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1. INTRODUCTI ON

The theory of nuclear magnetic resonance relaxation caused by

rotational thernal motionl2) was applied by Hubbard in a sequence of

papers37 to quadrupole interactions, intramolecular dipole—dipole

interactions and spin—rotational interactions. The treatment of the last

type of interactions is particularly difficult in that it involves the

calculation of the ensemble average of the product of functions of orien—

tational angle variables and angular velocity variables. In his earlier

investigation Hubbard3 regarded the angles and angular velocities as

independent sets of variables, so that the ensemble average of the product

was assumed to lie the product of the erLsclsblc averages of the function of

the orientational variables and of the function of the angular velocity

variables. However the ozientational and angular velocity variables are

not independent and Hubbard’’5 later proposed a method based on a Fokker—

Planck equation which enabled him to write down a general exprossion for

the Laplace transform of the ensomble average of the product 0f orientatjonal

and angular velocity functions which occur in spin—rotational relaxation studies.

For the case of a rotating spherical molecule Hubbard deduced expressions for

the spin—rotational correlation tine and for the spin—rotational contributions

to the reciprocals of the longitudinal and transverse relaxation times.

A method based on Eulor—Langevin stochastic differential equations,

the ensemble average of the stochastic rotation operator and the Krylov—

Bogo3iubov solution of nonlinear differential equations has been found very

powerful for the investigation of dielectric relaxation processes when

inertial effects are included8. Indeed the method is generally applicable

to processes whose investigation is based on the correlation functions of

spherical harmonies. Confining our attention to nuclear magnetic resonance

phenomena we have already applied the method to the calculation of spin—

lattice relaxation times.9 It may be applied without difficulty to the
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contributions of intramolecular dipole—dipole interact:ior.s and of

cuadrupole interactions to the nuclear magnetic relaxation rate of identical

nuclei, but not to thu contributions of spin—rotational interactions.

It is the purpose of the present paper to extend the above mathe

matical method so that it will provide the ensemble average of the product

of the orientational a-id angular velocity function.. eicountered in the aLudy

of spin—rotational interactions. In tection 2 the formalism for these inter

actions will be summarized, definitions given and the extended mathematical

method will be presented in a manner applicable to molocules of any shape.

In Section 3 a detailed study will be made for tho spherical model of the

molecules, and the results will be compared with those derived by other

methods. Finally in Section 4 the probfem for asyimnetric molecules will

be considered.

2. SPIN—ROTATIONAL INTERACTIONS

2.1. Definitions and basic equations

We consider the contribution to nuclear magnetic relaxation of

identical nuclei in identical molecules. The spin—rotational interaction

is the sum over all molecules in a system of the sum of the interactions of

the magnetic moments of the nuclei in a molecule with the magnetic field

produced by the rotation of that molecule. For later comparison with the

results of Hubbard we follow fairly closely the notation of ref. 5. Let

us denote by I . the spin operator of the ith nucleus and byJ the

angular momentum of the molecule that contains this nucleus. The spin—

rotational Hamiltonian of the ith nucleus,

G1’
where is a dyadic with the dimensions of a

(2.1) as

where lIE are the spherical components of

rqy D y) J.
In this equation -

r ‘
c: C

= U3 ±1)1 +

where the constant Cartesian components of the dyadic referred

to axes fixed in the molecule In (2 2) is the rotation mntr1 for

the transformation of a spherical tensorl0) and )- are the Euler

frequency.

(2.1)

Hubbard expresses

(2.2)

in the laboratory system and

(2.3)



—4-- —5—

‘aJ

angles specifying the molecular system with respect to the laboratory

coordinate system. We see from (2.3) that

fr,

(—) j , (2.4)

Tae contrihutios (‘i /T (i /i) t o tie sp n—rot tion 1

interactions to the reciprocals j /J I ef the longitudinal

and transverse relexation times respectively, are given by

() 2 J () i(o))

(2.5)

whore ti.-., is the angular. velocity di the Lamer precession,

=
(2.6)

and not to be confused with the dyadic components, is defined

by

C= <)0)>,
(2.7)

whero the angular brackets denote ensemble average for thermal equilibrium.

We see from (2.2) that

Z ‘i c’)J;o.
1L,P( (2.8)

We take for the molecular frame of reference the principal axes of inertia

through the centre of mass and write the components of angular momentum as

I w, It- T3t , where TI) 1 13 are the principal moments of

inertia and ,, e)., ta., the corresponding cartesian components of angular

velocity. Then replacing tLby 11 t,)we express (2.8) as

C) I I ( if (t t Ic?, fi l),

‘-I- JA,’’I ?‘\ii -I )

(2 9)

a sum of ensemble averages over the product of a function of angle variables

and a function of angular velocity variables.

At this stage we introduce the stochastic rotation operator(.

We see from (2.9) that

Ctr ,
\(L(&ft r)D oif (),i )I),

(2.10)

2:£ <‘L&-t k),

Now

—I

where t\(L)is the rotation operator that brings the molecular frame at

zero to the molecular frame at time t and Rl&) is its adjoint

involves the angular velocity through the relation

_j .)) ()

time

Since

(2.11)
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it follows that with L.!’ given by (2.9). Then, from (2.12),

4- • 7 1

- ( £L( l&)itj
(2.14)

_—b0:bd1)

1,v- n--)

However the angle and angular velocity variables though not independent and, from (2.6),

are separable. This allows us to take the ensemble average firstly ovor

1 00 -.

the angular velocity variables, denoting it by , and then over the ,)L1) ( C..C—’) + (2.13)

angle variables at time zero. Thus

/
l /17 As will be explained below in subsection 3.3, we may rep1aceJ/w,)by J,/n)

j
in the extreme narrowing case. Then (2.5) and (2.15) yield

Py-:—/

() (f) 2 2 c°)

I ( We write for the common value in the extreme narrowing case of

,4>VI -‘ —M,h I / \ I / SJ/7 ) and 1/7:), and so

where —n denotes the-rn —e1ement with respect to the basis

,((oi !& V(i, . We conclude that Cio). (2.17)

/
—_

The spin—rotational correlation time T is defined as the

—
integral from zero to infinity of the normalized autocorrelation function

(2.12)
of LJ.(, so that

4o4

If we succeed in calculating g/)/) te,/0>,, we may be able to Jo 1°, dt

find (1/)ana/T) - from (2.5), (2.6) and (2.12).

(2.18)

To perform these calculations it is helpful to define the Laplace -1
From (2.2) and ‘cJ ±L),we deduce that

transform CJs) of (

(2.13)
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<UI0) ()> jj To obtain the denominator in (2.18) we note that is the

• identity operator, that the Wigner functions in (2.20) for are

consequently independent of the angular velocity, and therefore that

) I 4 j..c), y co) fl (a)) ) A( 1)

- (2.23)

.•(q, (H/’
a’

?j k’ IC?) ‘ve),

• For a rotator of any shape14

41
where we have used (2.4) and the property of Wigrer functions12 4o) Jc)> (2.24)

F ) - 2 19

Then employing (2.19) and the orthogonality relation

- (‘ f ) ‘iN)’ d
10)

Dl J c? ,F’ ) J) (, y) ‘p

From a result of Hubbard we find that C P P ) /

4 ) we see that

I /

a

4C) fl(o),(>
vt0((t), • J(o)

Hence

/ 1 / . Hence from (2.20), (2.23) — (2.25)

X( (dD), &e) v.,(t(r), )Ytw/)>(2.20) —

&1
:/4

1( ) J D1,i

by (2.10), since pi and ‘n are sunonatiun indices. It follows from (2.13) ->
()fr_• (2.26)

that -I -, —

fer<
2.2;

We conclude from (2.18), (2.22) and (2.26) that

(o) L C 1o.
(2.22) C (2.27)

- -1 L — I’’b. AA

• the value of c.(c) to be obtained from (2.14).
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- (1-13)-1, +11

/ 7 .— —-

— —1,) - j-. cI

T3

where 3 are frictional constants and f-v ‘4F 7/1lare Wiener

processes. Equatione (2.31) are nonlinear and t.),ft)) C.’j’t) Gu3(t)

will be centred but in general non—Gaussian15. If the molecule is

spherical or linear, t.i(t) obeys a Langevin equation and is a centred

Gaussian random variable.

Ford16 has given a general method based on earlier studios of

Krylov and Bogoliubov17 of solving a nonlinear stochastic differential

equation of the type

where xL) is a random variable that may be an operator, a small

parameter and O)a stochastic operator. Since accounts of Ford’s

method have been published8’18,we shall just quote results that are

relevant for our purposes. Equation (2.29) is obtained from (2.32)

by the substiutions

Then we write

<?>)

— (C)

where is the identity oporator and F are stochastic operators

with zero ensemble averages. The non—stochastic (&)obeys an equation

(a)<
(2.34)

In our previous investigations we wore concerned only with the

solution of (2.34) but now we must find in order to calculate the

average value of t /) Since

-L

because w))rO, it is found that

• Hi) -c L (J.i)d
L(1

—‘ dt IjO

fr Jo/ ‘) (2.35)

-

- (tX( i)1Ji>-4(J/y(j.

and that in general

— (c)- F((t) (2.36)

(2.31)

(2.32)

1?i

(2,33)
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3. SPHERICAL MOLECULES

3) Calculation of <()c(&)w

When the rotating molecule is cpherical in shpe eq (2 31) reduce

to

di
i_ — i &) I (3.1)

and WtEjis a Gaussian random variable with zero mean. Then, since the

(
mean value of the product of an odd number of such L)’s vanishes,i_LC)

ç)

given in (2.37) vanishes, as indeed do JR... jt’ ,
p(. it) , etc.. It has

been shown tbat9

t yJ(i- )+y{J[ —(t÷ t]

-.

+y
jZ

-
I 2i$t,)t ( -2 (3.2)

)tc7j ,-2r .L

where -)

(3..4)

where .4 is the Boltzmann constant and T the absolute temperature. It

is found in cieluctric absorption experiments that the value of I does not

exceed a few per cent19’20. We see from (3.2) that tiis a multiple

of the idntity and so commutes with I
We wish to calculateLt) from (2.33), (2.35) and (3.2), and use

We also have

cj 0
,

= L
Jc Ji(

L’c Lc f(J (J tL(t)(J
(2 37)

-

-- ( ‘))< (7 1)(2 /))>

On substituting the values of into (2.34) we may be able to obtain

!tin a form suitable for further computation. Then finding

from (2.35), or from (2.36) and (2.37), and substituting into (2.33) we

have 1) and may procced to calculate in (2.12).

In these investigations the operators are independent of the angle

variables and so we may denote ensemble averages either hyt.>, or bye...>,

For convenience we shall adopt the latter notation.

All the above consideratians are applicable to molecules of any

shape. We shall now apply the general theory of this section to a spherical

molecular model,

r (3 )

J(j’f i) being the eigenvalue of Jand



—1 —

—17—

the value so calculated to obtain < Let us suppose (2.35) and (3.6)

that i is an odd integer. The contribution to 1) fc) 2-
corresponding to ) contains only tomes with an odd number ofa’s 1

(3.10)
and so the ensemble average of the contribution vanishes. We may therefore

deduce from (2.33) that

and therefore

<(I iFf -F1
(35) 2 t t

—
jc1

Fer a steady state solution of (3 l we have2 (3 l)

Tr (‘P1—
‘ Lpt—’ C ,

I )P /,2?,) (3.6)
on introducing

/ from (3.4). From the properties of Gaussian :ariab1es23

It follows from (2.37) that22 (i)tç () we))

4i- tib.)5 1t) t.)(o))

(3.lz)

i—e (3.7) f 4 1t)

— .
(3.8)

Thus
{

[a ç it))(t) tf0)

We see from (2.36) that

1 / (3.13)

1tji) -‘ i Fi
(3 ) I

)

Let us calculate and on employiog (2.30) we deduce that

From (3.6)

-
- 1

(3.14)

/ t — /
since L. O in (2.6) and all subsequent equations of Saction 3 From +( & - )t (
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-

(2- (4)
Since and are nonstochas tic, we ace from (3.9) that

/
2 /

J ( It,)

//e

2 j)c _L22l — (1 2 ) (319)(3.15) —/ (ii- 1C)(.))

. (
Now, by (3.8), The equation in (2.35) for r (C) gives

_j Lt f , ,JLi
(3 16)

)(3 20)

+ J(4)
which is a ccnvo1ucion2. Next we have from (3.7) and (3.10)

so that

e .i 10) Cl —
‘ ( (, ) 3 ) d

j ((%1)[ tJ>J t) (3.17) JJ ( (A—--—) (3.21)

y J / + )]
where

Using (3.12) we e1uce thct JJJ J <t((j
t, t - —r

5 cl &)L)r1)()’Q/iC)) - ja

(3.18)
-1-t) (3.22)

-1 ÷ ) ‘ C -

- J >Cancelling terms in (3.17) ard (3.18) and integrating with respect toe, L
we obtain
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To evaluate A we extend (3.12) to the product of six ‘s and employ

(2.30) to derive the relations:

ULJ (JajJ
cI

a V /

c,iJJcJjjc
=

LJ = 3 )jj ( ,
M

a J JaJ j(

After a long but elementary calculation we deduce from (3.21) — (3.23) that

— ( eF1t)

Lt Li
L+L)

(&s)

+
(3.24)

J2-1JU-ci](.j
+ ) )

and we see that the multiple integrals are convolutions

(3.23)

- LJJ

L j (ji;
)

0, tcu

—21—

The value of t() lo))1s now obtained from (3.15),

(3.16), (3.19) and (3.24). If we wished to find

the calculation would be extremely long; for example, corresponding to

in (3.22) we would have a summation which involves the ensemble average of

the continued product of 8 e ‘s and this Consists of 105 terms. We shall

not therefore take the calculations further. For our purposes we do not

require an explicit expression for the rotation operator but such an

expression may be written down from (2.33), (2.35), (3.6) — (3.10), (3.20),

(3.2) and (3.3). The value of f/) A1t)W1O1> is obtainable from

(3.2), (3.3), (3.5) and our calculated values of

Explicit values

of the integrals occurring, which in fact are not required for the

investigation of spin—rotational interactions, may be derived by inverting

25)the Laplace transforms of the convolutions
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3.2 The Laplace transform of ‘1)

In the case of a spherical molecule aq. (2.14) becomes

(ç) (S <Rtt oci&)
(325)

yi
-

the integral being the Laplace transform of the operator ()I&) L(ai.

As an illustration of the method of calculation and approximation we take

the first term

—i)3LL (3.26)

on the right hand side of (3.24) and we approximate 1in (3.2) by

-e I . We shall calculate the Laplace transform of the expression

(3.26) multiplied by -e -‘ , ncting that

- j J j jc- -

( . _b- .

(T’ JJi ‘-L ‘-
_(2-)1

The Laplace transform of this is

____JJ

-

I (c+ )+R ç.)c+’-f 6)
.e t

By inverting this we may find the value of (3.26) multiplied by _r

* (3.2$)

For the small values of j with which we shall be concerned, defined

by (3.3) is of order The factors are at least

of order unity. However.for values of 57 of order or less, and so for

the extreme narrowing case when S will be taken equal to zero,

is of order . This will raise the order of (3.28) to 141
Then in order to obtain an approximation of order J. J,, ‘4 I /( ) it will

be necessary to include the term
‘)‘

J in (3.2) when approximating

‘ 1t?>. Similarly, if the denominator of the Laplace transform had

contained a factor (‘S
--

, we would have had to include terms

proportional to in the approximation of ‘ RIL-?>

On performing the calculations we obtain

t< CiG)> at

1

__ ___

— -& - —-——-----—

1
A( c; + L’+ L?j (+- f •‘)(c-i-27f ?ç)

r

________

—+1 ç s + .

+—-
s+’C-j (c9-9 )(s±

____

__

0 J- [c+E r-C) +-gc

- _JL

____

-
tYLcJ Lc-1--I$G1 (c+,) f26/ c*)

—

+ ((t2_1)

9 DB+P)
(3.29)

Let us write (3.27) as

- Jjv

__

1tIYT 7 -(÷Eç) _(c1.) _(24j)1- --1?)
-e -e

(3.27)
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the rows and columns being numbered in the sequence —1, 0, 1. The matrices

of (3.34) may be obtained from those of Rose29 by making tito snbstittions

, i-tJ
in order to cake account of tho minus sign in the commutation relation (2.30).

We see from (3.33) that

In the extreme narrowing case of (/TA7we may replace ç by zero in

(3.29) when calculating J1fc)frorn C(S) as given by (2.15). Then (2.17)

yields

cia). (3.35)

In order to deduce C13) from (3.32) we iqust perform the summations

over involving the b’s and the operators outside the curly

brackets of (3.29). A brief calculation gives

( ) 2
JZVa

where we have employed (3.31). Then we deduce from (3.34) that

•451
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On evaluatirg from (3 34) and substitu ing we likewise find tnat

/

(3.38)

Equations ç3 36) — (3 38) were already given b3 Pubbard3 In (3 29)

the terms that require special attention for SQ are all proportional

to . On account of (3.38) they give zero contribution to Cf,

and for the purpose of calculating I /T.. from (3.35) they may be dis

regarded. However for the sake of completing a record of this calculation

we shall retain them.

On putting Jr / in (3.29), employing (3.33) and expressing the

results as power series in y we find that

r_St< Rt
+)‘L1J . (7’..xjJ

+ (.4.i)3

-J÷*r

For the reason given in the previous subsection it is to be expected that,

‘ /6)
if we were to continue our calculations so as to include the —

term on the right hand side of (3.5), the coefficient of

would be altered. The other terms on the right hand side of (3.39) are

in agreement with the result of Hubbard32. Equation (3.32) combined with

(3.36) — (3.39) yield

f ((;, c;)1-
.
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In the present representation

0d

0 0) L
D

(3.34) J7f

(3.39)

(3.36)

[L (J!
11>- I\

(3.37)
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of the orientation, as it should be according to an earlier result of
and so, from (3.35),

34)Hubbard for the spherical molecule
(z÷)-- )+ , (3.40) McCl

35)
ung carried Out an investigation of spin—rotational inter

actions for spherical molecules by employing the eigenfunction expansion

36)

To obtain we note that for tb-s sphere (2.28) becomes procedure of Fixman and Rider to obtain a series expansion for the

orientational—angular velocity conditional probability density from the

‘--F- E
‘ I (.,ç-,--

L Z ()‘%:J. (3.41)

Fokker—Planck equation. Applying numerical methods he calculated a

correlation time which characterizes the anisotrepic spin—rotational

interactions. If we denote this correlation tine by , then in our

Now . 37)
/ notation

19

- Z ii( ?1 (‘Y1.crl -) cVz) r_/ (.. 3

/

-& 2C’ -L11
On comparing this equation with (3.42) we find that

by (3.36), and we may express (3.41) as ) y’ 1—’)2’. (3.44)

(‘ C,). 3.42)
II — Tdhen we substitute for 2ç- from (3.43) into (3.44), we obtain

1? i— ( /(, (3.41) and (3.42) yield / .. )If we write -

/ \L
orsw I)

(343)
which agrees with the result of McClung and his collaborat

38)

I -i r’

in agreement with Hubbard33. en , (3.43) reduces to

whore we have written as the friction tine that occurs in the

diacusson of the Debye and Langevin equatiOns’. Then is ndopendent
Si-
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4. ASYCOTRIC MOLECULES

4.1. General equations

now consider tha case of a molecule with no special symmetry

properties, whose rotational Brownian motion is governed by the Euler—

Langevin equations (2.31). With an obvicua generalization of

satisfying (3. Z4) we choose E in (2.32) as given by

and expand the components of thc steafp stste ngu1ar velocity

= aJw
L / • —.V It-sJ (4.4)

fIcLt1
/

H r
0 / 0 / 0 0

[0 0L- 0
1. L

and we see that j J coimnute with each other. As a consequence

of this

where

/(I, 1a13
3,1 z)1/,

(4,1)

(4.5)

<1= f
,

(t) £ (c)
-

t0. 1) 4) ii-)

(J
Then )(t’ is a ccntred Gaussian random variable obeying

€ <‘L Ô

On the other hand

(4.2) C

(4.3)
-1 T ‘1’) :_I (I) .—i T

I ,

In fi r f21 (} +

.::( + 3)

!L:1 -2
L ‘O,+3) 3

- (i) 1 4°)

(+3) J, .

(4.6)

(4.7)

(4.8)

(6.9)

where o is a cyclic permutation of 1, 2,
39

We immediately make some simplifications. In order to calculate

relaxation times we shall work in the three—dimensional representation

given by (3.34). From these we deduce that
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Using this equation, (4.16) and (4.18), and employing (4.20) and (4.21)

we deduce that

)(),/o1l

J +‘÷
;‘±÷÷

÷ ))
i7) !/j ‘T

\f(Li.T) 4LZi L.ifl

____

((())f_ijj

‘L 4vi j

-

+ (- . cflJ’ ]÷...

Equation (4. +) yields

f ( S)

In order to write down the matrix representatives of the operators

occurring in (4.22) in the representation defined by (3.34) we put

. (4.23)

Then from (4.5) and (4.7)

0

and therefore

C

p.’

0

- 1-
r-

.1-

(c+
(k++3.-)

0

-

0

1

-I!32L_I
(i+ cYp-J;Ha)i

H
I

(L’ P.--’l) (I’: 4.r:

0

/

cI ÷ 0

0

In the above, f and are the numbers such that 0,--- is a cyclic

permutation of 1, 2, 3 and is the number which wich distinct values of

and V constitutes the set 1, 2, 3.

0mittng subscripts for the moment we nay say that when $tin (4.22),

&-a or ]3 except for G+Slwhere .
by (4.8), (4.9) and (4.23), and since ,defined by (4.7) is of order

the non—vanishing elements of + o-T) are in general of order

the first term on the right hand side of (4.22) is of order I/1Band

the others are of order However is of order i/
and so produces a contribution of order..-1T/(1), as it did in eq. (3.29)

for the sphere.
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4.3. Calculation of spin—rotational relaxation times

A prerequisite for the calculation of the different spin--rotational
/ çV

relaxation tines is the valee of - < frj required for

substitution into (2.14). It is seen from (4.22) that in the integral

there occur operators which are more camp] ictad than the1) L (J

met in the study of the spherical rotator. A grat calculational difficulty

arises from the presence in dr of terms like

(—a) JJ . This difficulty dicspos:ed in rhe ephocical model whai-e

the —terma did not contribute to Ce) . in order to derive a

satisfactory expressioa in the Jj —crms: it would be essential to

extend the value of in (4.6) to at leest one higher order in

This would be laborious but the means of doing it is available3.

It is not difficult to see that, than the results of the presenc

section are applied to a spherical molecule, we obtain agreement with those

of Section 3. Indeed (4.24) reduces to

(+)‘

Then the last term in (4.22) is a multiple of and so, as in subsection

3.3, gives no contribution (fe) . To order /) the other

terms in (4.22) give to J the contribution

c
may be approximated by and thus the last expression becarnes

)LfrT -‘JX)}
j_J -

At the present state of our knowledge the most that one can do

for a totally asymmetric molecule is to explain how the various relaxational

C’.

times associated with spin—rotational interactions are related to (jc)

through the equations (2.5), (2.6), (2.13), (2.17), (2.27), to showthat

5’,

C’ is related by (2.14) to the Laplace transform of ‘... j\1)t(Ute,,(e, -)

and to express this by (4.22). The investigation is entirely theoretical.

Since, as has been pointed out in a recent study of the dielectric

relaxation of asymmetric polar molecules44, there is no obvious way of

determining 33a comparison with experiment is not yet possible.

Special cases of the asymmetric molecule, other than the spherical

model, are being currently investigated.

which agrees with (3.39) in the approximation of the present section.
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6. CONCLUSION

It has been found possible to apply the averaging procedure used

previously for functions of erientatonal variables to products of functions

of orientational and angular velocity variables encountered in the study

of nuclear magnetic spin—rotational relaxation pnenoiaena. An analytical

method has been developed and this yields results which are in agreement

with those obtained, by very different methods, by Hubbard and by MeClung

and his collaborators for a rotatiiig spherical molecule. It baa been

shown how the siethed could be employed for a molecule of arbitrary shape,

and attention has been drawn to come of the calculational difficulties that

would be encountered. It may be concluded that the mathematical approach

based on the stochastic rotation operator is adequate for the investigation

of tha nuclear magnetic relaxation processes arising from spin—lattice,

intramolecular dipole—dipole, quadrupole and spin—rotational interections.
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