{\prime \prime}(t)+\varepsilon^{2} \omega_{i}^{(2)}(t)+\varepsilon^{3} \omega_{i}^{(3)}(t)+\cdots . \tag{4.2}
\end{equation*}
$$

Then $\omega_{i}^{\prime \prime}(t)$ is a centred Gaussian random variable obeying

$$
\begin{equation*}
\varepsilon^{2}\left\langle\omega_{i}^{\prime \prime}(t) \omega_{m}^{\prime \prime}(s)\right\rangle=\hat{\delta}_{\ell m} \frac{R-T}{I_{\ell}} e^{-B_{k}|t-s|} \tag{4.3}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
\left\langle\omega_{\mu} \mid t \omega_{\nu}(s)\right\rangle= & \delta_{\mu \nu}\left\{\frac{R_{\rho} T}{I_{\mu}} e^{-B_{\mu}|t-s|}\right. \\
& \left.+\left(\frac{I_{\rho}-I_{\sigma}}{I_{\mu}}\right)^{2} \frac{\left(R_{R} T\right)^{2}}{I_{\rho} I_{\sigma}} \frac{e^{-B_{\mu}|t-s|}\left[1-\left(B_{\rho}+B_{\sigma}-B_{\mu}\right)|t-s|-e^{-\left(S_{\rho}+B_{\rho}-B_{\mu}\right)(t-s \mid}\right]^{(4.4)}}{\left(B_{\rho}+B_{\sigma}-B_{\mu}\right)^{2}}\right\}
\end{aligned}
$$

where $\mu, \rho_{7} \sigma^{\circ}$ is a cyclic permutation of $1,2,3^{39)}$ :
We immediately make some simplifications. In order to calculate

$$
J_{1}^{2}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2}  \tag{4.5}\\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right], J_{2}^{2}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right], J_{3}^{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

and we see that $J_{1}^{2}, J_{2}^{2}, J_{3}^{2}$ commute with each other. As a consequence of this

$$
\langle R(t)\rangle=\left\{T+\sum_{i=1}^{3} \frac{k_{1} T}{I_{i} B_{i}^{2}}\left(1-e^{-B_{i} t}\right) J_{i}^{2}+\cdots\right\} e^{G t}
$$

where

$$
\begin{equation*}
C_{1}^{2}=-\sum_{l=1}^{3}\left(D_{l}^{(1)}+D_{l}^{(2)}\right) J_{\lambda}^{2} \tag{4.7}
\end{equation*}
$$

$$
\begin{gather*}
D_{1}^{\prime \prime}=\frac{R_{1} T}{I_{1} B_{1}}, D_{2}^{(1)}=\frac{R_{1} T}{I_{2} B_{2}}, D_{3}^{(1)}=\frac{R_{1} T}{I_{3} B_{3}}  \tag{4.8}\\
D_{1}^{(2)}=\frac{\left(R_{1} T\right)^{2}}{I_{1} I_{2} I_{3}}\left[I_{1} \frac{Q_{2} B_{3}\left(B_{2}+B_{3}\right)-B_{1}\left(B_{2}^{2}+B_{2} B_{3}+B_{3}^{2}\right)}{B_{1} B_{2}^{2} B_{3}^{2}\left(B_{2}+B_{3}\right)}\right. \\
+I_{2} \frac{B_{2}\left(B_{2}+B_{3}\right)-Q_{1} B_{3}^{2}}{B_{1} B_{2} B_{3}^{2}\left(B_{2}+B_{3}\right)+I_{3} \frac{B_{3}\left(B_{2}+B_{3}\right)-2 B_{2}^{2}}{B_{1} B_{2}^{2} B_{3}\left(B_{2}+B_{3}\right)}} \\
\left.-\frac{\left(I_{2}-I_{3}\right)}{I_{1} B_{1}^{2}\left(B_{2}+B_{3}\right)}\right], e C_{0}
\end{gather*}
$$



 written explicitly in (4.10). In the spherical model $\left\langle\varepsilon F(i) \omega_{\mu}(t) \omega_{\nu} \omega\right\rangle$














 Since it was pointed out at the end of the previous subsection that we

Equation (4.4) yields
$\left\langle\omega_{\mu}(t) \omega_{\nu}(\nu)\right\rangle=\delta_{\mu \nu}\left\{\frac{R_{1} T}{I_{\mu}} e^{-B_{\mu} t}+\left(\frac{I_{\rho}-I_{\gamma}}{I_{\mu}}\right)^{2} \frac{\left(B_{2} T\right)^{2}}{I_{\rho} I_{\sigma}} \frac{e^{-B_{\mu} t\left[1-\left(B_{\rho}+B_{\sigma}-B_{\mu}\right) T_{-} e^{-\left(B_{\rho}+B_{0}-B_{\mu}\right)}\right]}}{\left(B_{\rho}+B_{\sigma}-B_{\mu}\right)^{2}}\right.$

Using this equation, (4.16) and (4.18), and employing (4.20) and (4.21)
we deduce that

$$
\begin{aligned}
& \int_{0}^{\infty} e^{--s t}\left\langle R(t) \omega_{\mu}(t) \omega,(0)\right\rangle d t \\
& =\delta_{\mu \nu} I \frac{\ell T}{I_{\mu}}\left[\left(-G_{i}+\left[B_{i}+S\right] I\right)^{-1}+\sum_{i=1}^{3} \frac{\sum_{2} T}{I_{i} B_{i}^{2}} \int_{i}^{2}\left\{\left(-G+\left[B_{\mu}+5\right] I\right)^{-1}-\left(-G+\left[B_{n}+B_{i}+s\right] I\right)^{-1}\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
-\frac{\left(G_{1} T\right)^{2}}{I_{\mu} I_{\nu}} \frac{\left.T_{\mu}\right]_{v}}{B_{\mu} B_{\nu}}\left[(-G+S I)^{-1}-\left(-C_{\nu}+\left[B_{\mu}+5\right]\right)^{-1}-\left(-C_{0}+\left[B_{0}+\zeta\right] I\right)^{-1}\right. \\
\left.+\left(-G_{1}+\left[B_{\mu}+B_{\nu}+5\right] I\right)^{-1}\right]+
\end{array}
\end{aligned}
$$

In the above, $\rho$ and $\sigma$ are the numbers such that $\rho, \sigma, \mu$ is a cyclic permutation of $1,2,3$ and $x$ is the number which wich distinct values of $\mu$ and $\nu$ constitutes the set $1,2,3$.

## In ouder to write down the matrix representatives of the opexators

 occurring in (4.22) in the representation defined by (3.34) we put$$
\begin{equation*}
D_{l}^{(1)}+D_{l}^{(2)}=D_{l} . \tag{4.23}
\end{equation*}
$$

Then from (4.5) and (4.7)

$$
-G+a]_{\sim}=\left[\begin{array}{ccc}
\frac{1}{2} D_{1}+\frac{1}{2} D_{2}+D_{3}+a & 0 & \frac{1}{2} D_{1}-\frac{1}{2} D_{2} \\
0 & D_{1}+D_{2}+a & 0 \\
\frac{1}{2} D_{1}-\frac{1}{2} D_{2} & 0 & \frac{1}{2} D_{1}+\frac{1}{2} D_{2}+D_{3}+a
\end{array}\right]
$$

and therefore
 Omitting subscripts for the moment we may say that when $S=0$ in (4.22), $Q=B$ or $2 B$ except for $-G+5 I$ where $Q=0$. since $D=\gamma B$ approximately by (4.8), (4.9) and (4.23), and since $G$ defined by (4.7) is of order $D$, the non-vanishing elements of $(-G+a I)^{-1}$ are in general of order $B^{-1}$, the first term on the right hand side of (4.22) is of order $\mathrm{K}_{\mathrm{R}} T /(I B)$ and the others are of order $\gamma K /(I B)$. However $(-G)^{-1}$ is of order $I B /(K T)$ and so produces a contribution of order. $k T /(I B)$, as it did in eq. (3.29) for the sphere.

### 4.3. Calculation of spin-rotational relaxation times

A prerequisite for the calculation of the different spin-rotational relaxation times is the value of $\left(\int_{0}^{\infty} e^{-5 t}\left\langle R(t) \omega_{\mu}(t)(0)_{r}, \sigma\right\rangle\right)(t)$ required for substitution into (2.14). It is seen from (4.22) that in the integral there occur operators which are more complicated than the $T, i\left(J_{N} \cdot e_{\mu} \times \nu\right), J_{\mu} J_{\nu}$ met in the study of the spherical rotator. A graat calculational difficulty arises from the presence in $\int_{0}^{\infty}\left\langle R(t) \omega_{\mu}(t) i_{\nu},(\omega)\right\rangle d t$ of terms like $(-G)^{-1} J_{\mu} J_{V} \quad$ This difficult: dissppeared in the spherical morlel where the $J_{\mu} J_{v}$-termi did not contribute to $C_{i i}^{(i)}(\dot{)}$. In order to derive a satisfactory expression in the $J_{i} J_{y}$-cerms it would be essential to extend the value of $\langle R(t)\rangle$ in (4.6) to at least one higher order in $\gamma^{\prime}$. This would be laborious but the means of doing it is available ${ }^{39 \text { ). }}$

It is not difficult to see that, when the results of the present section are applied to a spherical molecule, we obtain agreement with those of Section 3. Indeed (4.24) reduces to

$$
(-G+a I)^{-1}=(27+a)^{-1} I
$$

Then the last term in (4.22) is a multiple of $J_{\mu} J_{\nu}$ and so, as in subsection 3.3, gives nc contribution to $(f(0)$. To order $\gamma k T /(I B)$ the other terms in (4.22) give to $\int_{0}^{\infty}\left\langle R(t) \omega_{n}\left(t\left|\omega_{v}\right| \vec{j}\right\rangle d t\right.$ the contribution

$$
\delta_{\mu \nu} T \frac{\ell T}{I}\left[\frac{1}{B+2 D}+2 \gamma\left(\frac{1}{B}-\frac{1}{2 B}\right)\right]-\left(\frac{k_{2} T}{I}\right)_{i}^{2}(J+2 \times E) \frac{(2 B)^{-1}}{B=}
$$

D) may be approximated by $Y R$ and thus the last expression becomes

$$
\frac{h T}{I B}\left\{(1-\gamma) \delta_{i} T-\frac{1}{2} \gamma i\left(j \cdot e, e_{m}\right)\right\}
$$

which agrees with (3.39) in the approximation of the present section.

At the present state of our knowledge the most that one can do for a totally asymetric molecule is to explain how the various relaxational times associated with spin-rotational interactions are related to cic ${ }_{i}^{\circ}(\varsigma)$ through the equations (2.5), (2.6), (2.13), (2.17), (2.27), to show that $C_{i(i)}^{(s)}$ is related by (2.14) to the Laplace transform of $\left\langle R(t)_{c_{\mu}}(t) \omega_{\nu}(0)\right\rangle$ and to express this by (4.22). The investigation is entirely theoretical. Since, as has been pointed out in a recent study of the dielectric relaxation of asymmetric polar molecules ${ }^{44}$ ), there is no obvious way of determining $B_{i}, B_{1}, B_{3}$, a comparison with experiment is not yet possible. Special cases of the asymmetric molecule, other than the spherical model, are being currently investigated.

## 6. CONCLUSTON

It has been found possible to apply the averaging procedure used previously for functions of orientational variables to products of functions of orientational and angular velocity variables encountered in the study of nuclear magnetic spin-rotational relaxation phenomena. An analytical method has been developed and this yields results which are in agreement with those obtained, by very different methods, by Hubbard and by McClung and his collaborators for a rotating spherical molecule. It has been shown how the method could be employed for a molecule of arbitrary shape, and attention has been drawn to some of the alculational difficulties that would be encountered. It may be concluded that the mathenatical approach based on the stochastic rotation operator" is adequate for the investigation of the nuclear magnetic relaxation processes arising from spin-lattice, intramolecular dipole-dipole, quadrupole and spin-rotational interactions.

## REFERENCES

1) A. Abragam, Nuclear Magnetism (Clarendon Press, Oxford, 1961)
2) P. S. Hubbard, Rev. Mod. Phys. 33 (1961) 249.
3) P. S. Hubbard, Phys. Rev. 131 (1963) 1155
P. S. Hubbard, Phys. Rev. A 8 (1973) 1429.
P. S. Hubbard, Phys. Rev. A 9 (1974) 481.
P. S. Hubbard, Phys. Rev. A to be published.
P. S. Hubbard, Phys. Rev. A to be published.
J. McConnell, Rotational Brownian Motion and Dielectric Theory (Academic Fress, London, New York, 1980).
J. McConnell, Physica 102 A (1980) 539.
ref. 8, section 7.3.
ref. 8 , sections 7.3 and 7.4.
M. E. Rose, Elementary Theory of Angular Momentum (John Wiley \& Sons, New York, 1957).
ref. 4, eq. (5.5).
ref. 8 , section 11.4 .
ref. 8 , section 11.1
G. W. Ford, Notes on Stochastic Differential Equations (unpublished,1975)
N. M. Krylov and N. N. Bogoliubov, Introduction to Nonlinear Nechanics (Princeton Univ. Press, Princeton, 1947).
G. W. Ford, J. T. Lewis and J. McConnell, Proc. R. Ir. Acad. 76 A (1976), 117.
4) K. F. Herzfeld, J. Am. chem. Soc. 86 (1964), 3468.
5) Y. Leroy, E. Constant and P. Desplanques, J. Chim. phys. 64 (1967), 1499.
6) ref. 8, eq. (5, 3.8).
7) ref. 8, eq. (9, 2.6), (9, 2;8), (9, 2.17).
ref. 8 , eq. ( $3,4.18$ ).
M. G. Smith, Laplace Transform Theory (Van Nostrand Co. Ltd., Toronto, New York, Princeton, 1966).

Tables of Integral Transforms. Bateman Manuscript Project Vol. I, p. 232 (McGraw Hill Book Co. Inc., New York, Toronto, London, 1954).
G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold Co., New York, Cincinnati, Toronto, London, Melbourne, 1945).
ref. 5, p. 488.
ref. 12, pp. $28,29$.
ref. 1, p. 279.
ref. 5, p. 489.
ref. 7, eq. (5.10).
ref. 7, eq. (5.20).
ref. 3, ec. (2.13b).
R. E. D. McClung, J. chem. Phys. 73 (1980), 2435.
M. Fixman and K. Rider, J. chem. Phys. 51 (190́9), 2425.
ref. 35 , eq. (66).
c. Lévi, J. P. Marsault, F. Marsault-Hérail and R. E. D. McClung,
J. chem. Phys. 73 (1980), 2443, eq. (10).
39) G. W. Ford, J. T. Lewis and J. Acionnell, Phys. Rev. A 19 (1979), $90 \%$
40) ref. 8, eq. ( $12,5.6$ ), ( $11,5.13$ ), ( $11,5.23$ ).
41) ref. 8, pp. 194, 195, 217, 218.
42) ref. 8, eq. (11, 1.16).
43) ref. 8, eq. (11, 5.28).
44)
J. McConnell, Physica 105 A (1981), 593.


[^0]:     $\mu, \nu=1 m_{2, n} \quad n_{n,-m}$
    where $n,-m$ denotes the $n_{2}-m$-matrix element in the representation with basis elements $\left.Y_{1,-1}\left(\beta(\omega), a^{\prime}(\omega)\right),\right\}_{1,0}^{\prime}\left(\beta(i), \alpha(c i), Y_{1,1}\left(\beta i(c), \alpha^{\prime}(\omega)\right.\right.$.
    $J^{2}=2 I$ and $G_{j}=C_{1}$, where from (3.3)

